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Introduction. The paper is devoted to the study on the three-
dimensional model of transport and suspension sedimentation
in the coastal area due to changes in the bottom relief. The
model considers the following processes: advective transfer
caused by the aquatic medium motion, micro-turbulent diffu-
sion, and gravity sedimentation of suspended particles, as well
as the bottom geometry variation caused by the particle set-
tling or bottom sediment rising. The work objective was to
conduct an analytical study of the correctness of the initial-
boundary value problem corresponding to the constructed
model.

Materials and Methods. The change in the bottom relief aids
in solution to the initial-boundary value problem for a parabol-
ic equation with the lowest derivatives in a domain whose
geometry depends on the desired function of the solution,
which in general leads to a nonlinear formulation of the prob-
lem. The model is linearized on the time grid due to the “freez-
ing” of the bottom relief within a single step in time and the
subsequent recalculation of the bottom surface function on the
basis of the changed function of the suspension concentration,
as well as a possible change in the velocity vector of the aquat-
ic medium.

Research Results. For the linearized problem, a quadratic
functional is constructed, and the uniqueness of the solution to
the corresponding initial boundary value problem is proved
within the limits of an unspecified time step. On the basis of
the quadratic functional transformation, we obtain a prior es-
timate of the solution norm in the functional space L2 as a
function of the integral time estimates of the right side, and the

initial condition. Thus, the stability of the solution to the initial

Bseoenue. Hacrosimass paboTa IOCBSINEHA HCCICTOBAHHUIO
MIPOCTPAHCTBEHHO-TPEXMEPHOI MOJENN TpaHCIOpPTa M Oca-
AKJEHUSI B3BECH B NPHOPEKHOM 30HE C y4ETOM H3MEHEHHS
penbeda mHa. Mojenb YYUTHIBAaeT CIEAYIONIME IIPOLECCHI:
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HBIX YCJIOBHI M HAa4aJbHOTO YCIOBHS, M, TaKUM 00pa3oM,
JI0Ka3aHa yCTOMYMBOCTb PEIIEHUs UCXOOHOM 3aJaud NpHU U3-
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problem from the change of the initial and boundary condi-
tions, the right-hand side function, is established.

Discussion and Conclusions. The model can be of value for
predicting the spread of contaminants and changes in the bot-
tom topography, both under an anthropogenic impact and due
to the natural processes in the coastal area.

Keywords: coastal systems, mathematical model, diffusion-
convection problems of suspension sedimentation, bottom
relief change, uniqueness of solution, and stability of initial-
boundary value problem.
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Introduction. The aquatic habitat protection [1—2] is one of the most important factors that determine the inte-
grated research development of the coastal areas. Damage control over the natural processes, such as pollution, sedi-
mentation, and depletion of water areas, leads to necessity for studying all aspects that affect changes in coastal waters.
Maintenance of water bodies in proper condition and timely intervention in its operation mode is directly related to the
increase in port capacity and the efficient development of the coastal infrastructure (ensuring an accessway to the berths
of ships with a low landing; desilting and aquatic vegetation clearing of the coastal strip; etc.) [3-5]. As a rule, research
practice in this field requires the construction of mathematical models that are as close as possible to real processes
[6—11].

A continuous mathematical model describing spatial-three-dimensional processes associated with transport and
gravitational suspension sedimentation in the aquatic medium with varying bottom relief is considered. This model
takes into account micro-turbulent diffusion and advective transfer of suspensions, the effect of gravity on suspension,
the presence of the bottom and a free surface, and a bottom contour variation.

The suspension transport model enables to study the hydrophysical processes of aquatic systems, to predict the
dynamics of the bottom surface change based on the description of the lifting, transport, sedimentation, changes in the
concentration of suspension [12—13]. The uniqueness of the solution to the corresponding initial-boundary value prob-
lem is proved, and a prior estimate of the solution norm is obtained depending on the integral estimation of the right-
hand side, boundary conditions, and the initial condition.

Materials and Methods. Continuous 3D model of suspension diffusion-convection and the corresponding initial
boundary value problem. Consider a continuous mathematical model of sediment spreading in the aqueous media
considering diffusion and convection of suspension, gravity action on suspension, presence of the bottom and a free
surface. We will use Oxyz Cartesian coordinate system where Ox axis passes along the nonperturbed water surface

and is directed toward the sea, and Oz axis is directed vertically downwards. Assume that A~=H+n is the total water
depth, m; H is depth with undisturbed water surface, m; 1 is elevation of the free surface relative to the geoid (sea lev-
el), m (Fig. 1).

- 'Geoid_ k_;jf — 77—'1'_/_15_}% surface
— T ] ——————— — .77 _’__,l'//
X
= -
Bottom : 7
- T ——— e A e
z < H(x,y)

Fig. 1. Introduction of Oxyz coordinate system Oxyz
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Suppose that in G = {0 <x<L,0<y<L,0<z<H (x, y)} closure region, there are suspensions which have
c=c(x,y,z,t) concentration at (x,y,z) point and at ¢ time, mg/l; ¢ is temporary variable, sec. We will also use

L = max H(x,y) notation.

Z 0sx<L,,0<y<L,

The behavior of the suspended particles will be described by the following system of equations:

8c+5(u0)+5("c)+6((w+wg)c) :Mh(a_zc+azc}+ 0 (uv%}rl’,

o ox oy oz ox’ 6y_2 oz oz (1)
OH €

—=——w_,

ot p ¢

where u, v, w are components of U fluid velocity, m/s; w, is hydraulic size or sedimentation rate, m/s; p,, p, are coef-
ficients of the horizontal and vertical turbulent diffusion of particles, respectively, m*/s; F is power of particle sources; &
is porosity of bottom materials.

Summands on the left side (except for the time derivative) of the first equation of the system (1) describe the
advective particle transport due to the inertial motion of the aqueous media, as well as sedimentation under the action of
gravity. The summands on the right side describe the suspension diffusion. The vertical diffusion coefficient is chosen
different from the horizontal diffusion coefficient due to the fact that the effect of difference between these coefficients
is often observed in various media and can be caused by various factors.

As G region, we consider ABCDAOC,D, “parallelepiped” “skewed” to the shore, whose 4,0C, D, upper base

lies on (z=0) free surface, and (z =H(x, y)) part of the bottom surface is its lower base. Suppose S is G surface, 7i

is the outward normal to the surface of the “skewed parallelepiped”. We assume the given U™ as the fluid velocity on

G side surfaces. Complete with the boundary conditions of first kind for the particle concentration function, this allows
determining the suspension flow both towards the coast and along the coast (Fig. 2).

¢; Coast

'\.'
Free surface
Dy

Particle flow
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non—> n
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Fig. 2. Solution area for suspension transport

Add the initial and boundary conditions (assuming that the sedimentation is irreversible) to the system (1)
As the initial conditions at # =0 time, we accept

c(x,y,z,O)Ec0 (x,y,z); 2)
H(x,y,O):H0 (x,y). (3)
We set boundary conditions on 4BCDA,OC,D, faces (we set suspended flows both towards the coast and
along the coast):
- on the faces S,=A40B (x=0,0<y<L, 0<z<L),6 S,=A4ADD (y=L,0<x<L,0<z<L) and
S,=BOCC (y=0,0<x<L,0<z<L)
c=c,rme ¢ =c (x,y,21), t€[0,T]; 4)
- on the faces S, = DD,C,C (x:Lx, 0<y<L, O_ZSLZ) and S, = 40CD, (z:O, 0<x<L, OSySLy)
c=0; (%)
- on the surface S, = ABCD (z =H(x,y,t), 0<x<L, 0<y< Ly)
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w w
o Yy % Yo, (6)
an HV 6Z MV

The boundary condition (5) occurs with a relatively small slope of the bottom:

(asz oH Y
max,||— | +| — | « 1.
S Ox oy

The following condition of the solution domain nondegeneracy is set up for all (x, y,t) at which the initial

boundary value problem is formulated:

H(x,y,t)zhozconst>0, 0<t<T. 7
When studying combined models of sediment and suspension transport, it is possible to increase the concentra-
tion of suspended particles in the bottom layer due to the rising bottom sediment particles if the shear stress exceeds of a
certain critical value is exceeded[13—16]. Then, instead of the boundary condition (6), we will consider the boundary

condition of the following form
Oc
=
Linearization of the initial-boundary value problem of transport and suspension sedimentation. To create a line-
arized model on 0<¢<T time interval, we construct a uniform grid ot with a step 1, that is, a set of points

o, ={t,=nt,n=0,1,...,N, Nt1=T}.

ac, o =const>0. (8)

£ L.
A7
o

-y

Fig. 3.Construction of time grid
P (x, y,z,tnfl)and H" (x, Vv, tH)functions are determined at each step of @, time grid. If n =1, then func-
tions of the initial condition will suffice to " (x,3.2.8,), H" (x,3.1,) , viz " (x,3,2,0)=¢,(x,,2) ,

H" (x,y,t,)=H,(x,y) respectively. But ifn=2,..,N, then " (x,y,z,,,)=c""(x,»,2,¢t,,) functions are assumed

n-1

to be known, since the problem (1)—(6) for the previous t,, <¢ <t time interval is supposed to be solved.

We write the system (1) on t _, <¢<t, interval in the form:

oc™ 6(140(")) 6(vc(")) 6((w+wg)c(")) (620(") a%(ﬂ)j 6( ac(n)j p
=u, + +—|n, +F,

+ + +

ot ox Oy oz o’ oy’ oz oz 9)
6H(”) € (n)
=——w,c
Ot p ¢
and complete it with the initial conditions:
VW (x,.2.8)) = ¢, (x,y,z),c(") (x, 3,22, )= c (x,3,2,0,,), n=2,.,N. (10)
HY (x,y,to) =H, (x,y),H(") (x,y,t,k1 ) =H" (x,y,l‘rk1 ), n=2,...,N. (11)

The boundary conditions (4)—(6) are assumed to be fulfilled for all ¢, <t <t time intervals.

n-1 —
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By defining ¢ (x,y,zt,)=c""(x,y,2,t,,) function on t  <f<t, time interval, we can find
H (”)(x, Vv, tH) function. For this end, we integrate both members of the second equation of the system (9) over

¢t , <t<t, variable. We will get

n-1 —

n (n)
| OH g%y [ . (12)
From the equality (12), it is not difficult to get

N
H" =g —%wgz [ . (13)

n=1 t

n-1 =

We introduce G, = {0 <x<L,0<y<L,0<z<H"(x,y.1, )} domain at each #_ <¢<¢, time step.

We have a chain of linear initial-boundary value problems for each time layer, where the system of the type

ac™ 6(140(") ) a(ch) 6<(w+ W, )c(") ) 26 226 2 ac™ (14)
+ + + =W | =5t —5 [T | W — |+ F,
ot ox oy oz Ox oy oz Oz
(x,y,2)eG,,, G, = {0 <x<L, 0<y<L, O<z<H"' (x,y,tnfl)},
N
() _ py(n-1) _ € (n) —
H"Y =H pwg;tjc dt, n=12,...,N. (15)
is considered for ¢, <¢<¢ interval with the initial conditions:
N (xpzt) =" (xpz0,), (16)
H" (x,p,6,.)= H" " (x,0,1,,) . (17)

Note that at each time step, the boundary surfaces will change (except S, face). Considering ¢, <t <¢, time

n=1 =

interval, we set the boundary conditions on the edges of G, _, domain:

n=1

- on S, (x=0,0<y<L, 0<z<H""(0,3.z,)) . S (y:LV,OSxSLx,OSZSH("'I)(x,L t )) and

Ln-1 211 2 n1

S, (y=0,0<x<L, 0<z<H""(x,0,,,)) faces
" =c" e ¢ =c (x,p,2,1), te[t,.t,]; (18)

-on S, (x=L,0<y<L, 0<z<H"'(L.,yt ))uS, (2=0,0<x<L, 0<y<L)=40CD, faces

"=0; (19)
-on S, (z =H""(x,3,t,,), 0Sx<L, 0<y< Ly) surface
(n) w (n) w
0 _ Yo ) g O _ M ) 0)
on M, 24 M,
The boundary condition (8) will be replaced by the following
(n)
o _ ac”, o =const>0. 2D
Oz

Thus, it is supposed that the bottom relief within this time step, when calculating the distribution of suspension
concentrations, does not change and is taken from the previous time layer. First of all, at this ¢, <¢ <¢ time step, the

n-1 —
initial-boundary value problem for the convection-diffusion equation (14) with H"" fixed bottom relief function is

solved, and only then the update (recomputation) of A" relief function is performed in accordance with the equality
(15).

The determination of the conditions of existence, uniqueness and continuous dependence of the solution on the
input problem data is carried out on a fixed time layer under these assumptions and subject to the condition (7).

The authors do not plan to study the existence of solutions to the initial-boundary value problems (14) - (20)
and (14) - (19), (21) in this paper. Questions of the existence of solutions to the initial-boundary value problems for



Sukhinov A. I.and the others. Development and correctness analysis of the mathematical model of transport and suspension sedimentation

Cyxunoe A. H. u op. Ilocmpoenue u uccnedoganue KOppeKmMHoOCHU MaAmMeMamuieckol Mooenu mpancnopma u ocajicoenus g3eeceil

parabolic equations with lower derivatives (diffusion-convection equations) are considered, for example, in the mono-
graphs [17-18].

Research Results. Investigating uniqueness of the solution to the initial-boundary problem of suspension
transport.
Consider the initial boundary value problem (14) - (20) formulated for the arbitrary t,_, <#<t, time layer.

Multiply the left and right member of equation (14) by ¢ function and get:

o0 ) ) AT (B2 ) 0 2 2 or,

+ + +
ot ox Oy oz ox’ oy’ oz

The left member of the equality (22) can be transformed as follows:

, (n (») (n ()’
() 80()+C(n) é(uc )+a(vc )+6((W+Wg)c ) :la(c ) +c(")div(c(")U)=
ot Ox oy 0z 2 Ot
(23)
1 6(c("))2 1 2
=— +—div((c(")) ﬁ)
2 ot 2
where U:” Y,
With regard to (23), the equation (22) will be written as
2
1 a(c(n)) Lo (V7 w02 ") e o)
T +5dzv((c()) U):uhc”[ PR J+ ()6Z[uv = j+c( F. 24

Then we integrate both members of the equation (24) over ¢, <t <¢, interval, and, after that, over the spatial

variables in G, , domain. In the first term, the order of integration is changed due to the Fubini theorem [19]. We obtain

02 57 i 4 gy o). o

_ tf[mcu)uh [%;)ﬁ;;; j Jdt+'|'['|‘“. [ )Jd(}nl]dt+ (25)

j [ [[[e"Fdq, ]dt

by \ G

The first term on the left side of the equation (25) is obviously equal to

) 2
0 1 o e s oo

Next, we turn to the transformation of the second term of the left-hand side of the equality (25). Considering
the Gauss-Ostrogradsky formula and the boundary conditions (18) - (20), it can be written as [20]:

,I,( I dw((c<~>)2 ﬁ)dGJJt:%j[ﬂ( V(@ n)dydzjdt+ tj,[;ﬂ,c wgdxdyjdt+
+'j[jj () (ﬁﬁ)dxdz}wrl’j(ﬂ( NG n)dxdz]dt———f[ﬂ( 8) udydzjdt— 27)

a1 \ 53,01 fyt \ S1t

%][ﬂ( Y vdxdzjdt+ j(ﬂ( Y vdxdzjdt+5j‘[£l(c”) wgdxdyjdt.

tuot \ S3.m1 ’1521

where U is the known velocity of the aquatic medium on the faces where the boundary conditions of the first kind
and S

are specified; in fact, these are all side faces, except for S st

ot top cover on which the suspension concentra-

tion is zero, and therefore the flows through them are zero.
Let us turn to the transformation of the right side of the equation (25). The following equality occurs
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(n) (n) (n)
J:U " Wy = 4 ac +“hi & +g Plvac_ G, =
o ox| ox oy\ oy oz oz
n () (n)
= (I by o o, 2 O], Oy 7 g, - (28)
g ox ox oy oy oz oz
2 2 2
ac" ac" ac™"
- — | +p, | — | + dG
'LU[M{ Ox ] Mh( oy H 0z "

50(") . GC(") (n)u ac(n)
sH,C
o T oy oz

Suppose O = {Q‘X,Q",,Q_"} :{phc(”) } . Then, in virtue of the Gauss-Ostrogradsky

theorem, we have:

B2 ) 0 s e

= j 0, dxdz + jj 0. dydz + ” 0, dxdz + H 0. dydz + ﬂ 0. dxdy + jj O.dxdy = (29)
jj 0, dxd: + jj 0, dxd: + ” 0. dydz + j j O.dxdy.

Transforming each term from the r1ght—hand side of (29) subject to the conditions on the boundary (18) - (20),

we obtain
(n) (n) (n)
J‘J.J‘I:“h ai{c(n) ac_] L, ai(c(n) ag ]Jr_ai(c(n)uv ag ]:| danl =
X Oox y y z z (30)

H ¢ uh dxdz+ ﬂ 'y, 8; dxdz+sj]j c*uh%dydz—sﬂ w, (c(n))Z dxdy.

SZ -1 S"s -1 1

In virtue of (26), (28), (29) and (30), the equality (25) takes on form

S Gonmrac, | 136 u+cuhajdydz}

byt \ St 1

I[sﬂ[ Votep, ’]dxdz}dmttj[szﬂl[ : cuhai}jzdxdz} .
[ ey g2 o 2] w[a; J . |-
=_m( ) xy,ztnl)dGn1+J[j” "FdG,

tyet \ Gt

The identity (31) will be fundamental under studying the uniqueness and obtaining a prior estimate of the solu-
tion norm of the initial boundary value problem (14) - (20). In case of replacing the boundary condition (20) with the
boundary condition (21), the quadratic functional (31) changes as follows:

%g J' (c(">)2 (x.y.2.8,)dG, , - j { I G(c utcp, ‘Z dedz}d
_I[SH (%(c) Ve, — jdxdz}dwrljl [SH( -, Zy jdxdz]d

At ST 5
L (e | [ flfFac,

Lyt \ Ot

(32)

Suppose that the equation (14) with the same conditions (16) - (20) satisfy two different solutions to

¢ =c (x, v, z,t), ¢, =¢, (x, ¥, z,t) problem. For their c= ¢, —c, difference, the following initial-boundary problem is

valid:
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oc 0(uc) o(ve) a((W””g)g):“ [625+@25J+ 5[ 55} (33)

5+8x+6y+ 0z h@? =\ )
E(x,y,z,O)zO, (x,y,z)e@n_l, (34)
-on S, S, S, S,.,S,, faces
F=c —¢ =0; (35)
-on S, surface
= _Lv_f(q —e)= _Lv_fg . (36)

For ¢ function, the equality (33) will take the form considering the equalities (34)—(36)

_I.[j (x.9,2,1,)dG,  += j{ ” w, & dxdy |di +
o (37

A (3] (2o

Since w, >0 and other known values under the sign of integrals are positive ph> 0, uv> 0, then the equality

(36) is satisfied only under the condition

E(x,y,z,l)EO, (x,y,z)eGH, t  <t<t (38)

which completes the proof of the uniqueness of the initial-boundary value problem (14) - (20) solution.
In case of replacing the boundary condition (20) by the relation (21), instead of the expression (37), we obtain
the following equality

Lt \ Se.n1

—IJI (x,2.2,)dG, ﬁj[ﬂ( w, — o, jézdxdy}dt+

8 oY a 39
¢ ¢ ¢
+ — |+, | = + dG, =0.
tﬂj{[gﬂuh(ax) () (%] } }
We require the fulfillment of the inequality
%wg —ap, =0, (x, y,z) €S8,,., b, <t<t,

or

w

aSz—g, (x.y,2)e8,, 1, <t<t, (40)
l'IIV

then all the terms in the equation (39) are nonnegative, and zero equality is possible if and only if
E(x, ¥, Z,t) =0, (x, y,z) eG,,, t  <t<t, that means the solution uniqueness and in this case.

Reasoning is similarly repeated for all layers of @, time grid. The modification of the boundary conditions as-
sociated with the continuous change in the bottom relief depending on the time variable requires additional study and is
going beyond the scope of this article.

Theorem. Suppose we are given a system of equations

o ofuc™ o(ve™ P + () 2 (n) 2 () ()
0 o) o) ollwin)e) (e g of wn
ot ox oy 0z o’ oy’ 0z 0z

(x,y,2)eG., G = {0 <x<L,0<y<L,0<z<H"(x,y,1, )},

’ & e
H" =H")-=w > ["dt, n=12,.,N
o) n=l g

inQ =G, x(t <t<t), G = (0 <x<L,0<y<L,0<z< H" (x.pt,, )), simply connected domain with a

sufficiently smooth boundary defined by the smoothness of z=H""(x,y), 0<x<L, 0<y<L function with the
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initial and boundary conditions (16) - (20). Let the functions of c‘”)(x, V,Z,t, l) solution, the velocity vector of

(=) (x,y.z,t,,) initial condition, F(x,y,z,t), right member of ¢’ (x,y,z,t) bounda-

||u,v,w+ wg”T aquatic medium, ¢
ry condition, p, =p (z),(x,»,z)€G,, coefficient of u, =p (z),(x,y,z) € G, vertical turbulent exchange satisfy the

following smoothness conditions:

e (x, y,z,tn_l) eC’ (Q”_l)m C(f_Zn_l ), grad " e C(f_ln_1 ), ||u,v,w+ w, "T eC' (QH )m C(S_EH ),
I (3mt) €C(G) FlupaneC(@,) . w(nn2)eC(6)nc(@,) .
¢ (x,3.2,t)eC(S,,)x[t,, <t<t], S =G, \G_ ,
z—c*eC((OstLx, 0<y<L, z:H("")(x,y))x[tH Stétn]) , as well as ¢ (x,0,20)=¢(x2),
" :
(x, 0,z )eS"l\(O<x<LX,O<y<Lv, z:H("’l)(x,y)), ai=—hc*,
i oz w

(0 <x<L,0<y< Ly, z=H"" (x, y)), conditions of consistency of the boundary and initial conditions, then the

solution to this problem exists and is unique.
Comment. In case of replacing the boundary condition (20) with the boundary condition (21), the inequality
(40) should be added as a sufficient condition for the previous theorem.

Studying the continuous dependence of the solutions to the initial-boundary value problem of suspension
transport on the initial, boundary conditions and the right-hand side function. The next stage is connected with
the study of the continuous solution dependence on the functions of the right-hand side, boundary and initial conditions
for the system (14)-(15).

Suppose that
¢’ > ¢, =const >0,

0<x<L,0<y<L, 0<z<H" (x,pt.), 1t 1)

<t<t,

’ n 1=
For convenience, we introduce the notations: union of all parts of the lateral cylindrical surface (boundaries of

and the lower base of region—as G, — S, , . In virtue of the smoothness conditions

G,.; region) is denoted as S bnei

cn-12

listed under the above theorem, extrema of functions on the bounded closed sets are reached:

M,, , =max {‘c(")‘}, M,, = max{ }
K : (42)
Mo =max{u ), M=, max b Mo, =mindi,a, )

We will focus on the equation (31) if the boundary condition (20) is used, and on the equality (32) in case of
the boundary condition (21). Evoking Friedrichs inequality, we have a chain of inequalities:

ac™ ’ ac™ ’ 60(")
+ + dGg, _ >
JC;[.!. My, o W, oy W, P n-1

) ac™ ’ ac™ ’ GC(")
2%1?{%,“‘,}!;][ [ . ] +[ H | |46 (43)

oy

=M, n’ LLXZ—’_LVIZ ( (n]) .‘-.U( "))

We turn to the equation (26) from which, in virtue of (42) and (43), we obtain the inequality:
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e o e e

+ﬁ[ﬁm4 )wwyxﬂkyGﬁMMI[ﬁ }+ )

it \ Shat

n-|

SRR R 1 e

From inequality (44), there are two inequalities

J‘J‘J.(C(n) )2 dGﬂ*l S J‘J‘J‘COZdanl +M4,n—1 i [ IJ‘ (C* )2 dS,,,l }t +
G G, L \ Sen-t
tH
+2M,, M, | ( [ |e’]as, derzM1 | {m'FMGM Jdt.
£y \US.

(45)

Ly \ Gt

and
fi(e) M_WWm@ﬁ
‘ , (46)
+M,,, (Sjj (<) dSnl]dt+2M“1 - ( [l e|as,. jdt+2Mm umFWGMJJt}
-1
where M ! 2| 1 1 1

= | —t—t—
M, L’ L’ ( H(H))Z

1 X

The inequalities obtained imply the continuous dependence (stability) of the solution to the problem (14) - (20)
on the functions of the initial condition, the boundary conditions and the right-hand side, in L, norm for any instant of

0<T <40 time, and also in L, time-integral norm.

Obviously, if the inequality (45) and the theorem condition are satisfied, the initial-boundary problem (14) -
(19), (20) will also have a solution that depends continuously on the functions of the initial condition, the boundary
conditions and the right-hand side in the corresponding norms.

Discussion and Conclusions. Novelty of the proposed non-stationary spatial-three-dimensional mathematical
model of suspension transport lies in the fact that, alongside with considering the processes of advective transfer, micro-
turbulent diffusion and gravity sedimentation of suspended particles, the model describes the change in bottom geome-
try caused by the particle settling or bottom sediment rising.

The linearization of the corresponding initial-boundary problem on the time grid is carried out, and the conditions
for the uniqueness of the solution to the initial-boundary problem and continuous dependence on the input data — on the
functions of the initial condition, boundary conditions, and the right-hand side in L, Hilbert space norm in L, time

integral norm for two variants of boundary conditions are obtained for the arbitrary ¢, <t <¢ time step.
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