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Introduction. It is acknowledged that electroelastic modules
do not depend on the amplitude and frequency of oscilla-
tions. This approach is reflected in the Russian and foreign
standards for determining the complete set of electro-elastic
piezoceramics modules. For example, to determine d3; pie-
zo-module of a disc-shaped sample, it is required to take
measurements in three frequency domains: in the first and
second resonances, in the antiresonance region, and at fre-
quencies much below 1 kHz. Accordingly, it is assumed that
when determining d3q, the modules of the ceramic under
study in the frequency range from 1 KHz to the second reso-
nance are independent of frequency. The work objective is to
study the frequency dependence of electro-elastic ceramic
modules. In this case, a disc-shaped sample from LZT (lead
zirconate titanate) is used.

Materials and Methods. Techniques of setting and solving
problems of the stationary electroelasticity and sections of
the electrical engineering basics are applied. To implement
the finite element method, the perturbation technique and the
ANSYS application package are used. The experimental
results are processed in the MATLAB environment.
Research Results. For the LZT piezoelectric ceramics, the
frequency dependences of various modules (piezoelectric
d3q, dielectric €55 and elastic modules of compliance -
S11,S12, S13) were investigated. Radial oscillations of a disc-
shaped sample with electrodes on the ends were considered.
The sample thickness was 1 mm, the diameter was 40 mm,
and the oscillation range was up to 700 KHz. First, the fre-
quency dependence was studied for the elastic ceramic mod-
ules from the determination of ten resonance frequencies.
Then, the frequency dependence of ds,and &}; modules
was determined from the measured values of the sample
conductivity. For this purpose, we used the expression for the
electrical conductivity obtained from the solution of the radi-
al oscillations of the disc considering its thickness.
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Bseoenue. TIpuHATO CUUTATh, YTO INEKTPOYIPYIUE MOIYIH
HE 3aBHCAT OT aMIUTUTYIbI U YacTOTHl KoyiebaHui. DTo moj-
XOJ] OTPaXEH B POCCHICKUX U 3apyOeKHBIX CTaHAApTax I
OIIpE/IeNICHNs] TIOJTHOTO Habopa JIEKTPOYNPYTHX MOIyiei
Mbe30KepaMuKy. Hampumep, A onpeneneHus Mbe30MOIyIIs
d31 obpasia B popMe JrcCKa HEOOXOIMMO TPOBECTH H3MEpPE-
HUS B TPEX YaCTOTHBIX OOJIACTAX: B OOJIACTH MEPBOTO W BTO-
pOTO PE30HAHCOB, B 00JACTH aHTHUPE30HAHCA W HA YACTOTaX
MHoro Hiwke | kI'm. B cBsi3u ¢ 3TUM mpenmnosaraercs, 4To
MpHA OMpeAeTeHUun d3; MOIYIH HCCIeTyeMOW KepaMHKH B
nuana3ose yactotT oT 1 KI'y 1o BTOoporo pe3oHaHca He 3aBU-
CST OT YaCTOTHI.

Llenplo aHHOI PaboOTHI SIBISIETCS MCCIEIOBAaHUE 3aBHCHUMO-
CTH OT YacTOTHI DJIEKTPOYNPYrHX Moayied kepamuku. [Ipm
3TOM HCIoNb3yeTcs obpaszen B popme mucka nz L[TC (ump-
KOHATa-TUTAHATa CBUHIIA).

Mamepuanvt u memoosi. VIcnonb30BaHbl METOBI TOCTAHOB-
KA M peIeHUs 3aJad CTAllMOHAPHOW 3JIEKTPOYHNPYroCTH H
paslensl TEOPETHIECKUX OCHOB DJIEKTPOTEXHHKH. Jliist peanu-
3allMM METOJa KOHEYHBIX DJIEMEHTOB IIPHMEHEHBI METO] BO3-
MYLIEHUH U nakeT NpukiagHbeix nporpaMmMm ANSYS. Pesyib-
TaTHl SKCIEPUMEHTOB 00padoTansl B cpene MATLAB.
Pesynomamor uccneoosanus. Jns neezokepamuku L[TC wuc-
CJIEZIOBaHBI 3aBHCHMOCTH OT YaCTOTHI Pa3UYHBIX MOIyJCH
(MIbe3037EKTPHYECKUX 3y, AMIIEKTPHUECKUX E53 M YPYTUX
MOJyJell THOKOCTH Si1,S12,S13)- PACCMOTpEHBI paanaibHbIC
KoJicbanust oOpasna B Gpopme AKCKa C 3IEKTPOJAaMH Ha TOP-
nax. TonmmmHa 06pasma — 1 MM, nuamerp — 40 MM, Tuamna-
30H konebanuii — gm0 700 K['u. Chavana wuccinenoBanach
YaCcTOTHAs 3aBUCHMOCTb JIJISl YIIPYTUX MOAYJICH KEpaMHUKH U3
OTIpENIeNICHAs] JIECATH PE30HAHCHBIX YacTOT. 3aTeM 110 U3Me-
PEHHBIM 3HA4YCHHUSM IPOBOAMMOCTH oOpasia Obuia ompene-
JileHa 3aBHCHMOCTL OT 4acTOTBI Momyieil ds; U €5, C 3Toit
LENBI0 HCTIONB30BANIOCH MOJTYYEHHOE B paboTe BBIpaKCHHE
JUTSL 3JIEKTPHUUYECKON IPOBOMMOCTH M3 PELICHHS PaAuaIbHBIX
KOJICOAHHIA IUCKA C YIETOM €TO TOJIIHHBL.
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Discussion and Conclusions. A technique is developed for
determining the frequency dependence of LZT piezoelectric
ceramic modules. The disc-shaped sample was studied in 15-
650 KHz frequency range. It is shown that in the range up to
650 KHz, sq1, S12,S13 elastic modules with E superscript (it
is omitted) or measured at dc field are practically independ-
ent of frequency. In the specified range, €55, d31, kp con-
stants have an insignificant frequency dependence for the
considered radial oscillations.

Keywords: piezoelectric ceramics, electroelastic modules,
equivalent circuit, frequency dependence, disc, finite-element
technique, perturbation method.
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Obcyscoenue u 3axnmouenusi. PazpaboTaHa MeTOIuKa ISt
OTIpeNIeNICHNs] 3aBUCUMOCTH OT YaCTOTHI MOIYyJIeH Mbe303JIeK-
Tprueckoil kepamuku L[TC. Obpazen B popme aucka uccie-
JoBatics pu quarnaszoHe yactoT 15-650 KI'n. Iokaszano, yto
B nuanasoHe no 650 KI'm ympyrue Monymu Siq,S12,S513 C
BEPXHUM HHAEKCOM E (OH OMyIIeH) WM H3MEPEHHBIE IMpU
MIOCTOSIHHOM DJIEKTPHYECKOM MOJI€ MPAKTUYECKU HE 3aBUCST
OT YacTOTHL. B ykazaHHOM JMana3oHe KOHCTaHTHI €53, d3), k,
IUI PacCMaTpUBAEMBIX paJUalbHBIX KoJeOaHUH MMEIOT He-
3HAYHUTENFHYIO YACTOTHYIO 3aBUCHMOCTb.

KiroueBble c10Ba: Nbe303JIEKTpUUECKas KepaMHKa, HIICKT-
pOyIpyrue MOJYJH, CXeMa 3aMElICHUs, 3aBUCHMOCTh OT
YaCTOTHI, AUCK, METOI KOHEUHBIX 31eMeHTOB, ANSYS, Meton
BO3MYILIEHHH.
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Introduction. A significant number of papers study and develop mathematical methods for solving problems
of piezoelectric body oscillations. Being a component of the piezoelectric devices, piezoelectric elements serve to excite
and register oscillations caused by external effects. The selection of piezoelectric material for measuring transducers
and the analysis of their characteristics requires a large amount of information on the parameters of materials. Such in-
formation includes:

- a complete set of electroelastic modules [1],

- losses,

- analogous electrical circuits, or equivalent circuits of piezoelectric elements [2].

The reactive dynamic parameters (L, C) of the equivalent circuits are determined by elastic dielectric and pie-
zoelectric modules, as well as by the density of piezoceramics [3]. It is considered that the electroelastic modules - the
equivalent circuit parameters are constant; they do not depend on the amplitude (weak electric fields) and on the oscilla-
tion frequency. All this is reflected in the Russian [4] and foreign [5, 6] standards for determining a complete set of
electroelastic piezoelectric ceramics modules. For example, to determine d;; piezo-module of a disk-shaped sample, it is
necessary to carry out measurements in three frequency domains: in the first and second resonances, in the antireso-
nance region, and at frequencies much below 1 kHz. Accordingly, it is assumed that when determining ds;, the mod-
ules of the ceramic under study in the frequency range from 1 KHz to the second resonance are independent of frequen-
cy.

The work objective is to study the frequency dependence of electro-elastic ceramic modules. In this case, a
disc-shaped sample from LZT (lead zirconate titanate) is used, as precisely this type of ceramics is most well known.
The ANSYS program [7] is used to verify the correctness of the presented methodology.

Materials and Methods. Consider a piezoelectric disk with the thickness of 2/ and the radius a. We introduce
a cylindrical coordinate system (r, ®, z) where z axis coincides with the direction of the polarization axis. The coordi-
nate plane z = 0 coincides with the midplane of the disk. Based on the known linear piezoelectric ratios, the equations of
the continuum dynamics [1] and Maxwell equations [8], the system of equations for the axisymmetric oscillations of the
piezoelectric disk can be written as follows:

0Ty + 03 Tyy + 28 4 p?U = 0,

0Ty, + 03T,y +72+ pw?W = 0; 0,D, +03;D, +22 = 0. )

Henceforward, the following notations and definitions are introduced: U, W are mechanical displacements along r, z
coordinate axes, respectively; o is circular frequency; p is density; Ty, are mechanical stresses; D,., D, are compo-
nents of the electric induction vector; d, and d3 are operators of derivatives with respect to » and z.
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In case of axial polarization, the linear piezoelectric effect equations for weak electric fields in the cylindrical
coordinates can be written as follows [1]:

Ty = €110,U +¢pz % +¢130: W + €310 ¢,

Toe = €120,U + C11%+ 1303 W + e3,03 @,

T,, = c130:U + c13 g + 3303 W + e3305 o, (2)
D, = e3,(0,U + %) + €3303 W — €3303 9; D, = €15(03U + 0, W) — €110, .

The following notation is introduced in the relations (2) and further: ¢, are elastic constants in the matrix des-
ignation measured on samples with shorted electrodes or at the constant electric field E (£ upper index of the ceramics
constants is omitted here and further); e, are piezoelectric constants; €, are clamped dielectric constants; ¢ is electric
potential where E = —grad ¢ [2, 8].

Assume that the boundary conditions are set at the electrode ends and on the lateral surfaces of the disk [1, 2]:

atz=+h T,, =0; T, =0; @ =2V, 3)

atr=a T, =0; T, =0; D, =0. (4)
In (3), 2V value is electric potential difference applied to the ends [2, 8]. Let us introduce dimensionless coordinates and
quantities from the formulas:

r z h P P p c25
=-; =—-s=—-Q=wh/—-Q =wa |5 ; C;; =Cyq ——.
§ a’Z h’ a’ can’ @ PRt 11

The solution to the boundary value problem (1-3) consists of the sums of two solutions:

- homogeneous solution at zero boundary conditions at z = +/;

- particular solution that satisfies only nonzero conditions at the ends (3).

The constructed system of homogeneous solutions will enable to further satisfy the boundary conditions (4) on
the lateral surface (as a rule, using variational methods).

It is not difficult to construct the particular solution DY = const and D = 0, which satisfies automatically the
third equation from the system (1) and the boundary conditions at the ends (3). According to the first two equations of
the system (1), the mechanical and electrical components of the particular solution are equal:

€33C
T = Tgo = Alesy + ——)xsin(x)) + essK; U° = 0; T, = 0;
33
©° = Kh{+ Ahsin(x0); D = —e33K; T, = e33K + ef;Ax cos(x0);
)
v ess v 1

=% K= —————.
h e?,(x cos(x) — kZ sin(x)) hoy_ g2 tanCo
X

The following notation is introduced in (5):

X=Q\/%; e§3=e33+c3:#; kt2=1—z%3.
33 33 33

If the vector of external forces and the electric potential are zero on the end surfaces, then the construction of
homogeneous solutions is associated with the definition of the dispersion equation roots [9]. For symmetric oscillations,
the dispersion equation has the following form:

a,M,tan"1(B,) = 0,(n=1,2,3). (6)

The following notation is introduced in (6):

Ay = @Pciskin + Cazkon + e33kan; by = kinBn + kon;
M, = byks3 — bsksa; My = bzksy — byiksz; M3 = biks; — byks,.
Here, k,,,, are algebraic compliments to the elements of the third determinant row of the system for symmetric oscilla-
tions (1); B, is binary cubic root from [9], a is non-dimensional wave number of oscillations along r axis.

To find the roots (a) at the given values of €, it is necessary to solve the dispersion equation (6) in combina-
tion with the binary cubic. A detailed analysis of the dispersion equation roots of symmetric lossless oscillations for the
piezoelectric layer is given in [9], considering losses — in [10]. It is the sum of the particular and homogeneous solutions
that will allow satisfying the boundary conditions both at the ends and on the lateral surfaces of the disk.

With an arbitrary ratio of disk sizes, the inverse problem of its forced oscillations (1—4) is very difficult to ana-
lyze and has a finite analytical solution only in some special cases (for example, oscillations of a thin disk or without
considering its thickness when € <« 1). Therefore, when determining the modules of ceramics, it is more convenient to
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solve the inverse boundary problem using approximate methods with allowance for thickness corrections for low-
frequency radial oscillations of the disk. In this case, we can get an analytical solution in the form of finite formulas. In
this paper, we seek the solution in the form of expansion with respect to € small parameter:

o =202 +ve*Ql + Q... U=U, +€2Q2U, +*QLU, +... @)

Here, U,, is vector function with U(U, W, ¢) components; # is the order of the constructed approximate theory of sym-
metric disk oscillations considered in the paper; 7y, n are unknown constants which depend on the modules of piezoelec-
tric ceramics, they are determined from (1, 2) and satisfy the homogeneous (zero) boundary conditions (3).

Omit the cumbersome manipulations. We confine ourselves to the terms with €° to determine a* wave number,
the terms with €2 for U vector function in (7), and we give the final result of the considered boundary value problem
with the boundary conditions (3) at the ends [11]:

Gy Sz, 2% a3 —Sim
Poeh(s1 +512)] €33 S11t+Sp

Y - 2 )
3c53 S11

2 2ct; .
n =y<1—5t+?33+y) + piezo;

t2 d31
45cf18§3(1—k12,) [511+512
Here, S, are flexibility modules with £ constant; d3; is piezo-module; k, is planar coupling coefficient; v is planar
Poisson ratio; €15 is free dielectric constant of the disk.

Next, we introduce the following definitions and notation: a = £2Q2 is approximate zero-order wave number;

o =202 +ye*Q?} is approximate wave quadratic number; o = £2Q,% + ye*Q,* + neQ,° is approximate quartic wave
number; C is disk capacity.

Table 1 presents the results of the exact solution of the wave number (o)) of the PZT4 ceramics depending on the
frequency from the dispersion equation (6) and an approximate calculation from (7) at € = 0.033 for various approxima-

piezo = — ¢} (2tdsy +ds3)]?

tions of a,,.
Table 1

An example of calculating wave number (o) at various frequencies for the piezoceramic disk under study

1, kHz Q o from (6) a o ay ¢ piezo =0 Oy
50 0.085 0.045055 0.045049 0.045055 0.045055 0.045055
250 0.425 0.2262 0.2252 0.22603 0.22605 0.2261
500 0.85 0.4578 0.4505 0.4568 0.4574 0.4575
700 1.1903 0.6522 0.6307 0.64777 0.6514 0.6518

The results given in Table 1 show that for the disk 1 mm thick and with frequencies up to 700 KHz, the cal-
culation of the wave numbers from the dispersion equation (6) and the approximate calculation for a4 almost coincide,
and the piezo correction can be neglected. In this case, the decomposition (7) for a? depends only on the disk geometry,
density, and moduli of flexibility — 14, S12, S13.

Omitting the relatively cumbersome manipulations, we give the expression of ¥ conductivity for the piezoelec-
tric disk. It is obtained from the approximate solution (7) for various &2.
Y000 is zero approximation of € = 0, or the known equation of radial oscillations of a zero-thickness disk:

0(0 ]1(x)
x=—; Y000=wC|1—kZ+k2(1+V) >
€ ( P xJo(x) = (1 =v)J; (%)
Y040 is approximate quartic wave number:
— %, — _ 12 2 N F1C
x =% Y040 = wC (1 kZ + k(1 + V) o2 ). ®)

Y042 is approximate quartic wave number, quadratic particular solution:
O%e2 x
—— + k2(1+ V) S(x) >
xJo(x) = (1 =v)J; (%)

T
3€33C33
Y242 is approximate quartic wave number, quadratic homogeneous and particular solution:

Y042 = wC <1 - kg + Cha

0%e} J1(x) “2633513
Y242 = wC (1= Kk2 + oy ——— + k2(1 + v) 2 1—cCp——-")|;
( P 3T 2, p(1+V) zn ( 44 3el 2, )
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zn = [xfo(6) — (1 =) ()] [1 + e2ade (5 + 5)| - e2ady /o (0); ©
o — o €33C13 _ dz;
LT ey S11t Si2

Table 2 shows the numerical analytic calculation results. The conductivities of the exact solution (5, 6) and
approximate solutions (8, 9) with respect to €2 were found using the MATLAB program [12]. For the disk made of
PZT4 [13] with the thickness of 1 mm and the diameter of 30 mm, numerical calculations were carried out in the AN-
SYS and ACELAN systems [14]. The latter software package was developed by the employees of the Southern Federal
University (SFU) and focused on the calculations of piezoelectric devices.

Table 2
Conductance calculation for various frequencies
Frequency, kHz | ANSYS, Cm/m | Solution (5,6), Cm/m | Y000, Cm/m | Y040, Cm/m | Y042, Cm/m | Y242, Cm/m
350 5.03 5.032 4.9688 5.014 5.0457 5.028
554.4 8.74169 8.741029 8.478 8.5864 8.73237 8.735
700 10.98 10.97 10.376 10.682 10.957 10.96

Table 2 shows that in the construction of approximate theories of the type (8, 9), it is required to use the de-
composition (7) to calculate the wave number at least of the second order.

Research Results

1. Study of the dependence of the elastic ceramic moduli on frequency. For a sufficiently well-studied PZT
piezoceramics, we will investigate the frequency dependence of the following modules: piezoelectric dg;, dielectric €5,
and flexibility modules - s;4, 512, S13. Consider low-frequency radial oscillations of a disc-shaped sample with elec-
trodes on the ends. The sample thickness is 1 mm, the diameter is 40 mm, and the oscillation range is up to 700 KHz.

First, we study the frequency dependence for elastic modules. To do this, according to [15], we precheck the
first three resonant low frequencies f, (the major resonance and its two overtones). Elastic constants are determined
from the solution of the frequency equation (9) of the radial oscillations of the disk considering € relative thickness:
three equations for three unknown variables. It is € relative thickness that distinguishes the above frequency equation
(9) for radial oscillations of the finite thickness disk from the known frequency equation for radial oscillations of the
disk with “zero thickness” [15]:

RJR) = (1 -v) Ji(R).

The introduction of € thickness correction into the solution of the known equation of radial oscillations of a
disc-shaped sample improves the accuracy and measurement informativeness of the elastic modules.

The elastic compliances determined by [11, 15] through the technique of three resonances for the considered
ceramics turned out to be equal:

s11=12.29¢ — 12, 51, =-4.05¢ — 12, 513 =-5.28e — 12.

Table 3 shows the first ten resonant frequencies for the PZT19 ceramics. In the “Experiment” stock, the fre-
quencies measured on the WK 6500B conductivity measuring device at the Institute of High Technologies and Pie-
zotechnics at the Southern Federal University are given. In the “Analysis” line there are S;1, Sy, S13, calculated by the
formula (9) for the frequency-independent elastic modules defined by [11, 15]. Measurement errors did not exceed the
values recommended by the standard [4].

Table 3
First ten resonant frequencies for PZT19 ceramics
Resonant frequencies f,, KHz
Experiment 50.8 | 132.8 | 211 2884 | 364.6 | 4394 | 513.2 | 585.4 | 6544 | 722.8
Analysis 50.8 | 132.8 [210.95| 288.1 | 364.8 | 440.7 | 516 590.4 663 735.4

Table 3 shows that in the frequency range up to 600 KHz, the difference between the calculated and experi-
mental data with constant elastic moduli does not exceed 1%, therefore the following conclusion can be made: “For the
ceramics considered, S;1,S12,S13 ¢lastic modules with E superscript (it is omitted) or measured at a constant electric
field are practically independent of the frequency in the range up to 650 kHz.”

2. Study of the dependence on the frequency of d; and €}; modules. We use the expression (8) for Y040
conductance from the solution of the radial disk oscillations considering its thickness, as well as the values of imaginary
parts of the complex conductivity of the piezoceramics under study measured at room temperature. In this case, it is
possible to investigate the dependence of d3; and €% modules on the frequency in the range from 10 KHz to 600 KHz.
To determine two unknown ds; and €55, measure Y at two frequencies — f;, f>. The difference between ds; and €5 is
selected so that we can neglect the dependence of ds; and €%; modules on the frequency in f;— f; range.
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In this paper, two conditions are introduced:

1) f,—/f1=200Hz;

2) the conductivities are calculated for an ideal piezoelectric body or without considering losses, therefore the
frequencies of resonances or in the neighborhood of resonances are not taken into account.

As a result, we obtain an easily solvable system of two linear equations with respect to two unknown Hewms-
BeCTHBIX kj and €15.

Fig. 1 shows k2, ds and €%5/¢, dependences on 10-650 kHz frequencies.

2
- T . i
1.5 "
1
0.5
b‘_,-i‘-t"'*’""’ """ ey’ S Lt ot O P,
0 T
- &53/&
-0.5 —- kﬁ
-1 - dy -10710
15 ‘.\=_\‘ N
-2
10 100 1000

Frequency, kHz
Fig. 1. Piezoelectric parameters — frequency dependences

Here, €, is the dielectric constant of the vacuum. In the range from 15 to 650 KHz, kj coupling coefficient
first increases with frequency growth from 0.28 to 0.34, and then decreases to 0.26. d3; piezo-module has a similar fre-
quency dependence: at 15 KHz, from —1.50e ~ ' to maximum of 1.661e ~'°, and then decreases to 1.31e ~'°. The relative
dielectric constant decreases monotonically with increasing frequency from 1766 to 1455.

Fig. 2 shows frequency dependences in the range of 1-10 KHz measured and calculated from the formula (9)

of the ceramics capacity with the constant modules defined according to OST [4, 15].
1.81
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Fig. 2. Piezoceramics capacity — frequency dependence

There is sharp difference between two PZT ceramics capacities for low frequencies. This probably explains the
dependence of the ceramics parameters on the frequency below 15 KHz (see Fig. 1). This implies a higher degree of
dispersion — first of all, of d3; piezo-module d31. This issue will be considered in greater detail in the next paper
(e33"T, d31, k, constants are investigated in the low-frequency range).

Discussion and Conclusions. A technique has been developed for determining frequency dependence of the
PZT piezoelectric ceramic modules. The disk-shaped sample was studied within the frequency range of 15-700 KHz. It
is shown that in the range up to 650 KHz, s;4,5;2, 513 elastic modules with E superscript (it is omitted) or measured at
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a constant electric field are practically independent of frequency. In the indicated range, €53, ds;, k, constants for the
radial oscillations considered have an insignificant frequency dependence.

Only the frequency dependence of real part of the ceramic modules was studied, the losses were not consid-
ered. Therefore, the experimentally obtained frequency dependences of the imaginary part of the ceramics conductivi-
ties were measured far from resonances, where the effect of losses was absolutely null. Even so, in the future, both the
real and imaginary parts of the modules must be considered. This means that losses are included. This problem is sup-
posed to be studied considering the frequency dependence of the complex modules of the ceramics under study.

In the present paper, the radial oscillations of the sample are considered to obtain more complete information
when measuring a larger set of constants (except for the piezoelectric and dielectric modules, s;1,S;5, 513 elastic mod-
ules are measured). This technique can be extended to other forms of samples (rods, plates, etc.), since in these one-
dimensional problems, there is a simple replacement of Bessel functions by trigonometric functions.
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