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Introduction. The dynamic interaction features in mechanical
oscillating systems, whose structure includes additional
couplings, are considered. In practice, such cases occur when
using various optional mechanisms and motion translation
devices under the formation of technical objects. The study
objective is to develop a method for constructing mathematical
models in the problems of dynamics of the mechanical
oscillating systems with optional devices and features in the
system of external disturbing factors.

Materials and Methods. The techniques used to study
properties of the systems and the dynamic effects are based on
the ideas of structural mathematical modeling. It is believed
that the mechanical oscillating system, considered as a design
model of a technical object, can be compared to the
dynamically equivalent automatic control system. The
mathematical apparatus of the automatic control theory is
used.

Research Results. A method for constructing mathematical
models is developed. The essential analytical relations for
plotting oscillating systems are obtained, which enable to form
a methodological basis for the integral estimation and
comparative analysis of the initial system properties in various
dynamic states. Dynamic properties of the two-degree-of-
freedom systems within the framework of the computer
simulation are investigated. The implementability of dynamic
oscillation damping mode simultaneously in two coordinates
with the joint action of two in-phase kinematic perturbations in
the mechanical oscillating systems is shown.

Discussion and Conclusions. The possibilities of new dynamic

effects, which are associated with the change in the system

" The research is done within the frame of independent R&D.

Beeoenue. PaccMaTpuBalOTCS OCOOCHHOCTH JIUHAMUYECKUX
B3aMMOJICHCTBHI B MEXaHHYECKUX KOJIEOATEIBHBIX CHCTEMAX,
B CTPYKTYypE€ KOTOPBIX HMEIOTCS JIOTOJHUTEIbHBIE CBS3H.
[lpakTH4yeckd  Takue  CHTYalldd  BO3HHUKAIOT  [PH
UCIONB30BAHMH B (POPMUPOBAHMU TEXHUYECKUX OOBEKTOB

Pa3JIMYHBIX NOMNOJHUTCIbHBIX MEXaHHU3MOB U yCTpOﬁCTB JUIsL

npeoOpa3oBaHus JIBYOKCHHS. Ilens HCCIIEOBAHUS
3aKJTI0YACTCS B paspaboTke MeToaa TOCTPOCHUS
MaTeMaTHYECKHUX MoJeIIei B 3a7auax MHAMHKA

MEXaHUYECKUX KOIeOaTeNbHBIX CHCTEM C JIOMOIHHTEIbHBIMH
YCTpOWCTBAMM M OCOOCHHOCTSIMH B CHCTEME BHEIIHHX
BO3MYIIAIOMIKX (HAKTOPOB.

Memoobi, ncionb3yeMble ISl NCCIEAO0BAHHS CBOWCTB CHCTEM
1 U3YYCHHS AUHAMHYECKHX 3((EKTOB, OCHOBAHBI HA HIEAX
CTPYKTYpPHOTO MaTeMaTHIEeCKOTO MOJIETTMPOBAHHSI.
[Nonaraercs, 4yTo MexXaHMYECKOW KoieOaTenbHOU CcHCTEME,
paccmatpuBaeMO B KaueCTBE  pacueTHOM  CXEMbI
TEXHUYECKOTO 00BEKTa, MOKHO CONOCTABUThH IKBHBAICHTHYIO
B JMHAMHUYECKOM OTHOUIEHHH CHCTEMY aBTOMAaTHIECKOTO
ynpasnenus. Mcnone3yeTcs MaTeMaTHYECKUi anmapar Teopuu
ABTOMAaTHUYECKOTO YIPaBICHUSL.

Pesynomamer ucciedosanus. PazpaboTaH METOA HMOCTPOEHHS
MaTeMaTHYeCKHX  MOJIEIIeH. HEO0OXO0IMMBbIe
AQHAINTUYECKHE COOTHOIICHUS OIS IOCTPOEHHS YacTOTHBIX
JHarpamMm KoJIe0aTeIbHBIX MO3BOJISIONINE
chopMUpOBaTh OCHOBY JUTSt

WHTETpaJIbHOW OLIEHKM M CPABHUTEIHHOTO aHalIM3a CBOMCTB

[omyueHst

CHUCTEM,
METOI0JIOTMIECKYIO

HCXOJHBIX CHCTEM B PA3JIMYHBIX JMHAMUYCCKHUX COCTOSHUSIX.
IIpoBemeHbI UCCIENOBAHMS IMHAMUYECKUX CBOWCTB CHCTEM C
IBYMs CTENEHsSMH CBOOOABI B paMKaX BBIYHCIUTEILHOTO
MojienupoBadus. JlOKa3aHbl BO3MOXKHOCTH pealH3alid B
MEXaHHYECKUX KosebaTeIbHbIX CHCTEMax  PEKHMOB
JMHAMHYECKOTO TalleHNs] KoJeOaHUH OTHOBPEMEHHO I10 IBYM
KOOpJMHATaM IPU COBMECTHOM EHCTBHH IBYX CHH(A3HBIX
KMHEMaTHYECKUX BO3MYICHHIH.
Obcysicoenue U 3aKMOUEHUs.. OTMedYeHbEl BO3MOXKHOCTH
NPOSIBICHUST HOBBIX JTHHAMHYECKHX 3((EKTOB, KOTOpHIE
CTPYKTYPBI
OTpeIeieHHBIX  (opMax TUHAMHUYECKHX B3aWMOJIEHCTBHIA.

CBsI3aHbI C HU3MCHCHUEM CHCTCMBI npu
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structure under certain forms of dynamic interactions, are
noted. The study is of interest to experts in machine dynamics,

robotics, mechatronics, nano and mesomechanics.
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Introduction. Dynamic oscillation damping (DOD) is widely used in practice to change the state of technical
objects and the local action on the forms of component interaction of mechanical oscillatory systems. In the papers [1—
3], the features of the approaches to the implementation of the dynamic oscillation damping modes were considered,
options of the design and engineering solutions and calculation technique of the system parameters were proposed.

A variety of dynamic tasks predetermines a wide variability of the proposed solutions, within the framework of
which the dynamic features of the protected objects, the conditions of external disturbances of the original system and
the design and engineering modes of the dynamic oscillation damping are considered [4-8].

DOD is used in the tasks of protecting instrumentation systems and tooling [9, 10]. However, some aspects of
evaluating the dynamic properties of vibration protection systems have not obtained a proper level and detail of
representations in the formulation of research tasks and parameter analysis for dynamic absorbers. This may be due to
the introduction and use of additional links, considering the characteristics of external influences, as well as the effect of
the simultaneous joint action of several external disturbing factors.

In this paper, we develop a method of constructing mathematical models and the formation of dynamic
oscillation damping effects in the chain mechanical oscillating two-degrees-of-freedom systems.

I. Background. The original system is shown in Fig. 1. It represents two inertia members (m, and m,), which
are interconnected by the elastic elements with rigidities (k;, k», k3) and additional links in the form of motion
translation devices (MTD) with reduced masses (L;, L,, L3). The system performs small oscillations under the action of
external in-phase harmonic effects. Resistant forces are not considered.

" ) Yo ™
'.
m, k2 m,
Q @) Q Q

Fig. 1. Flowsheet of technical object in form of two-degrees-of-freedom lumped system
To describe the motion, the coordinate system (yy, y») is used in a fixed basis. Suppose that the kinetic and
potential energies of the system are determined by the following expressions:

1 ., 1 ., 1 . 1 .. 1 ..
T :Emlyf +Em2y22 +EL|(y1 _Zl)2 +5L2(y2 _yl)2 +§L3(y2 _Zz)z > (1)

1 1 1
H:Ekl(yl_Zl)z+Ekz(yz_y1)2+5k3(yz_zz)z' (2)

The set of differential equations of the system motion in the time domain is obtained on the basis of the
formalism of the Lagrange equations of second kind, and it has the form:

(m +L +L)y, +yk+k)-y,L —ky =Lz +kz +0, 3)

(m,+L,+L)y,+y,(k, +k)-V L, —ky =LZ +kz,+0,. 4)
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After the Laplace transformations under zero-initial conditions [11], the equation set (3)—(4) can be represented
by a structural mathematical model in the form of a circuit that is dynamically equivalent to the automatic control
system [12, 13] shown in Fig.2.

L,p* +k,
0, Ql
1 3 1
T\(m,+LI+L2)pz+k,+k2 L.p +k T\(m2+L2+L3)pz+k2+k3 7,
L1p2+k1<—fl i L3p2+k3<—22

Fig. 2. Structural mathematical model of mechanical system shown in Fig. 1

II. Mathematical Models Development. The type of transfer functions depends on the nature of external

disturbances, that is, on whether the disturbances are force (Q and QZ) or kinematic ( z, and z, ). Further on, suppose

that the force external actions (Ql and Qz ) have connectivity determined by the ratio
Qz =a- Q] ) (5 )
where a is coefficient of connectivity of external in-phase harmonic actions.
For kinematic effects ( z, and z,), it is assumed that
Ez = B ' El > (6)
where B is coefficient of connectivity of kinematic disturbances.

The connectivity coefficients (o and ) can have positive, negative, and zero values. Special cases of the effect
of external disturbances can be considered through zeroing o and B properly.

1. The case of joint force perturbation at § # 0 (Q =0 and QZ =0) is considered. The transfer functions of the

system in this case take the form:
Y _(Lp +k)(m, + L+ L)p" +k, +k]+B(Lp* +k)(L,p* +k,)

W1 = —-— 7
=z ) @
y Lp* +k)(m +L +L)p* +k +k]1+(Lp° +k)L,p* +k,
V[/zgp):¥=ﬁ( LD+ K)I( )P I+ (Lp +k)Lp" +k) )
0-00  Z, A(p)
where
A(p)=[(m +L +L)p* +k +k,]-[(m,+L,+L)p" +k,+k]-(L,p* +k,)’ )

is a system frequency standard equation.

When considering the transfer functions (7), (8), it is assumed that the dynamic mode of oscillation damping is
determined by the conditions for zeroing numerators (7), (8). Coordinate may cause two frequencies of dynamic
oscillation damping. Along the coordinate (,), the occurrence of two DOD frequencies is possible. Along the

coordinate (3, ), it is also possible to implement two DOD modes due to the virtual existence of roots of the biquadratic

frequency equation.
Assuming that the variable factor is f (coefficient of connectivity), a frequency diagram can be developed
considering the following frequencies:

1. partial frequencies:

k +k
n=——2 (10)
m+L+L,
k,+k
n=—>=———: (11)
m,+L,+L,
2. critical frequency of interpartial communication:
k
W=7 (12)

3. DOD frequencies determined from the solution of equations in ¥, coordinate:
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p4[L1(m2 +L2 +L3)+BL2L3]+p2[L1(k2 +k3)+k1(m2 +L2 +L3)+B(k3L2 +k2L3)]+ (13)
+k (k, + k,)+PBk,k, =0;

and in y, coordinate:
pA[BLz(ml +L1 +Lz)+L|L2]+pZ[ﬁL3(kl +kz)+ﬁk3(m1 +L1 +Lz)+k1Lz +kzL1]+ (14)
+Bk,(k + k) +kk, =0.
To construct a frequency diagram, the following parameters of the model problem are accepted: m; = 10 kg; m,
=10 kg; k; = 5000 N/m; k, = 10000 N/m; k3 = 15000 N/m; L, =5 kg; L, = 10 kg; L; = 10 kg.
The modes of dynamic oscillation damping in ¥, and ¥, coordinates are determined not only by the parameters

of elastic inertia members, but also by the specificities of the external actions formation, in particular, by the
connectivity value.

From the equations (13), (14), corresponding DOD frequencies can be found showing that two dynamic
oscillation damping frequencies can be found in each of y, and Y, coordinates. The frequencies values, as it follows
from (13) - (14), depend on the connectivity coefficient of kinematic disturbances (). Fig. 3 shows the system
frequency diagram.

o'(P)1 1/sec?

o @ 1200/ —

tf  tE)_~

)
)
e,

o, .(B) / N . (B) ' (B)

0 ] 2

(]
=
»

Fig.3. System frequency diagram shown in Fig. 1

In the diagram, the solid line ( ) corresponds to ;. (B) dependency graph. Since the frequency equations

(13) - (14) are biquadratic, each of the equations has two roots. This is displayed in two graphs. For @ . (B) graph of
dependences, the solid line is marked with special symbols (xxx), and for the second root, respectively (coo°); @/ .. (B)

dependency graphs are touching in t. (E). Again, ;. (B) dependency graphs are represented by dashed lines (———).

2
2 qmn

©; ..(B) dependency graph consists of two non-contiguous blocks. Mutual intersections of ®; . (B)and®;, (B)

dependency diagrams occur in tt. (1), (2), (3). Each of the considered points determines the amplitude-frequency
characteristics associated with the DOD modes features.

In the usual formulation of studying the dynamic oscillation damping, that is, under the action of a single
perturbing factor correlated with a certain coordinate, one DOD frequency is determined in the two-degrees-of-freedom
system. Such a frequency is determined by the partial frequency values of that system block, the movement of which
demonstrates the dynamic oscillation damping (that is, “zeroing” the value of the corresponding coordinate).

Under the action of several simultaneous disturbances, it becomes possible to implement two DOD modes in
each of the coordinates for the system as a whole. When additional links are introduced into the system, in particular, on
the basis of the MTD, specific properties occur when the dynamic oscillation damping becomes possible simultaneously
in two coordinates.

II1. Comparative analysis of dynamic properties of the systems in the DOD modes.

1. Fig. 4 shows frequency-response characteristics (FRC) of the system, which manifest themselves under the

conditions corresponding to the intersection of @ (B)and . (B)graphs in t. (1) in Fig. 3. The intersection

1 wn 2 un
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) in Fig. 4 corresponds to %(m) dependency graph; the dotted

Z

corresponds to the case when § = 0. The solid line (

line (v++-+ ) corresponds to %(m) graph. The parameters of the system as a whole are also shown in Fig. 4.

1

b (®). 2 (®)

Fig. 4. Frequency-response characteristics of the system for parameters determined by t. in Fig.3

In t. (1) in Fig. 4, the frequency of the DOD mode is determined when y, and Yy,coordinate values are

simultaneously “zeroed out”.

It is possible to implement another DOD mode in y, coordinate corresponding to %(0)) graph in t. (2) (Fig. 4). At

Z

this, the FRC reflect the properties of two-degrees-of-freedom systems. As follows from the FRC, it is possible to
implement two DOD modes in tt. (1) and (2) in y, coordinate. For the FRC corresponding to y, coordinate, it is also

possible to create two DOD modes at the double intersection of %(0)) graph by the abscissa line after ]
zZ

1
eigenfrequency. Thus, with non-degenerate FRC for each of y and y, coordinates, two DOD modes can be

implemented; while at one of the frequencies, there is simultaneous DOD in two coordinates.

. 1 Lo . .
2. Fig. 5 shows the system FRC atf} = —3 from which it follows that it becomes possible to restructure the

system when one degree of freedom degrades at certain parameter ratios. In this case, in each of y and ¥, coordinates
(points (1) and (2) in Fig. 5), it is possible to implement the DOD modes, but this occurs when the system “degrades”;
under the conditions when FRC ® — o acquire limiting properties.

Rk (), 2 ()

1
Fig. 5. Frequency-response characteristics of the system at 3 = —5 corresponding to t. (3) in Fig.3

. 1 . - .
3. Fig. 6 shows the system FRC atf3 = Y] which corresponds to t. (2) in Fig. 3. For the given state of the system

determined by the parameter values, a structural transformation of the system is also characteristic; the system
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“degrades” to the status of a one-degree-of-freedom system. For the system on a whole, in each of the coordinates, the
DOD implementation is possible, which corresponds to t. (1) and t. (2) in the graphs shown in Fig. 6.

; y,
ol (®), ()

M1c06

1
Fig. 6. Frequency-response characteristics of the system at 3 = 3—4 corresponding to t. (2) in Fig. 3
In the high frequency area (0 — ), the system acquires limiting properties; at this, in comparison with the
. 1 o . L . . 1
previous example, when 3 = 5 the oscillation amplitudes ratio will have a different sign at = Eve Consequently,

changes in system parameters under the simultaneous action of two forces can change drastically the dynamic
properties of the mechanical oscillatory systems.

Conclusion. The simultaneous action of external disturbances in the presence of additional links in the system,
implemented by the MTD under the kinematic disturbance, can have a great impact on the change in the dynamic
properties of the mechanical oscillatory systems with several degrees of freedom. So, the authors in this paper have
obtained the following research results:

1. A technique of constructing mathematical models based on the use of methods of structural mathematical
simulation, in which the mechanical oscillatory system is compared to the dynamically equivalent automatic control
system, is proposed;

2. A technique for constructing frequency diagrams that allows for the integral estimation of the
interdependence of frequency characteristics is proposed for the case when the system parameters and their perturbation
conditions for various power factors change;

3. The analytical conditions for the implementation of the DOD modes simultaneously in two coordinates
under the action of two interlinked disturbing factors are obtained;

4. The possibilities to control the structural states when the original mechanical oscillatory system can change
the number of degrees of freedom and the system of its dynamic properties are proposed.
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