УДК 631.354.62-310

В.В. РАДИН, С.В. КУРУЧУК, М.С. ГНУТОВ

К ВОПРОСУ О НЕГОЛОНОМНОЙ СВЯЗИ В ПРИВОДЕ МОЛОТИЛЬНОГО БАРАБАНА ЗЕРНОУБОРОЧНОГО КОМБАЙНА В РЕЖИМЕ РАЗГОНА

Получены уравнения неголономной связи второго порядка, которая проявляет свои свойства при включении лениксной гибкой передачи в приводе молотилки зерноуборочного комбайна. Выделены три фазы работы лениксной передачи при включении, и для каждой фазы получены уравнения связи. Обобщенное уравнение связи объединяет все три фазы работы и является нелинейной неголономной связью второго порядка.

Ключевые слова: неголономная связь, динамика системы, гибкая передача, комбайн.

Введение. В данной работе получены уравнения неголономной связи второго порядка, имеющей место в приводе молотильного барабана зерноуборочного комбайна в периоды разгона рабочих органов.

Для обоснования типа неголономной связи схематизируем реальный процесс разгона, положив в основу типовую осциллограмму процесса разгона молотильного барабана (сплошная линия ω_6 , рис. 1).

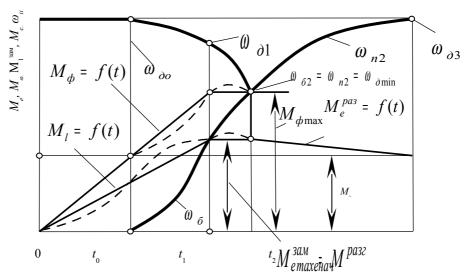


Рис. 1. Осциллограмма процесса разгона рабочих органов комбайна

Из этой осциллограммы видно, что крутящий момент M_{Φ} , передаваемый лениксной клиноременной передачей при включении привода рабочих органов комбайна, непрерывно увеличивается во времени t. Закон его изменения в основном является следствием темпа включения передачи. Как показал анализ осциллограмм, при равномерном включении лениксной

передачи крутящий момент $M_{\Phi} = f(t)$, передаваемый ею, возрастает по линейному закону. Такая идеализация несущественно отличается от реального процесса (см. пунктирную линию M_{Φ} на рис.1).

К концу периода включения передачи t_1 крутящий момент, передаваемый лениксной передачей, достигнет наибольшего значения:

$$M_{\text{dmax}} = \beta M_{\text{ep}}$$

где β — коэффициент запаса крутящего момента лениксной передачи; $M_{\rm ep}$ — расчетный крутящий момент двигателя комбайна.

Методика аналитического исследования неголономной связи в приводе молотильного барабана. Уравнения движения двухмассовой системы, составленной из двигателя с лениксной передачей и контрпривода вала главного, имеют следующий вид:

$$MM = {}_{e}^{3\alpha}M + {}_{1}\ddot{\varphi}_{1}, \qquad (1)$$

$$M_{W} = I_{c} + 2\ddot{\phi}_{2}, \qquad (2)$$

где $M_{\rm c}$ — крутящий момент сил сопротивления на валу главного контрпривода в период замыкания лениксной передачи; $I_{\rm l}$ — момент инерции на валу двигателя; $I_{\rm l}$ — момент инерции молотилки, приведенный к валу контрпривода; $\ddot{\psi}_{\rm l}$ — угловое ускорение вала двигателя; $\ddot{\psi}_{\rm l}$ — угловое ускорение вала контрпривода; $M_e^{\it sam}$ — максимальный крутящий момент двигателя в момент замыкания лениксной передачи.

Воспользуемся уравнением (1) для определения угловой скорости ω_1 коленчатого вала двигателя:

$$\omega_1 = -\frac{t_1}{0} \frac{MM - \frac{3aM}{e}}{i_1} dt .$$
 (3)

Поскольку M_{Φ} = $\beta M_{\rm ep}$, а максимальный крутящий момент, развиваемый лениксной передачей в период разгона $M_{\it emakc}^{\it 3dM}$ = $k M_{\it ep}$, то на основании схематизированной осциллограммы реального процесса включения лениксной передачи получаем:

$$\omega_{1} = -\frac{t_{1}}{0} \frac{\beta M_{ep} - k M_{ep}}{i_{1}} \quad \frac{t}{t_{1}} dt = -\frac{M_{ep} (\beta - k)^{t_{1}}}{i_{1} t_{1}} t dt = -\frac{M_{ep} (\beta - k) t^{2}}{2i_{1} t_{1}} + C.$$
 (4)

Здесь в начальный момент (t=0) $\omega_1 = \omega_{1xx}$, где ω_{1xx} – угловая скорость холостого хода двигателя, тогда C= ω_{1xx} . Подставив значение C в выражение (4), получим:

$$\omega_1 = \omega_{1xx} \frac{M_{ep} (\beta - k) t^2}{2I_1 t_1}. \tag{5}$$

Угловая скорость коленчатого вала в конце периода включения передачи, т.е. при $t=t_1$, равна:

$$\omega_{11} = \omega_{1xx} \frac{M_{ep} \left(\beta - k\right) t_1}{2I_1} \qquad . \tag{6}$$

В период от t_1 до t_2 (см. рис.1) разность

$$M_{Makc}$$
 - $\frac{3aM}{eMak}$ k= M - $const$,=

и угловая скорость коленчатого вала двигателя определяется по выражению:

$$\omega_{1} = -\frac{t_{2}(\beta - k)M_{ep}}{I_{1}}dt = -\frac{(\beta - k)M_{ep}}{I_{1}}t\Big|_{t_{1}}^{t_{2}} C_{1}.$$
 (7)

При $t=t_1$ $\omega_1=\omega_{11}$, $C_1=\omega_{11}+\frac{\left(\beta-k\right)M_{ep}t_1}{I_1}$, и выражение (7)

принимает вид:

$$\omega_1 = \omega_{11} - \frac{(\beta - k) M_{ep}t}{I_1} + \frac{(\beta - k) M_{ep}t_1}{I_1}.$$
 (8)

Подставляя в формулу (8) значение ω_{11} из выражения (6), получаем:

$$\omega_1 = \omega_{1xx} - \frac{(\beta - k)t}{I_1} + \frac{M_{ep}(\beta - k)t_1}{2I_1}$$
 (9)

Используя выражение (2) и имея в виду, что $M \not\!\!\!\!/ = \beta$ $ep \frac{t}{t_1}$ и

 M_e = $k_3 M_{ep}$, определим угловую скорость ведомого вала в период от t_0 до t_1 (рис. 1):

$$\omega_2 = \frac{\beta M_{ep} t}{I_2 t_1} dt - \frac{k_3 M_{ep}}{I_2} dt = \frac{\beta M_{ep}}{2 I_2 t_1} t^2 - \frac{k_3 M_{ep}}{I_2} + C_2, \quad (10)$$

где $k_3 = \frac{M_e}{M_{ep}}$ — коэффициент загрузки двигателя; $\emph{M}_{\rm e}$ — текущее значение

крутящего момента, развиваемого двигателем.

При $t=t_0$, когда $\omega_2=0$, из выражения (10) определяется C_2 . Следовательно,

$$\omega_2 = \frac{\beta M_{ep}}{2I_2t_1} \left(t^2 - t_0^2 \right) - \frac{k_3 M_{ep}}{I_2} \left(t_1 - t_0 \right). \tag{11}$$

Угловая скорость ведомого вала контрпривода главного в момент времени $t=t_{\rm I}$ будет равна:

$$\omega_{21} = \frac{\beta M_{ep}}{2I_2 t_1} \left(t_1^2 - t_0^2 \right) - \frac{k_3 M_{ep}}{I_2} \left(t_1 - t_0 \right). \tag{12}$$

Подставив в выражение (12) значение

$$t_0 = \frac{M_c t_1}{M_{\phi, MAKC}} = \frac{k_3 M_{ep} t_1}{\beta M_{ep}} = \frac{k_3 t_1}{\beta},$$

получим:

$$\omega_{21} = \frac{\beta M_{ep}}{2I_2 t_1} t_1^2 - \frac{k_3 t_1}{\beta} - \frac{k_3 M_{ep}}{I_2} t_1 \frac{k_3 t_1}{\beta} = \frac{M_{ep} t_1}{2I_2 \beta} (\beta - k_3)^2.$$
 (13)

Угловую скорость вала главного контрпривода для любого момента времени после окончания периода включения можно определить по формуле:

$$\omega_2 = \frac{M M_{makc} - c}{I_2} dt = \frac{M_{ep} (\beta - k)}{I_2} t + C_3.$$

При $t = t_1$, $\omega_2 = \omega_{21}$ и, следовательно,

$$C_3 = \omega_{21} - \frac{M_{ep}(\beta - k_3)t_1}{I_2}$$
,

тогда

$$\omega_2 = \omega_{21} + \frac{M_{ep}(\beta - k_3)}{I_2}(t - t_1)$$
 (14)

Известно [4], что неголономная связь клиноременной передачи определяется уравнением вида:

$$f(t, \dot{\varphi}_1, \ddot{\varphi}_1) = \dot{\varphi}_2 - \dot{\varphi}_1 i_0 (1 - \varepsilon_n) = 0,$$
 (15)

где $\dot{\phi}_1$ – угловая скорость ведущего вала; $\dot{\phi}_2$ – угловая скорость ведомого

вала лениксной передачи; ϵ_n — полное скольжение лениксной передачи; δ_n — расчетное передаточное отношение лениксной передачи.

Полное скольжение лениксной передачи можно представить в виде:

$$\varepsilon_n = 1 - \frac{\dot{\phi}_2}{\dot{\phi}_1 \dot{t}_0}. \tag{16}$$

Найдем значение полного скольжения для каждого периода разгона клиноременной передачи. Для этого подставим в выражение (16) значения угловых скоростей ведущего и ведомого валов. Полное скольжение в клиноременной передаче в период времени от t=0 до t=t1 определяем по формуле:

$$\varepsilon_{n} = 1 - \frac{\frac{\beta M_{ep}}{2I_{2}} \left(t^{2} - t_{0}^{2}\right) - \frac{k_{3} M_{ep}}{I_{2}} \left(t - t_{0}\right)}{\omega_{1xx} - \frac{M_{ep} (\beta - k) t^{2}}{2I_{1}t_{1}} i_{0}}.$$
 (17)

Скольжение в передаче в момент времени $t = t_1$ будет равно:

$$\varepsilon_{n} = 1 - \frac{\frac{M_{ep}t_{1}}{2I_{2}\beta} (\beta - k_{3})^{2}}{\omega_{1xx} - \frac{M_{ep}(\beta - k)t_{1}}{2I_{1}} i_{0}}.$$
 (18)

Скольжение в передаче в период времени от $t=t_1$ до $t=t_2$ определяем по выражению:

$$\varepsilon_{n} = 1 - \frac{\frac{M_{ep}t_{1}}{2I_{2}\beta} (\beta - k_{3})^{2} + \frac{M_{ep}(\beta - k_{3})}{I_{2}} (t - t_{1})}{\omega_{1xx} - \frac{M_{ep}(\beta - k)}{I_{1}} t - \frac{t_{1}}{2} i_{0}}.$$
 (19)

Подставляя полученные значения скольжений в уравнение связи (15), получаем для каждого периода работы лениксной передачи в процессе разгона следующие уравнения:

для периода времени от t = 0 до $t = t_1$:

$$f(t, \phi, \ddot{\phi}_{1}) = \dot{\phi}_{2} - \dot{\phi}_{1} \frac{\frac{M_{ep}\beta}{2I_{2}t_{1}}(t^{2} - t_{0}^{2}) - \frac{k_{3}M_{ep}}{I_{2}}(t - t_{0})}{\omega_{1xx} - \frac{M_{ep}(\beta - k)t_{1}}{2I_{1}}i_{0}} = 0; \quad (20)$$

для момента времени $t = t_1$:

$$f(t, \dot{\phi}_{1}, \dot{\phi}) = \dot{\phi}_{2} - \dot{\phi}_{1} \frac{\frac{M_{ep}t_{1}}{2I_{2}\beta}(\beta - k_{3})^{2}}{\omega_{1xx} - \frac{M_{ep}(\beta - k)t_{1}}{2I_{1}} i_{0}} = 0;$$
 (21)

для периода времени от $t = t_1$ до $t = t_2$:

$$f(t, \dot{\phi}, \dot{\phi}_{1}) = \dot{\phi}_{2} - \dot{\phi}_{1} \frac{\frac{M_{ep}t_{1}}{2I_{2}\beta}(\beta - k_{3})^{2} + \frac{M_{ep}(\beta - k_{3})}{I_{2}}(t - t_{1})}{\omega_{1xx} - \frac{M_{ep}(\beta - k)t_{1}}{I_{1}}t - \frac{t_{1}}{2}i_{0}} = 0. (22)$$

Учитывая, что M_{ep} = $i_1\ddot{\psi}_1$, выносим за скобки ускорение коленчатого вала двигателя $\ddot{\psi}_1$ и получаем обобщенное уравнение лениксной передачи как неголономной связи 2-го порядка:

$$f(\dot{\varphi}_{1}, \ddot{\varphi}_{1}, t) = \dot{\varphi}_{2} - \ddot{\varphi}_{1} \frac{K_{1}(t) \ddot{\varphi}_{1}}{\omega_{1xx} - K_{2}(t) \ddot{\varphi}_{1}|_{i_{0}}} = 0,$$
 (23)

где $K_1(t)$ и $K_2(t)$ – коэффициенты, зависящие от параметров лениксной передачи, начальных условий и времени.

Анализ интегрируемости уравнений (20)-(23) установил, что они не могут быть разрешены в квадратурах.

Выводы:

- 1. В результате выполненного анализа с учетом реального процесса разгона привода молотильного барабана зернокомбайна с помощью лениксной передачи и принятой его идеализации установлено, что нелинейное относительно $\ddot{\psi}_1$ дифференциальное уравнение (23) является уравнением нелинейной неголономной связи второго порядка, характеризующим свойства лениксной передачи комбайна в период разгона молотилки.
- 2. До настоящего времени у исследователей неголономных систем нет единого мнения по поводу обобщенных вариаций, допускаемых связями типа (23), а следовательно, требуется произвести дополнительный анализ методов построения аналитических моделей движения подобных механических систем с помощью дифференциальных принципов механики, не выводящих их движение за механику Ньютона.
- 3. В приводах сложных машин, подобных зерноуборочному комбайну, работающих в динамических режимах с переменными нагрузками на кинематические трансляторы, любые передачи, допускающие невосполнимые отставания кинематических режимов, ведомых элементов приводов от ведущих, способны проявлять свойства неголономных связей второго порядка.

Библиографический список

- 1. *Алферов С.А.* Динамика зерноуборочного комбайна / С.А. Алферов. М.: Машиностроение, 1973. 255 с.
- 2. *Болтинский В.Н.* Разгон машинно-тракторных агрегатов на повышенных скоростях // Механизация и электрификация социалистического хозяйства. 1961. №3. С.1-9.
- 3. *Зельцерман И.М.* Фрикционные муфты и тормоза гусеничных машин / И.М.Зельцерман, Д.М.Каминский, А.Д. Онопко. М.: Машиностроение, 1965. 240 с.
- 4. *Радин В.В.* Динамика сложных машин как неголономных систем (на примере зерноуборочного комбайна) / В.В. Радин, В.А.Бураков / РГАСХМ ГОУ. Ростов н/Д., 2003. 150 с.

Материал поступил в редакцию 04.07.08.

V.V. RADINA, M.S.GNUTOVA, S.V.KURUCHUK'S PAPERS

TO A PROBLEM ON A NONHOLONOMIC CONSTRAINT IN A DRIVE OF A BEATER DRUM OF THE GRAIN COMBINE IN AN ACCELERATION CONDITION

In paper the equations of a nonholonomic constraint of the second order which exhibits the properties at turning on lenix a flexible drive in a drive of a thrasher of the grain combine are gained. For a justification of type of a nonholonomic constraint the oscillogram of real processes of acceleration of a thrasher is used. It is displayed, that the accepted schematization of real process of turning on lenix-transmissions incidentally differs from it.

Three phases of operation lenix-transmissions are selected at turning on and for each phase constraint equations are gained. The generalised constraint equation merges all three phases of operation and is a nonlinear nonholonomic constraint of the second order. Outputs contain assay values of the gained differential equation on integrability and confirm, that connection is nonlinear to nonholonomic the second order.

РАДИН Виктор Викторович (р.1939), заведующий кафедрой «Сельскохозяйственные машины» РГАСХМ, доктор технических наук (1991), профессор (1992). Окончил РИСХМ (1962).

Область научных интересов: динамика приводов сложных сельскохозяйственных машин.

Автор 125 публикаций.

ГНУТОВ Максим Сергеевич (р.1981), аспирант РГАСХМ, ведущий инженер фирмы «Аскон-Ростов».

Имеет три научные публикации.

КУРУЧУК Сергей Владимирович (р.1982), инженер-конструктор ОАО «Завод Ростсельмаш».

Научные интересы: динамика приводов зерноуборочных машин. Имеет четыре научные публикации.