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Introduction. The theoretical description of the ion transport in
membrane systems in the galvanostatic mode is presented. A
desalting channel of the electrodialysis apparatus is considered
as a membrane system. The work objectives are the develop-
ment and verification of a two-dimensional mathematical
model of the stationary transport of salt ions in the desalting
channel of the electrodialysis apparatus for the galvanostatic
mode.

Materials and Methods. A new model of ion transfer is pro-
posed. It is based on the Nernst — Planck — Poisson equations
for the electric potential and on the equation for the electric
current stream function. A numerical solution to the boundary
value model problem by the finite element method is obtained
using the Comsol Multiphysics software package.

Research Results. The developed mathematical model enables
to describe the stationary transfer of binary salt ions in the
desalting channel of the electrodialysis apparatus. Herewith,
the violation of the solution electroneutrality and the formation
of the dilated domain of space charge at overlimiting currents
in the galvanostatic mode are considered. A good agreement
between the physicochemical characteristics of the transfer
calculated by the models for the galvanostatic and potenti-
ostatic modes implies adequacy of the constructed model.
Discussion and Conclusions. The developed model can inter-
pret the experimental study results of ion transfer in membrane
systems if this process takes place in the galvanostatic mode.
Some electrokinetic processes are associated with the appear-
ance of a dilated domain of space charge at overlimiting cur-
rents. When describing the formation of this domain, it is pos-
sible to find out how the processes dependent on it affect the

ion transfer in the galvanostatic mode.

Bseoenue. CraTbs TOCBSIIEHA TEOPETHYECKOMY OIMCAHHIO
npolecca NepeHoca NOHOB B MEMOPAHHBIX CHCTEMaX B Tallb-
BaHOCTaTUYECKOM peXuMe. B kauecTBe MeMOpaHHOH CHCTEMBI
paccMaTpuBaeTcsi KaHall 00eCCOJIMBAHUSA SIIEKTPOAUATNZHOTO
anmnapara. Llean paGoTel: co3nanue u BepH(HUKALUA IBYMEp-
HOH MAaTeMaTHYecKOd MOJEIH CTAI[MOHApHOTO IIepeHoca
HOHOB COJIM B KaHajle 00ECCOJIMBAHHS DICKTPOAUAIU3HOIO
anmapara JyIs TaTbBaHOCTaTHYECKOTO PeXKHMAa.

Mamepuaner u memoout. IIpennosxeHa HoBas MOJEIb MEPEHO-
ca noHoB. OHa OCHOBaHa Ha cucTeMe ypaBHeHHH HepHcta —
IInanka — IlyaccoHa Uit SIEKTPUYECKOTO IOTEHIMANA M Ha
ypaBHEHUH A1 (QYHKUHUM 3NeKTpuueckoro Toka. IlomydeHo
YHCJICHHOE peIIeHUe KPaeBoil 3aJadM MOMIENN METOIOM KO-
HEYHBIX JJIEMEHTOB C IIOMOINBIO IPOTPaMMHOIO TaKeTa
Comsol Multiphysics.

Pesynomamer uccnedosanus. PaspaboTaHHas MaTeMaTndecKast
MOJIETTb TTO3BOJISIET ONMCATh CTAalMOHAPHBINA HEpeHOC HMOHOB
OMHApHOM COJIM B KaHaJe 00ECCOMBAHUS HIEKTPOIUATNZHOTO
ammapara. [Ipu 3TOM y4YHTHIBAIOTCS HapyIICHUE JJIEKTPOHEH-
TPaJIbHOCTH PAacTBOpa M (HOPMUPOBAHHE PACIIMPEHHOI 0obJia-
CTH MPOCTPAHCTBEHHOTO 3apsja MPH CBEPXIPEEIbHBIX TOKAX
B TaJIbBaHOCTaTH4YECKOM pexkuMme. OO0 aJeKBaTHOCTH MOCTPO-
SHHOH MOJIEJIM CBHJIETEIBbCTBYET XOPOIIee COBMasicHNe QU3u-
KO-XHMHYECKHX XapaKTEPUCTHK MEPEHOCa, PACCUUTAHHBIX II0
MOJIETISIM IS TaJIbBAHOCTATHYECKOTO M IMTOTCHIIHOCTATHIECKO-
IO PEKIMOB.

Obcyarcoenue u 3axaouenus. PazpaboTaHHass MOZENb MO3BO-
JsIeT MHTEPNPETHPOBAaTh PE3yIbTaThl SKCIIEPUMEHTAIBHBIX
UCCIeIOBaHNUI TepeHOCa HMOHOB B MEMOpaHHBIX CHCTEMax,
€CIM IaHHBIA IpoLecC IPOTEKaeT B TajbBaHOCTATUUCCKOM
pexume. HekoTopele 3MEeKTPOKMHETHUECKUE MPOLIECCH CBSI3a-
HBI C TIOSIBJICHUEM PaCIIUPEHHOHN 001aCTH POCTPAHCTBEHHOTO
3apsja IpU CBEpXIpeneNbHbIX Tokax. OnuceiBas popMHUpoBa-
HME YKa3aHHOM 00JacTH, MOXXHO BBIICHHTH, KaKUM 00pa3om
3aBUCAIINE OT Hee IPOIECCHl BIHMSAIOT HAa IEPEHOC MOHOB B

TaJIbBAHOCTATUICCKOM PEXKUME.
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Introduction. Membrane systems form the basis for electrodialysis machines, nano- and microfluidic devices,
which are used in water treatment, agricultural products (milk, wine, etc.) processing, performing chemical analysis,
and in other areas of activity [1-4]. In numerous mathematical models of mass transfer processes in membrane systems
for potentiostatic or potentiodynamic modes, the electrical mode is defined as a potential jump between two equipoten-
tial planes parallel to the membranes. A detailed review of the papers devoted to modeling for the potentiostatic mode is
presented in [5-7].

All the while, in the practice of electrodialysis, electrochemical characterization of membranes (chronopotenti-
ometry, impedansometry, etc.), the galvanostatic mode is often used, in which a constant average current density is
maintained at the interface. A huge amount of experimental data has been compiled about this mode. They must be in-
terpreted [8—10]. Studies in the mathematical modeling of the galvanostatic mode are conducted in several directions.

The first direction is the inverse problem method. As is clear from the name, this is about solving an inverse
problem: for the specified current density at the “solution — membrane” interface, the corresponding potential jump is
found, and then the problem for the potentiostatic mode is considered [11]. The low efficiency of this method is due to
the fact that its implementation requires multiple solutions to the problem in potentiostatic mode for one given value of
current density.

The second direction is the decomposition method. In this case, the system of Nernst — Planck — Poisson equa-
tions is replaced by a system of decomposition equations [12—16]. The assumption of a quasi-uniform charge distribu-
tion enables to obtain a model for the galvanostatic mode in the approximation of Ohm's law [17-20].

The third approach can be called the direct method. In this case, the equation replacing the Poisson equation is
derived for the current density in the desalination channel [21].

The galvanostatic mode can be described differently — by numerical solution to the Nernst — Planck — Poisson
equations for an electric potential with a special boundary condition that allows the current density to be set as a param-
eter specifying the electrical mode in the system. In [22, 23] for the one-dimensional case, the time derivative of the
electric potential gradient was determined as an explicit function of the current density. This distinguishes the authors’
approaches from potentiostatic models in which the difference of potentials is set.

This paper presents a stationary model of the ion transfer process in membrane systems for the galvanostatic
mode. It is based on the Nernst-Planck-Poisson equation system with the boundary condition that enables to establish
the current density as a parameter that sets the electric mode in the system. This solution is similar to [22, 23]. The dif-
ference is that the proposed model is two-dimensional and considers the variability of the current density along the
channel.

Materials and Methods. The desalting channel of the electrodialysis apparatus (EDA) formed by the anion-
exchange (AEM) and cation-exchange membranes (CEM), is taken to mean a membrane system. A binary electrolyte
solution is pumped through it at ¥ average rate.

In Fig. 1, x is a coordinate normal to the membrane surface varying from 0 (border with AEM) to / (border

with CEM); y is a tangential coordinate to the surface of the membrane varying from 0 (channel entrance) to / (channel
exit).
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Fig. 1. Scheme of EDA desalination channel. Concentration profiles of C cations (solid line) and C, anions (dot line),

V forced flow rate are shown.

(System of equations. Consider a two-dimensional stationary case of the system of equations describing the
transfer of a binary electrolyte with no chemical reactions [24]:

j. =—iz,.D,. C,V¢-D,VC,+CV, i=1,2, (1)
RT

—divj =0, i=1,2, (2)

€,8,A0 =-F(z,C, +z,C,), 3)

[=F(zj, +2,),)- )

Here, ]',., D,,z;and C, are, respectively, flux, diffusion coefficient, charge number, and molar concentration of the i-
th ion; ¢ is electric potential; V is flow rate of the electrolyte solution; g, is electric constant; ¢, is relative dielectric

constant of the electrolyte solution (assumed to be constant); 7 is current density; F is Faraday constant; R is gas con-
stant; T is absolute temperature; J,, /,, I, ¢, C, , C, are unknown functions of x and y coordinates.

The Nernst — Planck equations (1) describe the ion flux due to electromigration, diffusion, and convection; (2) is
the material balance equation in the stationary case; (3) is Poisson’s equation for the electric field potential; (4) is cur-
rent density in the electrolyte solution. We assume that the velocity distribution in the channel corresponds to the
Poiseuille flow [24]:

X X
V=0, V, =6V, Z[I_Zj ©)

To determine the unknown functions listed above, it is necessary to set boundary conditions for the system (1)
- (3). Let us consider two electrical modes: potentiostatic, when the potential jump at the system boundaries is set con-
stant, and galvanostatic, when the density of the current flowing through the interface is constant.

Boundary conditions for modeling potentiostatic mode. We assume that the surfaces of ion-exchange mem-
branes are equipotential. The system (1) - (4) includes the potential of the electric field only in the form of derivatives

with respect to the spatial coordinate. In this case, only Ad = ¢(%, ) — (0, y) potential jump is significant, where A¢ is
a known function, so we set, for example:
$(0,y)=0. (6)
Then
A(T) = const . (7
The conditions (6) and (7) determine the potentiostatic mode. Other boundary conditions are given below.

At the “AEM - solution” interface (x = 0), the concentration of coions (cations) is determined from the condi-
tion of continuity of their flow at the “membrane — solution” boundary considering the selective AEM properties [16]:.

1-7,)1.(0
[£+izlcl@j(o, ):( 2) x( ’y), (8)
Ox RT Ox z,FD,
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where T; (i = 1, 2) are effective numbers of transfer of counterions in the membrane (CEM and AEM, respectively); T;
are numbers close to 1, and also for 7, =11ideally selective membrane, and the condition (8) turns into the condition of

membrane impermeability for coions.

The concentration of counterions (anions) depends on the exchange capacity of the CEM, which can be specified
as:

CZ (07y): C2m :N

a

c,. ©)

Here, N, constant shows how many times this concentration differs from the concentration in the volume of the solution
[25].

At the “solution - CEM” (x = /) interface for ion concentrations, the conditions similar to those at the “AOM - solution”
(x = 0) border, are accepted:

C (h,y)z C,=N.C, (10)
1-T)I_(h

[a—cuizzcﬂj(h,y):—( L) (an
ox RT ox z,FD,

At the channel entrance (y = 0) a uniform distribution of ion concentrations is assumed:
C (x,0)=C,, i=12. (12)

The condition for the potential of the electric field is obtained from the equations (1) and (4) considering the
absence of current flow through 7, input (x, 0, £) = 0:

09(x,0) _ : RT2 2D, oC, (x,0) +2,D, oG, (x,0) . (13)
oy F(z; D, +z,D,)C, oy
At the channel exit (y = /), ions are freely carried by the solution flow:
mj)=@;£%y2QW%QVQ+QW=Q%J=LI (14)

The system (14) also means that the sum of the diffusion and migration tangential components of the anions

and cations flow is equal to 0:
oC, F
——’——ziCi@ (x,0)=0,i=12. (15)
oy RT oy
A “soft” condition is accepted for the potential, meaning that there are no sharp changes in the potential at the
channel exit:

[
@@ﬁ_o (16)

The boundary problem, which includes equations (1) - (4) and boundary conditions (6) - (16), simulates the po-
tentiostatic mode, and its control key condition is (7).

Boundary conditions for simulating the galvanostatic mode. Under the simulation of the galvanostatic mode,
the condition (6) remains, and (7) should be replaced by the condition related to the specified value of i, average cur-

rent density at the “solution — CEM” interface (x =4 ).
To derive such a boundary condition, we substitute the relations (1) into (4) and express the gradient of the
electric field potential:

Vo= RT

“FEDC ey T FEDVE +2DYC) - FaC+ 5,0, (17)
1711 27722

Assuming x = A in (17), we obtain the relation that connects the gradient of the electric potential with the given
value of the current density at the boundary, that is, the boundary condition at the “solution — CEM” interface:
oC, ocC,
__RT Ix +FZ1D1 E"PFZZDZ E

F 22D,C, +z.D,C,

(h,y). (18)

In this case, /_ current density must satisfy the condition:

17 _
L=, (19)
0
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The mathematical model of the galvanostatic mode consists of the system of equations (1) - (4). The boundary
conditions (18) and (19) replace the condition (7). The other boundary conditions coincide with those for the potenti-
ostatic mode.

The potential jump in the galvanostatic mode is a calculated value.

Transformation of the boundary conditions for simulating the galvanostatic mode. The condition (19) is incon-
venient for a numerical solution, since it contains an integral. One of this condition conversion options is given below.

In the stationary case, the current density is a solenoidal vector. Indeed, if we multiply (2) by z,and sum up,

then div/ = 0 . Consequently, there is such 1 function that

M_p, Mo (20)
ox 7 oy

Using m function, the conditions (18) and (19) are rewritten as follows:

; o7l g—” +Fz,D, —aacl + Fz,D, 7666’2
X X
_(p(h’ )___2 4 2 2 (h,y), (21
ox F z,D,C, +z,D,C,

1 1 1 ,

10y == [ D yydy = =m0y =1, . (22)

Iy [y 0y /
The equation (22) can be rewritten as:

N, ) —n(h,0) =—i,l . (23)

To close the expression system, it is necessary to obtain an equation for n function. To this end, as in [15, 16],

we inject a linear differential operator, which is a vortex function (rotor) in the two-dimensional case, for ¥ arbitrary

two-dimensional vector:

- ow, ow
r(Ww) = L= (24)
ox Oy
It is easy to check that:
1) »(Vu) =0 for any u smooth function;
2) r(uW) = (Vu, 1/17)1 +ur(W) for any u smooth function and any 7 smooth vector .
Here, (Vu, I/Iﬂ/)1 = a—uVK —6—qu is skew-symmetric scalar product of Vu and W vectors, moreover, (d, a), =0is for

v

any a vector.
Applying (24) to the equation for current density (4), we obtain:

r(I) = Fz,r(j)+ Fz,r(Jy)- (25)

Using the formula of flows (1), we obtain the ratio:
r(j) = —%ziD,.r(ClVd)) -Dr(VC)+r(CV), i=12. (26)
Hence, considering the properties of » operator:

5 F , =
rG)= =27 aD, (VC. Vo), +(VC.7) +Cr(7), i=1,2. @27)

..ol
Considering (27) and (/) = a—} —% = An, the equation (25) can be written as:
x oy

2
An :_F_. 212D1%+Z§D2% 6_@_ 212D1%+222D26i 6_(p +
RT Ox ox ) oy Oy Oy ) ox (28)
ov,
+F 21%+22ai V - F 21%+22ai V.+F (zlc1 +22c2) —y—% )
ox ox )’ oy oy ) ox oy
It follows from (28) and (20) that n function is determined up to a constant, therefore we can assume:
n(h,0)=0. (29)

Then we obtain from (23)
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n(h 1) =il (30)
The conditions (29) and (30) are boundary for m function.

Mathematical model for the galvanostatic mode in a dimensionless form. For a numerical study of boundary
value problems, it is convenient to go to a dimensionless form. So we can simplify the equations and find out the actual
number and set of parameters that determine the system behavior. Dimensionless variables describe a class of similar
processes characterized by the same value of dimensionless numbers.

Characteristic values describing the problem. When simulating mass transfer processes in the EDA desalina-
tion chamber, a number of characteristic values are taken:

- for spatial coordinates — 4 intermembrane distance;

- for ion concentrations — C; volume concentration of the electrolyte;
- for speed — ¥, average speed of the forced flow;
- for diffusion coefficients — D =D D, (z, -z ,) / (D, z —D, z ,) diffusion coefficient of the electrolyte;
- for electric potential — @, = RT/F thermal potential;
- for current density — iy = FDC, /h value (analogue of the limiting density of diffusion current);
- for ion flow — j, = DC, /h diffusion flow.
Transition formulas. We translate the equations into a dimensionless form through the following relations ( ()

index denotes the dimensionless variants of quantities):

RO @ Y w :L & :K c® :Q i=12
h h h V, C, 31)
u (I) T(u l - u n T(u 1 T, u D,
o =" I1YV==0In"=—e jY=—7i=12 D" =L
by Iy FDC, 1 Jo l D
The system of equations in a dimensionless form has the form ( (1) index is omitted for simplicity):
Ji ==z,D,C,Vo—D,VC,+PeCV, i=1,2, (32)
~divj =0, i=12, (33)
eAp=—(z,C, +2z,C,), (34)
An=- [szl %, p, aﬁj@— 2p %, op % |00,
ox ox ) oy oy dy )ox (35)
ov, or
+Pe(zl %—i-zz %jV —Pe| z, %+zzai Vo +Pe(zic,+2,0,)| ————1|,
Ox ox )7 oy oy ox oy
[ =2z} +2,,. (36)

The system of equations (29) - (35) contains two dimensionless numbers: the Peclet number Pe =V h/D and
e=¢,gRT / (C,/*F?) . The physical meaning of & parameter is that it is double square of dimensionless Debye length -
2
I,: €=2(1,/h) [5].
Estimation of the parameter values shows that under natural conditions for electrodialysis, the Peclet number
has 10> —10° order, € number has 10" — 1077 order, that is, it can be considered a small parameter.

For computational convenience, we transform the system of equations through plugging the flux density (32)
in the equations (33) and (36):

div(~z,D,C,Vo-D,VC, +PeCV)=0, i=1,2, (37)

[ =Y z(-2D,CV$~D,VC,+PeCF). (38)

2
1
=1

Thus, the system of equations contains the following unknown x, y functions: C, C,,4, I, I, . The fields of
C,, C, concentrations and ¢ potential are determined by solution to the equations (37), (34), respectively. 7, [, current

density components are calculated using (38). Speed distribution (5) in dimensionless form:
V.=0, Vy:6x(1—x). 39
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The presence of € small parameter in the Poisson equation (34) means that the boundary problem is singularly
perturbed. This significantly complicates its numerical solution, since such problems are stiff [26]. ¢ potential of the
electric field and C,, C, ion concentrations change very quickly in a narrow boundary layer whose thickness is equal to

I, Debye length [5].
To solve this problem, it is advisable to compact the computational grid in the boundary layer and use special

methods for solving stiff problems [26].
Boundary conditions in dimensionless form. At the “AEM — solution” interface (x = 0):

ac, ) (1-7,)1,(0, )
—+z(C =L ()’ = - 40
[ ox “ lﬁx)( y) z,D, (40)
G, (0,y)=N,, (41)
¢(0,7)=0, (42)
o
—(0,y)=0. 43
ax( ) (43)
At the “solution — CEM” interface (x = 1):
C (l,y) =N, (44)
oc, o9 (1-7)7(Ly)
+2,C,— |(L,y) = , 45
[ Z Zaxj( J’) -.D, (45)
—a—n+zD %+Z D %G,
11 22
B yy=] 2O Oy, (46)
ox ZIZDICl +Z§D2C2
o
— (1L y)=0. 47
= (1Y) (47)
At the channel entrance ( y = 0):
C (x,0)=1, i=12, (48)
a9(x,0) _ : 1 : (21D1£+22D28&j(x’0)’ (49)
Oy z;D +z,D, oy Oy
n(x,0)=0. (50)
At the channel exit (y =1/):
—g—ziq@ (x,l)=0,i=1,2, 51
oy oy
Z—¢(x,l) -0, (52)
Y
n(x,l)=-i,l, i, =const. (53)

After numerical calculation of the system (34), (35), (37) - (53), Ag potential jump in the desalination channel

is determined by the formula:

Ap=1[o(Ly)d. (54)

The numerical solution is found by the finite element method using the Comsol Multiphysics package on an
uneven computational grid (the density of grid elements is increased at the “solution — membrane” boundaries) [27].

Research Results. The calculations are performed for e = 1,9-107, Pe = 2355, which corresponds to the fol-

lowing values of the system parameters:

- input concentration of the electrolyte solution of NaCl: Cy = 0.1 mol/m’;

- temperature: 7= 298 K

- diffusion coefficients of cations and anions, respectively: D; = 1.33- 107 mz/s, D,=2.05" 107 mz/s;

- numbers of counterions transfer in the membranes: 7, =0.972, T, = 1;

- ion charge numbers: z; = 1, z, =—1;

- ratio of the counterions concentration at the boundary with the membranes to its value at the channel en-
trance: N.=N,=1;
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- channel width: /=107 m;

- channel length: /=210 m;

- rate of the solution pumping: V=3,8:10" m/s.

Fig. 2 shows the fields of C; u C, concentrations, ¢ potential and 1 functions calculated at i,, =1,5i;,, current
density, where i, is the limiting current density determined by the Leveque formula (in dimensionless form) [28]:

1 th 1/3
i = 1,47[ 0] -0,2]. (55)
T 1

ID

1

Here, ¢, = 0.395 is kation transport number in the solution [9].
[

6)

Fig. 2. Concentration fields of cations C; (@) and anions C, (b), ¢ potential (c) and n function (d). Model calculation for
galvanostatic mode at i,, =1.5 j,  current density.
The forced flow acts in the channel, therefore in the areas near the membranes, the depletion of the ion concen-
tration increases with distance from the channel entrance (along the direction tangential to the membrane surfaces). Ac-
cordingly, the thickness of the expanded space-charge region increases along the channel (Fig. 3).
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Fig. 3. Results of numerical calculation based on the model for galvanostatic (solid lines) and potentiostatic (dot lines) modes at
i, =1,5i,  current density in cross sections y = 0,1/ (1), y=0,4/ (2), y=0,9/ (3): C, and C, concentration profiles (a); en-

larged fragment of fig. 3, a (b); p = z,C, + z,C, space charge density (c)

The volt-ampere characteristic (VAC, curve 1 in Fig. 4) is calculated on the basis of the galvanostatic model.

In this case, the specified current density changed: i,, = 0; 0,0057,,,; ...; 1,5i,,,.

a0 -

| 1 = om 22 e 3
30 - -
&
20 -
10
T T T T T T T T T T T T T T T T T T T 1
0 10 20 30 40
Ag
Fig. 4. VACs calculated on the models for galvanostatic (1) and potentiostatic (2) modes; iy, limiting current density (3) determined
by formula (55)

The limiting current density is determined by the point of intersection of the tangents to the VAC in the initial
part and on the inclined plateau [5]. Here it coincides with i, value estimated using the approximate Leveque formula
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(55). Besides, the VAC was calculated on the basis of the potentiostatic model under a change in the potential jump A
=0; 0.4; ...; 40 (curve 2 in Fig. 4). As Fig. 4 shows, VAC 1 and 2 are congruent. Thus, there is a unique correspondence
to each potential jump of a certain current density, and vice versa.

Fig. 3 and 4 demonstrate a fairly good agreement of various physicochemical transport characteristics calculat-
ed on the models for galvanostatic and potentiostatic modes. This proves the adequacy of the model of the transport in
galvanostatic mode built by the authors.

The computational costs of the proposed model were estimated as follows. The time spent on solving boundary
value problems for the galvanostatic and potentiostatic modes was recorded. Herewith, the specified accuracy values of
the calculations and the system parameters were the same, andi,, =1,5i, . Then time indicators were compared. Thus,

it has been found that the calculation on the galvanostatic model requires 1.6 times more time. This is due to the fact
that:

- galvanostatic model contains an additional equation for determining the current density distribution;

- for the potential at x = 1boundary, the condition of the second kind (46) is established.

Complex potential of the electro-membrane system for the galvanostatic mode. In [25], a generalization of the
impedance of an electrochemical system using m function introduced under the electroneutrality conditions was pro-

posed. A similar generalization is acceptable in this case. Note that when using electrochemical impedance, an object is
considered only as a “black box”, and its intrinsic properties are determined indirectly. The results obtained above ena-
ble to introduce the concept of a complex potential of the electro-membrane system: P =¢+i-mn. Complex potential is

a coordinate function of any point inside the object, therefore, unlike the electrochemical impedance, it allows us to
explore the intrinsic properties of the object.

Discussion and Conclusions. A new technique of mathematical simulation of the stationary process of mass
transfer in the galvanostatic mode for membrane systems is described. In this case, the two-dimensional case is consid-
ered with the use of a special boundary condition that enables to specify current density in the system. The equations for
the current electric function are presented. The numerical solution results for potentiostatic and galvanostatic models are
in good agreement. This shows the adequacy of the proposed transport model in the galvanostatic mode.

The developed model makes it possible to interpret the experimental studies results of the ion transfer in mem-
brane systems if this process proceeds in the galvanostatic mode. Some electrokinetic processes are associated with the
appearance of a dilated space-charge region under over-limiting currents. The description of the formation of this region
allows us to find out how the processes dependent on it affect the ion transfer in the galvanostatic mode.
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