УДК 621.9.06:628.5

О.А.КАЛАШНИКОВА, С.А.ШАМШУРА

МОДЕЛИРОВАНИЕ ШУМООБРАЗОВАНИЯ ОБОРУДОВАНИЯ ДЛЯ ОБРАБОТКИ ДЛИННОМЕРНЫХ ДЕТАЛЕЙ В СОРАЗМЕРНЫХ ПОМЕЩЕНИЯХ

Приведены результаты теоретического описания шумообразования крупногабаритного оборудования в соразмерном помещении при наличии шумозащитной конструкции. Исходя из условий обеспечения санитарных норм шума получено выражение необходимой толщины элементов звукоизолирующей конструкции. Определены зависимости мощности применительно к длинномерным деталям.

Ключевые слова: шумозащита, щумоглушение, уровни шума, соразмерные помещения.

Введение. Особенности эксплуатации оборудования для обработки длинномерных деталей заключаются в том, что вследствие повышенной шумности это оборудование располагается в отдельном помещении. Кроме этого габаритные размеры самого оборудования одного порядка с размерами производственного помещения, что соответствует категории соразмерных помещений.

Постановка задачи. Для выполнения санитарных норм шума следует проектировать системы шумозащиты и рассчитывать их по критерию эффективности шумоглушения (ΔL):

$$\Delta L = L_i - L_{ci} , \qquad (1)$$

где L_i – уровни шума источника, дБ; L_{ci} – санитарные нормы шума, дБ.

Уровни шума в помещении при условии расположения источника шума под звукозащитным ограждением определяются по формуле [1]:

$$L = L_{Wodp} + 10 \lg \frac{\chi_{osp}}{S_{osp}} + \frac{4\psi_{osp}}{B_{osp}} + 10 \lg S3V + 10 \lg \frac{\chi_{\Pi}}{S_{P}} + \frac{4\psi_{\Pi}}{B_{\Pi}} - ,дБ,$$
 (2)

где B_{orp} и $B_{\it П}$ — постоянные ограждения и производственного помещения, м²; S_{orp} — площадь внутренней поверхности звукозащитного ограждения, м²; χ и ψ — коэффициенты звукового поля над ограждением в производственном помещении; $3\mathcal{N}$ — звукоизоляция ограждения, дБ; $L_{\it W}$ — уровни звуковой мощности источника шума, дБ.

Методы решения. Для оборудования обработки и испытаний длинномерных изделий характерно то, что длина существенно больше ширины и высоты. Поэтому целесообразно применять систему шумозащиты в виде оболочек полуцилиндрической формы или комбинации цилиндрических и плоских элементов. Значительная длина установки определяет соотношение r/1 > 1, где r — расстояние от центра источника шума до расчетной

точки, м; l — длина лонжерона, м. Поэтому χ =4 [1], и в этом случае выражение (2) примет вид:

$$L = L_{WO} + 10 \lg 1 + \psi \frac{S_{oo} - \sum_{i=1}^{k_1} \alpha_{ioo} S_{ioo}}{\alpha_{ioo} S_{ioo}} + 10 \lg \frac{0.32}{r^2} + 4 \psi_{II} \frac{S_{II} - \sum_{i=1}^{k_2} \alpha_{iII} S_{iII}}{\alpha_{iII} S_{iII}},$$

$$\alpha_{iII} S_{iII}$$
(3)

где α_{iof} и α_{ii7} – частотно-зависимые коэффициенты звукопоглощения системы шумозащиты оборудования и производственного помещения; S_{io6} и S_{ii7} – площади соответствующих элементов системы шумозащиты оборудования и производственного помещения, m^2 ; k_1 – количество элементов системы шумозащиты оборудования; k_2 – количество элементов производственного помещения;

Поскольку система шумозащиты предназначена обеспечить выполнение санитарных норм шума, то в левую часть выражения (3) следует подставить предельно допустимые октавные уровни шума. Тогда требуемое значение звукоизоляции определяется следующим образом:

$$3H = L_W - L_{Coo} + 10 \lg 1 + \psi \qquad \frac{S_{oo} - \alpha_{ioo} S_{ioo}}{\sum_{i=1}^{k_1} \alpha_{ioo} S_{ioo}} + 10 \lg \frac{0.32}{r^2} + 4 \psi_{II} \frac{S_{II} - \alpha_{ioo} S_{ioo}}{\sum_{i=1}^{k_2} \alpha_{iII} S_{iII}} . \tag{4}$$

При конструировании ограждения следует учесть, что воздушный зазор между источником шума и внутренней поверхностью ограждения должен быть минимально возможным, поскольку резонансы внутреннего воздушного объема приводят к уменьшению звукоизолирующей способно-

сти конструкции, а также то, что система шумозащиты не должна занимать лишней производственной площади.

Стремление к минимизации поверхности системы шумозащиты исключает (или очень сильно ограничивает) возможность варьирования геометрическими размерами. Поэтому для достижения требуемой величины звукоизоляции в распоряжении конструктора остаются только два показателя — материалы элементов ограждения и их толщина.

Звукоизоляция однослойной плоской тонкостенной (в сравнении с длиной и высотой) звукоизолирующей конструкции определяется следующими зависимостями [2]:

при
$$f = \frac{{c_0}^2}{1.8c_{osp}h_{osp}}$$
 $3M = 20\lg(\rho_{osp}h_{osp}f) - 60дБ$; (5)

при
$$f > \frac{c_0^2}{1.8c_{ozp}h_{ozp}}$$
 $3M = 20\lg\frac{\pi f\rho_{ozp}h_{ozp}}{\rho_{o}c_0} + 5\lg\frac{1.8c_{ozp}h_{ozp}}{c_0^2}f + \lg\eta + 3дБ$, (6)

где ρ_0 и c_0 – плотность (кг/м³) и скорость (м/с) в воздухе; ρ_{orp} – плотность материала ограждения, кг/м³; h_{orp} – толщина стенки ограждения, м; c_{orp} – скорость распространения продольной волны в материале ограждения, м/с; η – коэффициент потерь колебательной энергии.

Приведем зависимость (6) к следующему виду:

$$3M = 20\lg \rho_{oep} + 25\lg f + 25\lg h_{oep} + \lg \eta - 64дБ$$
. (7)

С учетом зависимости (4) получим формулу для определения толщины стенки звукозащитной конструкции, необходимой для выполнения санитарных норм шума:

при частотах ниже граничной

$$\lg h_{ozp} = 0.05(L_W - L_C) + 0.5\lg 1 + \psi \int_{oo} \frac{S_{oo} - \int_{i=1}^{k_1} \alpha_{ioo} S_{ioo}}{\alpha_{ioo} S_{ioo}} + 0.5\lg \frac{0.32}{r^2} + 4\psi \prod_{II} \frac{S_{III} - \int_{i=1}^{k_2} \alpha_{iII} S_{iII}}{\alpha_{iII} S_{iII}} - \lg \rho_{ozp} f + 3;$$
(8)

при частотах выше граничной

$$\lg h_{ozp} = 0.04(L_W - L_C) + 0.4\lg 1 + \psi_{oo} \frac{S_{oo} - \sum_{i=1}^{k_1} \alpha_{ioo} S_{ioo}}{\alpha_{ioo} S_{ioo}} + 0.04\lg \frac{0.32}{r^2} + 4\psi_{II} \frac{S_{II} - \sum_{i=1}^{k_2} \alpha_{iII} S_{iII}}{\alpha_{iII} S_{iII}} - \lg \rho_{ozp} f - 0.04\lg \eta + 2.56.$$
(9)

Полученные выражения (8), (9) справедливы для ограждающих конструкций, выполненных из одного материала и с высокой степенью герметизации. Если звукоизолирующая конструкция состоит из элементов с различной звукоизоляцией, то расчет эффективности производим по формуле [1]:

$$3U = 3U_o - 10\lg \frac{S + \sum_{i=1}^{k_3} S_i \cdot 10^{0, 1(3U_o - 3U_i)}}{S_o + \sum_{i=1}^{k_3} S_i},$$
 (10)

где $3\mathcal{U}_o$ — звукоизоляция основной конструкции, дБ; S_o — площадь основной конструкции, м²; $3\mathcal{U}_i$ и S_i — звукоизоляция (дБ) и площадь i-го элемента.

В этом случае получить в явном виде зависимость требуемой толщины элементов системы шумозащиты невозможно и расчет следует проводить численными методами.

Звукоизоляция цилиндрического ограждения по данным работы [1] определяется следующим образом:

$$3 M_{\mathrm{u}} = 201 \mathrm{g} \left[1 + rac{m_0 n}{2 \mathrm{p} \, R_k} \, 1 - rac{R_y}{R_{ku}}^{2n} \, 1 - rac{k_m^2 + rac{n^2}{R_k^2}}{k^2} \, rac{\left(\, k_m^2 - \, k_t^2 \,
ight) \left(\, k_{m l \overline{l}}^2 \, \, k^2 \,
ight)_{l \overline{l}} \, \, k^2 \, rac{n^2}{R_k^2}}{k_m^2 + rac{n^2}{R_k^2} - \, k_o^2 \, k_m^2 + rac{n^2}{R_k^2} - \, k_t^2}
ight]$$
 ,(11) где $k_o = rac{2 \pi f}{c_o}$; $k_H = 2 \pi f \sqrt{rac{
ho}{E}}$; $k_t = 2 \pi f \sqrt{rac{2
ho \left(1 + \mu
ight)}{E}}$; $R_u = \sqrt[4]{12 \left(1 - \mu^2
ight) rac{\left(2 \pi f
ight)^2 m}{E h^3}}$; $k_m = rac{m \pi}{l}$, $m \, \text{u} \, n$ – числа, определяю-

щие соответствующую моду колебаний цилиндрической оболочки.

Если система шумозащиты конструируется в виде Г и П-образных элементов, формула (4) примет вид:

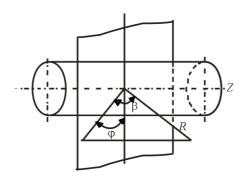
$$3M_{mpe6} = 0.11g(L_{w} - L_{c}) \frac{2\lambda 10^{-0.13H}}{\pi R^{2}} arc \operatorname{tg} \frac{ab}{2D\sqrt{4D^{2} + a^{2} + b^{2}}} + \frac{RD}{4\pi} (1 - 0.6a)$$

$$+ \frac{1}{R_{bi}^{3}D_{bi}^{2}} arc \operatorname{tg} \frac{b}{2D_{bi}} \frac{1}{R_{b}^{3}D_{b2}^{2}} arc \operatorname{tg} \frac{ab}{D_{a_{2}}\sqrt{4D_{a_{2}}^{2} + a^{2} + 4h_{p}^{2}}}$$

$$+ \frac{1 - \alpha_{s}}{\pi h_{p}^{2}} arc \operatorname{tg} \frac{4(D - R)b^{2}h_{p}}{4b^{2}h_{p} + (Db + 2Dh)(Db - 2hR)} + \frac{1 - \alpha_{s}}{(h_{u} + h_{p})^{2} + r_{0}^{2}} + \frac{1}{2} \frac{\alpha_{s}}{4\pi r_{u}^{2}} + \frac{4\psi}{B}.$$

$$(12)$$

Для теоретического обоснования акустической эффективности средств шумозащиты на этапе проектирования участков испытаний на виб-


ропрочность необходимо определить звуковую мощность самих источников.

Анализ конструктивных особенностей оборудования для виброударного упрочнения, наклепа и динамических испытаний позволяет свести все многообразие конфигураций упрочняемых изделий к двум типам излучателей: линейному источнику и монополю. У длинномерных деталей длина намного больше максимального размера поперечного сечения. Поэтому в качестве модели излучателя звука принят линейный. Звуковое давление, создаваемое таким излучателем для любых распределений колебательных скоростей на поверхности, определяется выражением [1]:

$$P(r, \varphi, z) = \frac{\sqrt{2}i\omega \rho}{\sqrt{\pi} k_0 R_{m_{\mu} = -}} \frac{B_{m_{\mu}} (k_0 \sin \beta) e^{ik_0 R}}{\cos \beta H_{m_{\mu}}^1 (k_0 R \cos \beta)} \exp i m_{\mu} \varphi - \frac{2m_{\mu} + 1}{2} \pi , (13)$$

где
$$B_{m_{\!\scriptscriptstyle \parallel}} = rac{1}{\left(\,2\pi\,
ight)^{1,5}}^{\,2\pi} V\left(\,\phi\,,z
ight) \exp\left(\,i\left(\,m_{\!\scriptscriptstyle \parallel}\phi\,+\,k_0\sineta\,z\,
ight)d\phi\,dz\,\,-\,$$
функция,

зависящая от амплитудно-фазового распределения колебательной скорости на поверхности лонжерона; $H^1_{m_\mu}\left(\sqrt{k_0^2-k_0^2\sin^2\beta}\ r\right)$ — функция Ганкеля первого рода m_\square -порядка (рисунок); F(z)- площадь поперечного сечения, м; k_0 — волновое число, 1/м; ρ — плотность воздуха, кг/м³; c — скорость звука в воздухе, м/с.

Расчетная схема шумообразования лонжерона

Возмущающее воздействие от технологической нагрузки, что характерно, вызывает колебания лонжерона как твердого тела, т.е. порядок колебаний $m_{\nu}=1.$

Тогда выражение (13) примет вид

$$P = \sqrt{\frac{2}{\pi}} \frac{i\omega \rho}{k_0 R} \frac{B_{m_{\mu}} e^{ik_0 R}}{\cos \beta H_{m_{\mu}}^1 k_0 \sqrt{\frac{F(z)}{\pi}} \cos \beta} \exp i \phi - \frac{3}{4}\pi$$
 (14)

Для рассматриваемого случая осевая вибрация меньше радиальной, поэтому распределение колебательной скорости на поверхности лонжерона представим в виде:

$$V(\varphi,z) = egin{array}{cccc} V(z) \, e^{i\varphi} & \mathrm{при} & 0 & z & l; \\ \mathrm{0при} & . & |z| > l \end{array}$$
 (15)

Подставляя это выражение в выражение (13), B получим (при $m_{\!\scriptscriptstyle \mu}$ =1)

$$B_{m_{\mu}} = \frac{1}{\sqrt{2\pi}} \int_{0}^{\ell} V(z) \exp\left(i\left(k_{0}z\sin\beta\right) dz\right). \tag{16}$$

Параметры источника шума (геометрические размеры, спектр собственных мод колебаний) определяют характер излучения. Для низкочастотной части спектра выполняется соотношение $k_0 R_u \cos \beta < 1$.

Заменив производную функции Ганкеля ее асимптотическим представлением [3]

$$H^{1}\left(k_{0}R_{u}\cos\beta\right) = i\frac{1}{\pi} \frac{2}{k_{0}\sqrt{\frac{F(z)}{\pi}\cos\beta}} , \qquad (17)$$

получим выражение звукового давления в следующем виде

$$|P| = 0.03 \frac{f_k^2 B_{m_\mu} F(z)}{R} \cos\beta \exp i \ k_0 R + \varphi - \frac{3\pi}{4}$$
, (18)

где f_k — собственная мода колебаний, Гц; F(z) — площадь поперечного сечения упрочняемого изделия, м².

Для средне и высокочастотной части спектра выполняется соотношение $k_0 R_{_{\!\mathit{u}}} \cos \beta > 1$. Заменив производную функции Ганкеля ее асимптотическим представлением

$$H^{1}\left(k_{0}R_{u}\cos\beta\right) = -i\sqrt{\frac{2}{\pi k_{0}R_{u}\cos\beta}}\exp i \ k_{0}R_{u}\cos\beta - \frac{5\pi}{4} \ , \ (19)$$

получим выражение звукового давления

$$|P| = 43 \frac{f_k^2 B_{m_{\mu}} f_k^{0.5} F(z)^{0.25} \cos^{0.5} \beta}{R} \exp i \left(k_0 R + k_0 R_u \cos \beta - 2\pi \right). \tag{20}$$

Звуковая мощность определяется известными соотношениями, связывающими звуковое давление, интенсивность звука и звуковую мощность [3]

$$W = \frac{P^2}{\rho c} F_n, \tag{21}$$

где F_n – площадь поверхности источника звука, м².

Для упрочняющего инструмента и вибратора на стендах динамических испытаний в качестве модели источника шума принят монополь, звуковое давление которого определяется как [3]

$$P = \frac{V_k f_k \rho F}{2R\sqrt{1 + (k_0 r_0)^2}} \exp i \ 2\pi f_k - k_0 (R - r_0) + \varphi - \frac{\pi}{2} , \qquad (22)$$

где V_k – скорость колебаний корпуса, м/с; r_0 – максимальный линейный размер источника, м.

Таким образом, задача теоретического определения уровней шума сводится к определению скоростей колебаний на собственных частотах отдельных источников, возбуждаемых технологической нагрузкой или воздействием вибратора при динамических испытаниях.

Выводы. Как видно из полученных выражений, требуемая звукоизоляция определяется геометрическими и механическими параметрами самого ограждения, что уже известно на этапе проектирования. Фактический расчет систем шумозашиты определяется зависимостями скоростей колебаний на собственных модах колебаний самого источника (V_k).

Библиографический список

- 1. Борисов Л.П. Звукоизоляция в машиностроении / Л.П.Борисов, Д.Р.Гужас. М.: Машиностроение, 1990. 250 с.
- 2. Иванов Н.И. Основы виброакустики /Н.И.Иванов, А.С.Никифоров. СПб.: Политехника, 2000 412 с.
- 3. Никифоров А.С. Акустическое проектирование судовых конструкций: справочник /А.С.Никифоров. Л.: Судостроение, 1990. 200с.

Материал поступил в редакцию 17.11.08. Рецензия

S.A.SHAMSHURA, O.A.KALASHNIKOVA

MODELLING OF FORMATION OF NOISE OF THE EQUIPMENT FOR PROCESSING OF LENGTHY DETAILS IN PROPORTIONAL PREMISES

In article results of the theoretical description шумообразования the large-sized equipment in a proportional premise are resulted at presence шуморзащитной designs. Proceeding from conditions of maintenance of a sanitary code of noise expression of a necessary thickness of elements of a soundproofing design is received. Dependences of capacity with reference to lengthy details are received.

Шамшура Сергей Александрович (р.1977), доцент кафедры «Вертолетостроение» института «Управление и Инновации авиационной промышленности», кандидат технических наук (2006). Окончил Ростовский государственный университет путей сообщения (1999), вечернее отделение механико-математического факультета Ростовского государственного университета (2000).

Область научных интересов: виброакустическая динамика технологических систем.

Имеет 20 научных публикаций.

Калашникова Оксана Александровна, инженер ОАО «Роствертол». Окончила ЮРГТУ по специальности «Технология электро-химических производств» (2006).

Область научных интересов: виброакустическая динамика технологических систем.

Имеет 3 публикации.