УДК 621.924.6:621.833

А.А. РЫЖКИН, А.А. АНДРОСОВ, Г.П. ГРЕБЕНЮК, М.В. САВЕНКОВ, В.В. ВЯЛАЯ

ОПРЕДЕЛЕНИЕ КООРДИНАТ БОКОВЫХ СТОРОН ЗУБЬЕВ КОЛЕС С ЭЛЛИПТИЧЕСКИМ ПРОФИЛЕМ

В статье представлены результаты теоретического определения координат боковых сторон зуба колеса, имеющего в нормальном сечении эллиптический профиль; получены уравнения связи угловых и линейных размеров зубьев в торцевом и нормальном сечениях. Предложенная методика применима для нахождения координат профиля, описанного любой плоской кривой второго порядка.

Ключевые слова: зубчатые колеса, эллиптический профиль, червячные зуборезные фрезы, геометрия зуба колеса с эллиптическим профилем.

Введение. Надежность изделий машиностроения, имеющих в структуре зубчатые передачи как преобразующие или силовые звенья, в значительной мере определяется несущей способностью этих передач. Как известно, удалось частично решить проблему увеличения несущей способности зубчатых передач путем создания пространственных зацеплений с точечным контактом (зацепление М.Л. Новикова) [2, 5] и получить при этом существенное увеличение передаваемой мощности (крутящего момента) при одновременном снижении габаритов передачи.

Разработанная на кафедре «Основы конструирования машин» ДГТУ передача с эллиптическим профилем в нормальном к зубу сечении [1] решает проблему несущей способности силовых зубчатых передач и характеризуется тем, что в торцевом сечении колеса ножка и головка зуба очерчены дугами одной окружности, а полная высота зуба равна диаметру этой окружности.

Внедрению новой передачи будет способствовать решение вопросов, связанных с разработкой точных и производительных зуборезных инструментов, к числу которых следует отнести и червячные фрезы.

Независимо от формы боковой стороны зуба неэвольвентного зубчатого колеса как фасонного валика с регулярно чередующимися зубьями известно несколько методов определения профиля зуба червячной фрезы как обкаточного инструмента реечного типа [2-5], однако, для их применения при проектировании фрез необходимо, в качестве исходных данных, иметь уравнения боковых сторон зуба.

Для решения комплексной задачи профилирования червячных фрез для нарезания колес с эллиптическим профилем предварительно определим геометрию зуба этих колес в торцевом и нормальном сечениях.

В торцевом сечении зубья колеса (рис.1,а) очерчены дугами окружности, диаметр которой 2r; участок зуба $A_1 - B_1 - C_1$ - выпуклый, $C_1 - D_1$ - вогнутый, причем точка C_1 является точкой касания окружностей; R_g - радиус делительной окружности; R_{0_1} - радиус точки C_1 касания смежных окружностей; α' - угловой шаг зубьев колеса в торцевой плоскости.

Рис.1. Профили зубьев неэвольвентного колеса: а – торцевое сечение (радиусный профиль); б, в – нормальное сечение (эллиптический профиль)

Координаты текущей точки M_1 участка выпуклого профиля $A_1 - B_1 - C_1$ в системе $x_{0_1} o_{0_1} y_{0_1}$, с началом в центре зуба, определяем по уравнению [6]

$$x_{0_1}^2 + y_{0_1}^2 = r^2, \tag{1}$$

в системе $o_1 x_1 y_1$, с началом в центре колеса O_1 – зависимостью

$$x_1^2 = (y_1 - R_g)^2 = r^2,$$
 (2)

а в полярных координатах ($\Delta = O_1 M_1 N_1$ и $O_{0_1} M_1 N_1$, рис.1,а) – уравнениями:

$$x_{1} = \pm r \sin \varphi_{x_{1}}$$

$$y_{1} = R_{gx} + r \cos \varphi_{1} \quad . \tag{4}$$

$$Z_{1} = 0$$

Очевидно (см.рис.1,а), что x₁ = x₀₁.

Примечание: в выражении (4) при координате x₁ следует принимать знак плюс для левой стороны профиля, а для правой стороны – минус.

При изменении полярного угла φ_{x_1} от 0 до $\varphi_{x_1} = \varphi_{c_1}$ абсцисса x_1 изменяется от 0 до x_{c_1} , а ордината y_1 от (R_g + r) до y_{c_1} . Предельное значение полярного угла φ_{c_1} равно

$$\phi_{x_c} = \arccos \frac{R_{0_1} - (R_g^2 + r^2)}{2R_g r} .$$
(5)

Входящий в (5) радиус R_{0_1} точки С₁ касания окружностей определяется по найденной нами зависимости:

$$R_{0_{1}} = \sqrt{\left(R_{g}^{2} + r^{2}\right) - 2R_{g}rtg^{\alpha}/4} \quad .$$
 (6)

В итоге для определения координат точек профиля дугового зуба на участке $A_1 - B_1 - C_1$ используем зависимости (4) – (6).

Для вогнутого профиля кругового зуба C_1 - D_1 (см.рис.1,а) уравнение профиля в системе $x_2o_2y_2$ имеет вид:

$$x_{2} = r \sin \varphi_{x_{1}},$$

$$y_{2} = R_{g} - r \cos \varphi_{x_{1}},$$

$$0 \varphi_{x_{1}} \varphi_{x_{c_{1}}}.$$
(7)

Уравнение (7) в координатах $x_1o_1y_1$, с учетом связи между координатами текущей точки M_1 (см.рис.1,а) в системах $x_1o_1y_1$ и $x_2o_2y_2$, имеет вид:

$$x_{1} = \mp r \sin \varphi_{x_{1}} \cos \frac{\alpha'}{2} + \left(R_{g} - r \cos \varphi_{x_{1}}\right) \sin \frac{\alpha'}{2};$$

$$y_{2} = r \sin \varphi_{x_{1}} \sin \frac{\alpha'}{2} + \left(R_{g} - r \cos \varphi_{x_{1}}\right) \cos \frac{\alpha'}{2};$$

$$z_{2} = 0;$$

$$0 \varphi_{x_{1}} \varphi_{x_{q}},$$

$$r g = \varphi_{x_{t_{c}}} = \arccos \frac{\left(R_{g}^{2} + r^{2}\right) - R_{0_{1}}^{2}}{2R_{g}r}.$$
(8)
(9)

Размеры зубьев колеса в нормальном сечении (эллиптический профиль). Для нахождения профиля инструментальной рейки как основы конструкции червячной фрезы необходимо знать угловые и линейные параметры зуба в нормальном сечении (см.рис.1,6,в). Как уже отмечалось выше, особенностью предложенной передачи является радиусный профиль в нормальном сечении (см.рис.1,а) и наличие винтового зуба, угол наклона которого к оси равен β (см.рис.1,6). По этой причине зуб в нормальном сечении будет иметь эллиптический профиль, при этом по ординате *оу* высота зуба равна исходной, т.е. 2e = 2r, $R_g = R_{g_1}$, а углы $\frac{\alpha}{2}$, $\frac{\alpha}{4}$, $\frac{\alpha'}{2}u\frac{\alpha'}{4}$ неодинаковы; радиус точки C касания эллипсов R_0 (см.рис.1,в) в общем случае не равен радиусу R_{0_1} ; при этом изменятся и полярные углы $\varepsilon_{x,y}\varepsilon_{x_1}$, φ_x и φ_{x_1} .

Найдем связь меду этими параметрами, для чего сделаем дополнительное построение (рис. 2), имея в виду, что в торцевом сечении задаются высота зуба $h = 2r \approx 2$, число зубьев колеса z, делительный диаметр (радиус) $D_g(R_g)$; угловой шаг зубьев $\alpha' = \frac{360^{\circ}}{z}$, а также связанные с ними размеры $\frac{\alpha'}{2} = \frac{180^{\circ}}{z}$ и $\frac{\alpha'}{4} = \frac{90^{\circ}}{z}$. Толщина зуба в нормальном сечении $2a < 2r \notin 2$), и ее величина находятся по зависимости $a \csc \beta$ (см.рис.1,6). Таким образом, в нормальном сечении зуб имеет эллиптический профиль, а ножка и головка образованы разными участками эллипса с полуосями ε и $\varepsilon \cos\beta$ (см.рис.1,в).

Совместим на плоскость торцевое и нормальное сечения зуба (рис.2) и найдем связь между угловыми и линейными параметрами этих сечений в полярной системе, начало которой совпадает с осью колеса. Здесь M_I и M - текущие точки на профилях зубьев в торцевом и нормальном сечениях; r_{x_1} и r_x - их радиусы-векторы, ε_{x_1} и ε_x - полярные углы в системе координат с началом в центре колеса; φ_{x_1} и φ_x - то же, но в системе с началом в центре окружности и эллипса соответственно.

Вестник ДГТУ, 2009. Т9. №2(41)

Рис.2. Связь угловых и линейных размеров зуба в различных сечениях

Из треугольников $O_{\rm I}M_{\rm I}P$ и $O_{\rm I}MP$ и трехгранников $M_{\rm I}MPO$ и $O_{\rm I}E_{\rm I}EO$ получим:

$$tg\varphi_x = tg\varphi_{x_1} \cos\beta ; \qquad (10)$$

$$tg\varepsilon_x = tg\varepsilon'_x \cos\beta ; \qquad (11)$$

$$tg\frac{\alpha}{4} = tg\frac{\alpha'}{4}\cos\beta .$$
 (12)

Касание эллипсов, как и окружностей (см.рис.1,а), осуществляется не по делительному диаметру R_g , а по радиусу $R_0 = R_g$, причем величина этого смещения зависит от соотношения размеров полуосей эллипса, т.е. от соотношения между толщиной зуба и шириной впадины, а также от числа зубьев и габаритных размеров зубчатого колеса.

Радиус *R*₀ точки касания *С* эллипсов находится по формуле:

$$R_{0} = \sqrt{\frac{e \cos^{2} \beta c t g \frac{\alpha}{4}}{\sqrt{1 + \cos^{2} \beta c t g \frac{\alpha}{4}}}^{2} + Rg - \sqrt{\frac{1}{1 + \cos^{2} \beta c t g \frac{\alpha}{4}}}^{2}}.$$
 (13)

Уравнения профиля эллиптического зуба (нормальное сечение). Для выпуклой части профиля *A* - *B* - *C* уравнения эллипса в декартовой и полярной системах координат с началом в центре эллипса имеют вид (см.рис.1,в):

$$\frac{x_0^2}{aB^2} + \frac{y_0^2}{2} = 1;$$
(14)

$$x_0 = \rho_x \sin \phi_x; \tag{15}$$

$$y_0 = \rho_x \cos \varphi_x, \qquad (13)$$

а в координатах хоу, связных с центром колеса,

$$x = x_0 = \rho_x \sin \varphi_x,$$

$$y = y_0 + R_g = R_g + \rho_x \cos \varphi_x.$$
(16)

Из (14) и (15) получаем:

$$\frac{\rho_x^2}{ab} \frac{\sin^2 \varphi_x}{a} + \frac{\rho_x^2 \cos^2 \varphi_x}{2} = 1,$$

$$\rho_x = \sqrt{\frac{ab^2}{ab} \cos^2 \varphi_x + \frac{2}{3} \sin^2 \varphi_x}.$$
(17)

откуда

С другой стороны, положение точки M на боковой стороне эллиптического зуба определяется полярными углом ε_x и радиусом - вектором r_x :

$$x = r_x \sin \varepsilon_x,$$

$$y = r_x \cos \varepsilon_x.$$
(18)

Из (16), (17) и (18) получаем:

$$x = Rg + \cos\beta \cos\varphi_x \sqrt{\frac{1}{\sin^2\varphi_x + \cos^2\varphi_x \cos^2\beta}} \quad \varepsilon_x$$

$$y = Rg + \cos\beta \cos\varphi_x \sqrt{\frac{1}{\sin\varphi_x^2 + \cos^2\varphi_x \cos^2\beta}} \quad . \quad (19)$$

$$0 \varepsilon_x \quad \frac{\alpha}{4}; \quad 0 \varphi_x \quad \varphi_{xc}$$

Предельное значение полярного угла $\varphi_{x_c} = \varphi_{x_{max}}$ в (19), и связь между полярными углами ε_x и φ_x находим из зависимостей (17) и (18):

$$tg\varepsilon_{x} = \frac{\sin\varphi_{x}}{\frac{R_{g}}{\theta}\sqrt{\cos^{2}\varphi_{x} + \frac{\sin^{2}\varphi_{x}}{\cos^{2}\beta} + \cos\varphi_{x}}},$$
 (20)

$$\varphi_{\max} = 180^{\circ} - \arctan \frac{R_0 \sin \frac{\alpha}{4}}{R_g - R_0 \cos \frac{\alpha}{4}}.$$
 (21)

Для вогнутого участка профиля C - D эллиптического зуба уравнения профиля запишем, как и в предыдущем случае, в системах $x'_0 o'_0 y'_0$ и $x_{1_2} o y_{1_2}$, а затем поворотом осей на угол $\frac{\alpha}{2}$ перейдем к системе xoy (рис.1,в):

$$\frac{\left(x_{0}'\right)^{2}}{a^{2}} + \frac{\left(y_{0}'\right)^{2}}{2} = 1 - в координатах x_{0}'o_{0}'y_{0}';$$
(22)

$$x'_{0} = -\rho_{x_{1}} \sin \phi_{x_{1}}$$

 $y'_{0} - \rho_{x_{1}} \cos \phi_{x_{1}}$ - в полярных координатах с полюсом
в центре эллипса; (23)

$$x_{12} = -r_{x_1} \sin \varepsilon_{x_1}$$

 $y_{12} = r_{x_1} \cos \varepsilon_{x_1}$ - в полярных координатах
 $y_{12} = R_g - \rho_{x_1} \cos \phi_{x_1}$

$$\rho_{x_{1}} = \sqrt{\frac{a\hat{b}^{2}}{a\hat{b}\cos^{2}\varphi_{x_{1}} + 2\sin^{2}\varphi_{x_{1}}}}.$$
(25)

Так как R_g - $\rho_{x_1} \cos^2 \phi_{x_1}$ = $r_{x_1} \cos \varepsilon_{x_1}$, то

$$r_{x_{1}} = \frac{R_{g} - \rho_{x_{1}} \cos \varphi_{x_{1}}}{\cos \varepsilon_{x_{1}}}.$$
 (26)

После подстановки (25) в (26) получим:

$$r_{x_{1}} = \frac{R_{g} - \cos \varphi_{x_{1}} \sqrt{\frac{a^{2} e^{2}}{a^{2} \cos \varphi_{x_{1}}^{2} + e^{2} \sin^{2} \varphi_{x_{1}}}}{\cos \varepsilon_{x_{1}}}, \qquad (27)$$

а из (26) и (27) найдем уравнения профиля C - D в координатах $x_{12}oy_{12}$:

$$x_{12} = -R_{g} - \cos\varphi_{x_{1}} \sqrt{\frac{a\dot{g}^{2}}{a\dot{g}\cos^{2}\varphi_{x_{1}} + \frac{2}{\sin}\varphi_{x_{1}}}} tg\varepsilon_{x_{1}};$$

$$y_{12} = R_{g} - \cos\varphi_{x_{1}} \sqrt{\frac{a\dot{g}^{2}}{a\dot{g}\cos^{2}\varphi_{x_{1}} + \frac{2}{\sin}\varphi_{x_{1}}}}.$$
(28)

Уравнения участка профиля C - D в системе xoy получим, используя формулы перехода:

$$x = -x_{12} \cos \frac{\alpha}{2} + y_{12} \sin \frac{\alpha}{2}$$

$$y = x_{12} \sin \frac{\alpha}{2} + y_{12} \cos \frac{\alpha}{2}$$
(29)

В результате из (28) и (29) получим, имея ввиду, что *ае* соѕβ :

$$x = R_{g} - \cos\beta \cos\varphi_{x_{1}} \sqrt{\frac{1}{\sin^{2}\varphi_{x_{1}} + \cos^{2}\beta \cos^{2}\varphi_{x_{1}}}} \quad \varepsilon_{x_{1}} \cos\frac{\alpha}{2} + R_{g} - \cos\beta \cos\varphi_{x_{1}} \sqrt{\frac{1}{\sin^{2}\varphi_{x_{1}} + \cos^{2}\beta \cos^{2}\varphi_{x_{1}}}} \quad \sin\frac{\alpha}{2};$$

$$y = -R_{g} - \cos\beta \cos\varphi_{x_{1}} \sqrt{\frac{1}{\sin^{2}\varphi_{x_{1}} + \cos^{2}\beta \cos^{2}\varphi_{x_{1}}}} \quad \varepsilon_{x_{1}} \sin\frac{\alpha}{2} + R_{g} - \cos\beta \cos\varphi_{x_{1}} \sqrt{\frac{1}{\sin^{2}\varphi_{x_{1}} + \cos^{2}\beta \cos^{2}\varphi_{x_{1}}}} \quad \varepsilon_{x_{1}} \sin\frac{\alpha}{2} + B (30) \quad 0 \quad \varepsilon_{x_{1}} \quad \frac{\alpha}{4}; \quad 0 \quad \varphi_{x_{1}} \quad \varphi_{x_{1}} \quad \varphi_{x_{1}} \quad (1)$$

Связь между углами φ_{x_1} и ϵ_{x_1} , а также предельное значение полярного угла $\varphi_{1_{max}}$ находим по соотношениям:

•

$$tg\varepsilon_{x_{1}} = \frac{\sin\varphi_{x_{1}}}{\frac{R_{g}}{g}\sqrt{\cos^{2}\varphi_{x_{1}} + \frac{\sin^{2}\varphi_{x_{1}}}{\cos^{2}\beta} - \cos\varphi_{x_{1}}}};$$
(31)

$$\varphi_{1_{\max}} = \operatorname{arctg} \frac{R_0 \sin \frac{\alpha}{4}}{R_g - R_0 \cos \frac{\alpha}{4}}.$$
(32)

Для удобства выполнения дальнейших расчетов по определению профиля инструментальной рейки эллиптический зуб (см.рис.1,в) делительным диаметром условно разделим на выпуклую и вогнутую части (рис.3) (фактически это будут элементы исходного контура изделия).

Рис.3. Выпуклый (а) и вогнутый (б) профили эллиптического зуба Выпуклый профиль зуба

а) левая сторона (A - B - C).

Для расчета координат профиля зуба на этом участке необходимо последовательно использовать зависимости (13), (20), (21) и (19);

б) правая сторона $(A_1 - B_1 - C_1)$.

В зависимости (19) координата x будет имеет знак минус; остальные формулы (13), (20), (21) применимы для зоны A - B_1 - C_1 без изменений.

Вогнутый профиль зуба

а) для левой стороны зуба (участок (*C* - *D*)) используем зависимости (30) – (32);

б) правая сторона профиля зуба $(C_1 - D_1)$.

В зависимости (30) координату x необходимо принять со знаком «минус», а радиус точки касания C вычислять по (13); другие формулы (30)-(32) используются без их корректировок.

Пример. Найти уравнения профиля эллиптического зуба (нормальном сечение) при известных размерах в торцевом сечении (см.рис.1,а): D_{g} им 76,0 r; = 8 мм 6,2 ; $D_{g} = D_{e} - 2r$ им 32,6 ; ${}_{g}$ им 31,8 ; угол наклона винтового зуба $\beta = 18^{\circ}$; угловой торцевой шаг $\alpha' = \frac{360^{\circ}}{z} = \frac{360^{\circ}}{8} = 45^{\circ}$; $\frac{\alpha'}{2} = 22^{\circ}30'$ и $\frac{\alpha'}{4} = 11^{\circ}15'$.

Необходимые для расчетов координат профиля эллиптического зуба величины углов $\frac{\alpha}{2}$ и $\frac{\alpha}{4}$ (нормальное сечение) находятся по зависимостям (12): $tg \frac{\alpha}{2} = tg \frac{\alpha'}{2} \cos\beta$ и $tg \frac{\alpha}{4} = tg \frac{\alpha'}{4} \cos\beta$, откуда при $\beta = 18^{\circ}$ $\frac{\alpha}{2} = 21^{\circ}24'$, а $\frac{\alpha}{4} = 10^{\circ}42'$. При этих параметрах радиус точки касания эллипсов (R_{M} #31,50) рассчитывали по зависимости (13).

Задавая полярные углы \emptyset_x от O до \emptyset_{\max} , по алгоритму (13), (19), (20), (21), (30)-(32) находили координаты точек профилей A - B - C и C - D (см.таблицу, рис.4)

Выпуклый профиль $\left(\mathit{A}$ - B - $\mathit{C} ight)$					Вогнутый профиль $ig(\mathit{C}$ - $\mathit{D}ig)$				
Nº "∕⊓		ε ⁰ _x	x	У	Nº "∕⊓	φ^0_{x1}	ϵ^{0}_{x1}	x	У
1	0	0	0	38	1	0	0	9,34	23,84
2	10	1,6	1,08	37,9	2	10	2,4	8,38	24,32
3	20	3,2	2,12	37,6	3	20	4,6	7,53	24,98
4	30	4,7	3,06	37,10	4	30	6,6	6,83	25,79
5	40	0,1	3,90	36,45	5	40	8,2	6.28	26,70
6	50	7,36	4,60	35,67	6	50	8,37	5,9	27,69
7	60	8,45	5,17	34,72	7	60	10,17	5,7	28,72
8	70	9,35	5,57	33,8	8	70	10,6	5,68	29,75
9	80	10,05	5,82	32,82	9	78,75	10,7	5,70	30,6
10	90	10,5	5,89	31,8					
11	101,25	10,7	5,70	30,6					

Размеры профиля эллиптического зуба

Рис.4. Теоретический профиль эллиптического зуба:

$$R_e = 38 \text{ mm}; R_g = 31,8 \text{ mm}; \ e = 6,2 \text{ mm}; \ z = 8; \ \beta = 18^\circ; \ \frac{\alpha}{2} = 21^\circ 24'$$

Выводы:

- 1. Установлена связь между линейными и угловыми размерами зуба колеса в торцевом (задаются чертежом) и нормальном сечениях.
- Для расчета координат профиля эллиптического зуба колеса найдены аналитические зависимости, адекватность которых подтверждена контрольными расчетами для шестерни масляного насоса.

Библиографический список

1. Зубчатые передачи: пат. № 2057267. Российская Федерация / Г.П. Гребенюк; зарег. от 27.03.96. – Опубл. в Б.И., 1999. – № 9.

- Дихтярь Ф.С. Червячные фрезы для зубатых передач с зацеплением М.Л. Новикова / Ф.С. Дихтярь // Вестник машиностроения. – 1959. – №9. – С.8-13.
- Семенченко И.И. Режущий инструмент / И.И. Семенченко. М.: Машгиз, 1944. – Т. III. – 440 с.
- Рыжкин А.А. Режущий инструмент: учеб. пособие. / А.А. Рыжкин, В.С.Дмитриев, В.С.Каганов. – Ростов н/Д: Издательский центр ДГТУ, 2000. – 310 с.
- 5. Грубин А.Н. Зуборезный инструмент / А.Н. Грубин, М.Б.Лихциер, М.С.Полоцкий. М.: Машгиз, 1946. Ч.II.
- 6. Иноземцев Г.Г. Профилирование червячных фрез для передач Новикова / Г.Г. Иноземцев, Е.П.Сергиенко. – Саратов: Приволж. книжное изд-во, 1968. – 143 с.

7. Бронштейн И.Н. Справочник по математике / И.Н. Бронштейн, К.А.Семендяев. – М.: Физматгиз, 1962. – 608 с.

Материал поступил в редакцию 12.03.09. A.A. RYZHKIN, A.A. ANDROSOV, G.P. GREBENJUK, M.V. SAVENKOV, V.V. VYALAYA

DETERMINATION OF COORDINATES OF COG'S SIDES OF THE GEARS WITH ELLIPTIC PROFILE

Results of theoretical definition of coordinates of a cog side having in normal cross-section the elliptic profile are presented. Equations connecting angular and linear dimensions of cogs in face and normal cross-sections are obtained. The offered technique is usable for a determination of coordinates of the profile circumscribed by any plane curve of the second order.

РЫЖКИН Анатолий Андреевич (р.1938), заведующий кафедрой «Инструментальное производство» ДГТУ, доктор технических наук (1985), профессор (1986). Окончил РИСХМ (1960) по специальности «Технология машиностроения, металлорежущие станки и инструменты».

Область научных интересов – повышение работоспособности режущих инструментов управлением термодиссипативными процессами в зоне резания. Автор 355 научных работ, в том числе 8 монографий, 5 авторских свидетельств и патентов.

АНДРОСОВ Анатолий Александрович (р. 1938), заведующий кафедрой «Основы конструирования машин» ДГТУ, доцент, кандидат технических наук (1981). Окончил Оренбургский сельскохозяйственный институт (1962). Область научных интересов – прочность и надежность машин и механизмов.

Автор более 80 научных статей и 7 авторских свидетельств и патентов.

ГРЕБЕНЮК Геннадий Петрович (р.1939), ведущий инженер кафедры «Основы конструирования машин» ДГТУ. Окончил Луганский машиностроительный институт (1967).

Область научных интересов – прочность и долговечность деталей машин. Автор 3 научных статей и 5 авторских свидетельств и патентов

САВЕНКОВ Михаил Васильевич (р.1946), заведующий кафедрой «Графика и начертательная геометрия», доцент (1980), кандидат технических наук (1978). Окончил РИСХМ (1969).

Автор более 100 статей и 2 авторских свидетельств на изобретения. Область научных интересов – работоспособность приводов машин.

ВЯЛАЯ Валерия Владимировна, студентка 5-го курса факультета «Технология машиностроения» ДГТУ специальности «Инструментальные системы машиностроительных производств».

aryzhkin@dstu.edu.ru

aandrosow@dstu.edu.ru