Vestnik of Don State Technical University. 2019. Vol. 19, no. 1, pp. 86-92. ISSN 1992-5980 eISSN 1992-6006
Becmnuk /lonckozo zocyoapcmeennozo mexnuueckozo ynueepcumema. 2019. T. 19, Ne 1. C. 86-92. ISSN 1992-5980 eISSN 1992-6006

NHOPOPMATHUKA, BBIYUCJIUTEJIBHAA
TEXHUKA U YITPABJIEHUE
INFORMATION TECHNOLOGY, COMPUTER
SCIENCE, AND MANAGEMENT

UDC 519.683.4 https://doi.org/10.23947/1992-5980-2019-19-1-86-92

Arithmetic coder optimization for compressing images obtained through remote probing of
water bodies ™

R. V. Arzumanyanl**
! Institute of Computer Technology and Information Security, Southern Federal University, Taganrog, Russian Federation

Ol'[Tl/IMPBaIIl/Iﬂ apl/l(l)MeTl/I‘leCKOFO Koaepa 1Jisl CkaTust moﬁpameﬂm‘i, MOJYYE€HHBIX ITPpHA
*
AUCTAHIUOHHOM 30HAUPOBAHUHU BOJAHBIX 00bEKTOB

1 k%
P. B. Apsymansin
! IHCTHTYT KOMIBIOTEPHBIX TEXHOIOTH M HH(pOPMALHOHHOM Ge3omacHocTr FOxHoro denepansHoro yuusepcurera, r. Tarampor,
Poccuiickas @enepanys

Introduction. The fast program algorithm of arithmetic coding Bgedenue. TlpemyiokeHHBIA B CTaTbe OBICTPBIA MPOTPAMMHBIA

proposed in the paper is for the compression of digital images. It is aNropUTM apH(METHYECKOrO KOAMPOBAHMS TPC/HASHAYCH st
shown how the complexity of the arithmetic coder algorithm de- CxaTHi WAppoBbX msobpaxernti. Ilokasato, kaxuM 0OpasoM
. CJIO’KHOCTb aJITOPUTMA apU(METHUECKOrO KOJIepa 3aBUCHT OT KpHU-
pends on the complexity measures (the input size is not consid-

TEpUEB CJIOKHOCTH (IIPU 3TOM pa3Mep BXOJa HE ydHThiBaercs). B

ered). In the course of work, the most computationally complex TpotIecce paGoThI OMPEEHBI HAHOOMEE BEMHCTHTENHHO CIOK-

parts of the arithmetic coder algorithm are determined. Perfor- HBIe YacTH aIropuTMa apu(pMeTHdecKoro Kkoziepa. BrimonmmeHa
mance optimization of their software implementation is carried ONTUMM3ALS IPOU3BOAUTENIBHOCTA HMX IPOrPaMMHOHN peausa-
out. Codecs with the new algorithm compress photo and video uH.

records obtained through the remote probing of water bodies oEner © s AR IR 25 SR M esns

PasHULIbL d)OTO- 1 BUACOMATCpHAIbl, TOJTYYCHHBIC IIPU AUCTAHIIN-

without frame-to-frame difference.
OHHOM 30HIMPOBAHNH BOJHBIX OOBEKTOB.

Materials and Methods. In the presented paper, a selection of Mamepuanst u memodvl. B peacTaBICHHON HayqHO# paboTe Hc-
satellite images of the Azov Sea area was used. At this, the soft- TOJTb30BaHa TI0J00PKA CITyTHUKOBEIX CHMMKOB aKBaTOPMH A30B-
ware algorithm of the arithmetic coder was optimized; a theoreti- ckoro mMopst. IIpu 3TOM ONTHMM3HMPOBAH MPOrPAMMHBIA AITOPUTM

cal study was conducted; and a computational experiment was ApUPMETHHECKOTO KOJIEpa, MPOBE/ICHO TEOPETHHECKOS HCCTIEI0BA-
HIIE, BHITOTHEH BEIYHCIMTEIBHBIA SKCIIEPHMEHT.
performed.

Pesymomamst uccnedosanus. YBEIMUeHA TPOU3BOTHTETBHOCTD

Research Results. The performance of the software implementa- .
MPOrPaMMHOI peanu3aiiy apuhMETHIECKOro Koziepa Ha puMepe

tion of the arithmetic coder is increased by the example of the BueoKozicka VP9, JUist M3MepeH s BPeMEHH BBITIONHEHHS! TIPOH3-
VP9 video codec. Numerous launches of reference and modified BEJICHBI MHOTOYKCIICHHBIC 3aIyCKH 3TAIOHHOTO W MOTH(MHIMPO-
codecs were made to measure the runtime. Comparison of the BAHHOTO KO/EKOB. CpaBHEHHE CPEIHEr0 BPEMEHH HX HMCTIONHEHHUS

TOKa3aJI0, YTO MPOHU3BOUTENHHOCTD MOU(UIIMPOBAHHOTO KOJEKa

average time of their execution showed that the modified codec
. . . Ha 521 % Benue. IIpupoct oOLIEH IPOU3BOAUTENLHOCTH
performance is 5.21% higher. The overall performance improve- ’ pip H P A e

apudMeTHIecKoro IeKOIMPOBaHus cocTaBmiI 7,33 Y.

. . . o
ment for arithmetic decoding was 7.33%. Obcyoicoenue u 3axmoueHusi. YBEIIMUYEHHE CKOPOCTH pabOThI HO-

- Discussion and Conclusions. Increase in the speed of the latest BEHIIINX alrOPHTMOB CXATHS IH(MPOBHIX (HOTO- I BHICOM300paKe-

3 digital photo and video image compression algorithms allows HUIA TI03BOJISIET MPHUMEHSTh UX Ha MOOWIBHBIX BBIYHCIMTEIBHBIX

g them to be used on mobile computing platforms, also as part of TaThopMax, B TOM YHCIEC B COCTABE GOPTOBON MEKTPOHMKH Gec-

_8 the onboard electronics of unmanned aerial vehicles. The theoreti- OHTOTHEIX JICTATEILAEIX. AMEPATOB, TEOpETHHECKHE: Pe3yILTATEI
f . . JAHHOH PabOTBI PACIIMPSIOT METOAB! aHAIN3a CJIOXHOCTH ajro-

] cal results of this work extend tools of the average-case complexi-

= putMa B cpefHeM cirydae. OHHM MOTYT HCTIOJIb30BAThCS B CUTYALHH,

% ty analysis of the algorithm. They can be used in case where the KOIJIA KOJHHECTRO [IATOB AFOPHTMA 3ABHCHT HE TOIHKO OT pasMe-

2z number of algorithm steps depends not only on the input size, but OB BXOJ[a, HO M OT HEM3MEPUMbIX KPHTEpHEB (HAIPHMEp, OT CXe-

~

o also on non-measurable criteria (for example, on the common MBI OOparieHus K o0Iiel ONepaTHBHON MaMATH CO CTOPOHBI T1a-

=

+~

= RAM access scheme from parallel processors). PAJUICIIBHBIX IPOLIECCOPOB).

" The research is done within the frame of RSF project no. 17-11-01286.
86 " E-mail: roman.arzum@gmail.com
" PaGoTa BHINONHEHA B paMKaX npoekta PHD 17-11-01286.

Arzumanyan R. V. Arithmetic coder optimization for compressing images obtained through remote probing of water

bodies Apzymanan P. B. Onmumusayusa apugpmemuueckozo Ko0epa ona coucamus u3odparcenuil, ROIYYEeHHbIX NPU OUCIAHUUOHHOM

Keywords: arithmetical coding, performance optimiza tion,
image compression, average-case algorithm complexity, video
codec.

For citation: R.V. Arzumanyan. Arithmetic coder optimiza-
tion for compressing images obtained through remote probing
of water bodies. Vestnik of DSTU, 2019, vol. 19, no. 1, pp.
86-92. https://doi.org/10.23947/1992-5980-2019-19-1-86-92

KiroueBbie cj10Ba: apu(MeTHIecKoe KOZUpOBa-
HHUE,0NTUMH3AINS [TPOU3BOJUTENBHOCTH, CKaTHE H300paxe-

HI/Iﬁ, CJIOJKHOCTB aJIrOpUTMa B CPEAHEM, BUICOKO/ICK.

Oébpasey ona yumuposanusn: Apsymanss, P. B. Onrtumuza-
nus apu(METHYecKoro Kojepa M CKaTHA H300pakeHHH,
MOJIyYEHHBIX MPH AUCTAHIHOHHOM 30HAMPOBAHWH BOIHBIX
06bexToB / P. B. Ap3ymansid // BecTHuk JIOHCKOTO TOC. TEXH.

yo-ta. — 2019. — T.19, Nel. — C.86-92.
https://doi.org/10.23947/1992-5980-2019-19-1-86-92

Introduction. Monitoring of the condition of the water body is often carried out through unmanned aerial vehi-
cles (UAV), conducting aerial photography in the visible and infrared bands. The performance capabilities of the mo-
bile camera, which the UAV has, impose a number of restrictions on the equipment that processes and stores the foot-
age until the UAV returns. Specifically, the following factors should be considered.

1. Energy efficiency of the equipment that encodes the footage since it depends on the off-line operation time of
the UAV.

2. Coding gain of photo and video data during the flight. High resolution images occupy a significant amount of
the software memory, and this limits the amount of information that a UAV can accumulate.

Virtually all equipment for photo and video hardware supports the most common codec for compressing JPEG
images. However, it is inferior to the most modern HEVC and VP9 codecs, which not only support video sequences, but
also allow for better compression of single images. Thus, GoogleVP9 shows similar JPEG visual quality by the SSIM
metric (structural similarity) and at the same time compresses images by 25-34% stronger [1].

Compared to the same JPEG, HEVC codec enables to improve the compression rate by 10—-44% in PSNR metric
(peak signal-to-noise ratio) [2]. However, a high compression ratio with a smaller bitstream size results in greater com-

putational complexity of the HEVC and VP9 codecs [3, 4]. The architecture of the JPEG codec is presented in general

in Fig. 1.
Encoder
Blocks) Lo Compressed
Direct DCT [Quantization | VLC coder

8x8 file

Decoder
Compressed Compressed Inverse > Back DCT Blocks
file file quantization = ac 8x8

Fig. 1. JPEG codec flow chart

Here, VLC means compression through variable-length codes (variable length coding). The input frame is divid-
ed into blocks of fixed size (8x8). Each of them is subjected to direct discrete cosine transform (DCT), quantization of
transform coefficients and subsequent entropic compression using the Huffman algorithm [4]. Discrete cosine transform
is performed in the integer form [5]. Since the adoption of the JPEG standard in 1992, a number of fast algorithms have
been developed. They allow the conversion to be carried out entirely in the CPU registers. Huffman’s entropy compres-
sion is also not a complicated problem, so, even mobile processors in program mode can compress and decode JPEG
images [6].

HEVC [6] and VP9 are fundamentally similar, and they are hybrid block codecs with splitting a frame into
blocks of indeterminate length, intraframe prediction, discrete transform, and subsequent filtering to eliminate blocking

artifacts. The blockdiagram of the HEVC codec is shown in Fig. 2.

Information technology, computer science, and management

s
AN

http://vestnik.donstu.ru

Vestnik of Don State Technical University. 2019. Vol. 19, no. 1, pp. 86-92. ISSN 1992-5980 eISSN 1992-6006
Becmnuk /lonckozo zocyoapcmeennozo mexnuueckozo ynueepcumema. 2019. T. 19, Ne 1. C. 86-92. ISSN 1992-5980 eISSN 1992-6006

Binary decoding | ———» Back transform Unblocking filter
I
ntraframe SAO filter
prediction
Prediction mode
selection
Interframe Reference
prediction frames

! f

Fig. 2. HEVC codec flowchart

Here, the abbreviation SAO denotes the sample adaptive offset. In addition to the above image reconstruction al-
gorithms, both codecs use context-adaptive binary arithmetic entropy coding, which is much more complicated than
Huffman compression. With a high level of visual quality, it is arithmetic coding that occupies a significant part of the
total decoder operation time. In general, the flowchart of the arithmetic coder is shown in Fig. 3.

Syntactic elementn
Reverse Y
> binarization >
Range updating ‘ .
Binary element
Element ¢ index
Bitstream Arithmetic Probability Context
P] . ———————
decoder selection
Context %
updating

Fig. 3. Arithmetic coder flowchart

Codecs of a new generation are supposed to be used, among other things, for compressing images obtained
through remote sensing of natural objects. In this case, it is necessary to optimize the operation of hybrid block codecs
to ensure the processing of photo and video UAYV data in real time. It is necessary to put more focus on the optimization
of binary context-adaptive arithmetic coding, due to its essential complexity.

The objective of this study is to speed up the operation of the arithmetic decoder on mobile processors of the
ARM architecture. This will improve the performance of Google VP9 video codecs and will allow for their application
in the UAV on-board electronics for remote sensing of water bodies. The use of enhanced tools for compressing photos
and videos obtained from aerial photography enables to increase the amount of stored data, improve their visual quality
and resolution.

Main Part. Core components of a modern video codec include the binarization of syntactic elements of the
bitstream and the adaptive binary encoding of these elements into the bitstream. This stage is not safe for the
vectorization and parallelization, but it can be optimized through the statistical analysis of the input data. The main way
to predict the running time of a program is to analyze the complexity of the corresponding algorithm. Distinction is
provided between complexity at the best, worst and average case. 3 x is input data of A algorithm which is used to
calculate the output of y algorithm. The time function of the algorithm is denoted by CJ (x), and the memory cost
function — by C; (x). In the worst case, we will call T;(n) = max| =, C4 (x) functions of numeric argument the time
and space complexity A

Sa(n) = max =y C4 (%).

Consider a finite set of n size inputs:

Xp = {x:llx|l = n}.

Arzumanyan R. V. Arithmetic coder optimization for compressing images obtained through remote probing of water

bodies Apzymanan P. B. Onmumusayusa apugpmemuueckozo Ko0epa ona coucamus u3odparcenuil, ROIYYEeHHbIX NPU OUCIAHUUOHHOM

Vx € X, corresponds to the probability:
Pn(x) € [0’1]: erXn Pn(x) =1

The following expectation is called the average-case complexity:

TA = erXn Pn(x)c,:lr(x)»
SA = ZxEXn Pn(x)C/f(x)-

The described approach is classical for analyzing average-case complexity of the algorithm, and it is described in
detail in [7, 8]. Note the reasons why the application of this method in practice may be difficult or impractical.

1. Difference between the number of steps of the algorithm in theory and the number of processor cycles re-
quired to perform the step in practice. Thus, the majority of modern central processors produce addition and multiplica-
tion per cycle, while the remainder of the division is calculated for dozens of cycles.

2. Hardware features of the memory system. Modern computers use a multi-level memory hierarchy. Its compo-
nents operate at different speeds. Memory calls take considerably longer than register operations.

3. Optimizing compilers and hardware planners. When building executable files, optimizing compilers transform
dramatically the code without changing the program state engine. CPU hardware schedulers change the procedure of
executing instructions for greater performance and predict conditional transitions, while cache controllers read from
memory in blocks.

4. In case of the software algorithms implementation on the general-purpose processors, software components
interfere. For example, the task scheduler shares processor time, and parallel processes that have multiple threads can
run on a variable number of processor cores.

The proposed modification of the algorithm complexity serves as a theoretical addition to practical tools for
measuring performance, such as, for example, profiling and instrumentation of the program code. For the first time, the
method of splitting the algorithm inputs into complexity classes was presented in [9]. Consider A algorithm and a set of
all possible inputs:

G:{91,9, -}
and also all possible samples from G, different in size and composition:
gi:{9i gt -}

A set of criteria for the complexity measure of the algorithm implementation (for example, the number of processor
cycles, run-time, etc.):
«;:g; = R
A set of complexity measures:
A:f{ocy, ¢, L)
This set has the following properties.
1. V&g, x,€ A:x;#X, — all A elements are different.
2. Vo€ A splits G into the set of equivalence complexity classes
G(ay) ={g! n g7 ..}.
3. All samples from G (a;) are equally complex:
Ja; €4,9f € G(ay), ai: gf = 1k € [0, 1G], 7; € R.

Thus, all elements of A are different, and they can be reordered so that the complexity function of the criterion is
nondecreasing throughout the whole set of criteria. The expected complexity is similar to the estimates of the average-
case complexity of the algorithm for the discrete and continuous probability of complexity. For the discrete case:

R(A) = Zal—eA i Di»
for the continuous case:
R(A) = [, rdF(r).

The method in question is applicable for analyzing the complexity of an arithmetic codec. The process of entro-
py compression [10, 11] can be divided into component parts.

1. Binarization or conversion of the coded character (syntactic element of the compressed bitstream) into a string
made up of zeros and ones (bit string).

2. Context modeling for compressing syntactic elements in the normal mode. This step is not performed for syn-
tactic elements whose statistical distribution is close to normal, and they are coded in the bypass mode.

3. Arithmetic coding of a bit string.

Consider in more detail the arithmetic decoding scheme of the Google VP9 codec, namely the part that is associ-
ated with the subexponential coding of syntactic elements.

Information technology, computer science, and management

o
O

http://vestnik.donstu.ru

Vestnik of Don State Technical University. 2019. Vol. 19, no. 1, pp. 86-92. ISSN 1992-5980 eISSN 1992-6006
Becmnuk /lonckozo zocyoapcmeennozo mexnuueckozo ynueepcumema. 2019. T. 19, Ne 1. C. 86-92. ISSN 1992-5980 eISSN 1992-6006

Imagine an algorithm of the subexponential coding in general [12]. The first step includes the calculation of the
variables:
_ { k:n < 2k
~ llogy n):n = 2k,
u= { 0:n < 2F
b—k+1:n> 2k
where £ is parametrical value, it is 4 for the Google VP9 codec.

In the second step, the unary code u(u + 1) bit is complemented by n low-order bits. The code length is equal
to:

k+1:n<2*
2|log, n] — k + 2:n > 2%,

Hence, literal decoding is reduced to decoding the bits that compose it in the loop. To optimize the performance
of this algorithm, it is important to know the probability distribution of literal lengths. Literals occupying the largest
number of bits in a compressed bitstream (such as inverse transform coefficients and motion vectors) are coded in se-
ries, so there is a high probability that the distribution of literal lengths in a compressed bitstream will be constant with
multiple repeats of elements of the same value. To test this hypothesis, experimental data on the distribution of literal
lengths in a set of satellite images of the Sea of Azov is acquired (Table 1).

u+1+n={

Table 1
Literal length, bit 1 2 3 4 5 6
Probability, % 0.94 0 67.35 18.25 0 13.46

The literals of 3, 4, and 6 bits in length are most probable. The maximum possible literal length for this sequence
is just 6 bits. This fact is essential for software optimization of the function of subexponential decoding of a literal. As
part of optimizing a real codec, the run-time criterion is of prime interest. To obtain the set of difficulties: {ry,..., 73},
we will profile the program performance.

A set of unique elements (R) will make up a set of criteria of the run-time complexity (4).

The following approaches that are based on the data obtained are applied for the optimization.

1. Memoization of calculating the literal length to decode a series of literals of equal length.

2. Unwinding of a cycle of subexponential decoding of a literal.

3. More efficient algorithm for calculating the number of bits in a literal.

4. More efficient use of the processor registers immediately within the arithmetic decoding function.

The implementation of points 1 and 4 is fairly obvious; therefore, we consider in more detail points 2 and 3.
Compiling of a decoded literal by bits decoded from a compressed bitstream occurs within the subexponential decoding
function. In this case, the bottleneck is a loop with varying number of iterations. It can be replaced with a switch-case
set without break at the end. This technique is known as the Duff’s device method. It allows replacing several loop iter-
ations through sequentially execution of the instructions without the need for conditional transitions. The bit shift
amount is a constant that does not need to be read from the register - loop counter.

Code Listing 1: The original literal decoding function
static int vp9_read_literal(vp9_reader *br, int bits)
{
int z = 0, bit;
for (bit = bits — 1; bit >= 0; bit —)
z |= vp9_read_bit(br) << bit;
return z;

}

Code Listing 2: Modified literal decoding function
static int vp9_read_literal(vp9_reader *br, int bits) {
register int z = 0;
switch(bits -1){

case 6: z |= vp9 _read(br, 128) << 6;

case 5: z |= vp9_read(br, 128) << 5;

case 4: z |= vp9 _read(br, 128) << 4;

Arzumanyan R. V. Arithmetic coder optimization for compressing images obtained through remote probing of water

bodies Apzymanan P. B. Onmumusayusa apugpmemuueckozo Ko0epa ona coucamus u3odparcenuil, ROIYYEeHHbIX NPU OUCIAHUUOHHOM
]

case 3: z |= vp9_read(br, 128) << 3;
case 2: z |= vp9_read(br, 128) << 2;
case 1: z |= vp9_read(br, 128) << 1;
case 0: z |= vp9_read(br, 128);
break;
}

return z;

}

Another bottleneck is the calculation of the number of literal bits in the while loop [13]. This is a worse solution
because the number of loop iterations is unpredictable. Instead, a fast bit-counting algorithm was used [14, 15], which
performs the calculation for a fixed number of steps without conditional transitions.

Code Listing 3: Fast counting of the number of bits in a literal

Unsig ned intv; // 32-bit argument
Register unsig ned intr; // variable for the number of bits
register unsigned int shift;

r = (v> 0xFFFF) << 4;

VvV >>=1;

shift = (v > OxFF) << 3;

v >>= shift;

r |= shift;

shift = (v > 0xF) << 2;

v >>= shift;

r |= shift;

shift = (v > 0x3) << 1;

v >>= shift;

r |= shift;

rl=(v>> 1)

Numerous starts of the reference and modified codecs were made to measure the runtime. In this case, their av-
erage run-time was compared. It has been found that the performance of the modified codec is 5.21% higher. The in-
crease in overall performance for arithmetic decoding was 7.33%.

Conclusions. The operation of the arithmetic coder as a component of the video codec has been optimized
using the example of the Google VP9 standard. To solve this problem, a modification of the method for analyzing the
average-case complexity of algorithm has been proposed. The approach is based on the partitioning of the set of inputs
into equivalence complexity classes. The considered method enables to predict the average-case complexity of the
algorithm when the number of steps of the algorithm and the time of its execution depend on difficult-to-measure
parameters, which is typical of the context-adaptive arithmetic coding. The proposed method has been applied to
optimize the speed of the arithmetic binary coder (using the example of the Google VP9 codec) for the image
compression problems obtained under remote sensing of water bodies. The research results make it possible to apply
advanced methods of compressing photo and video data obtained through the aerial photography of water bodies. Thus,
it is possible to increase an amount of the accumulated data, to improve the visual quality and resolution of the footage
by 25-34% (according to the SSIM visual quality metric) and to increase the speed of the arithmetic coder by 7%.

References

1. WebP Compression Study. Google Developers. Available at: https://developers. google.com/
speed/webp/docs/webp_study (accessed 01.02.19).

2. Nguyenand, T., Marpe, D. Objective Performance Evaluation of the HEVC Main Still Picture Profile. IEEE
Transactions on Circuits and Systems for Video Technology, 2015, vol. 25, no. 5, pp. 790-797.

3. Blahut, R. Bystrye algoritmy tsifrovoy obrabotki signalov. [Fast algorithms for signal processing.] Mos-
cow: Mir, 1989, 448 p. (in Russian).

4. Wallace, G.K. The JPEG still picture compression standard. /EEE Transactions on Consumer Electronics,
1992, vol. 38, no. 1, pp. XVIII-XXXIV.

Information technology, computer science, and management

Ne]
—_

http://vestnik.donstu.ru

Vestnik of Don State Technical University. 2019. Vol. 19, no. 1, pp. 86-92. ISSN 1992-5980 eISSN 1992-6006
Becmnuk /lonckozo zocyoapcmeennozo mexnuueckozo ynueepcumema. 2019. T. 19, Ne 1. C. 86-92. ISSN 1992-5980 eISSN 1992-6006

5. Dvorkovich, A.V., Dvorkovich, V.P. Tsifrovye videoinformatsionnye sistemy (teoriya i praktika). [Digital
video information systems (theory and practice).] Moscow: Tekhnosfera, 2012, 1009 p. (in Russian).

6. Asaduzzaman, A., Suryanarayana, V. R., Rahman, M. Performance-power analysis of H.265/HEVC and
H.264/AVC running on multicore cache systems. Intelligent Signal Processing and Communications Systems. Availa-
ble at: https://ieeexplore.ieee.org/document/6704542 (accessed 01.02.19).

7. Sedgewick, R., Wayne, K. Algorithms. Fourth edition. Upper Saddle River: Addison-Wesley, 2016, 960 p.

8. Cormen, T.H., et al. Introduction to Algorithms. 3rd edition. Cambridge; London: The MIT Press, 2009,
1296 p.

9. Welch, W.J. Algorithmic complexity: three NP — hard problems in computation all statistics. Journal of
Statistical Computation and Simulation, 1982, vol. 15, no. 1, pp. 17-25.

10. High efficiency video coding. Fraunhofer Heinrich Hertz Institute. Available at: http://hevc.info/ (accessed:
01.02.19).

11.Sze, V., Budagavi, M. Parallelization of CABAC transform coefficient coding for HEVC. Semantic
Scholar. Allen Institute for Artificial Intelligence Logo. Available at: https:/www.semanticscholar.org/ pa-
per/Parallelization-of-CABAC-transform-coefficient-for-Sze-Budagavi/0653a22ff7b82bdd0130cea8b597a7024ab46882
(accessed: 01.02.19).

12. Salomon, D., Motta, G. Handbook of data compression. London; Dordrecht; Heidelberg; New York: Sprin-
ger-Verlag, 2010, 1360 p.

13. Anderson, S. E. Bit Twiddling Hacks. Awvailable at: https://graphics.stanford.edu/~seander/bithacks.html
(accessed 01.02.19).

14. Gervich, L.R., Shteinberg, B.Y., Yurushkin, M.V. Programmirovanie ekzaflopsnykh sistem. [Exaflops sys-
tems programming.] Open Systems. DBMS. 2013, vol. 8, pp. 2629 (in Russian).

15. Warren, Jr., G.S. Algoritmicheskie tryuki dlya programmistov. [Algorithm programming tricks.] 2™ ed.
Moscow: Williams, 2013, 512 p. (in Russian).

Received 02.11.2018
Submitted 03.11.2018
Scheduled in the issue 15.01.2019

Author:

Arzumanyan, Roman V.,

postgraduate of the Intelligent Multiprocessor Systems
Department, Institute of Computer Technology and
Information Security, Southern Federal University (22,
ul. Chekhova, Taganrog, Rostov Region, 347922, RF),
ORCID: https://orcid.org/0000-0003-3370-5093

roman.arzum@gmail.com

