http://vestnik.donstu.ru

290

Vestnik of Don State Technical University. 2019. Vol. 19, no. 3, pp. 290-300. ISSN 1992-5980 eISSN 1992-6006
Becmmuux /lonckozo zocydapcmeennozo mexnuueckoz2o ynugepcumema. 2019. T. 19, Ne 3. C. 290-300. ISSN 1992-5980 eISSN 1992-6006

INFORMATION TECHNOLOGY, COMPUTER

SCIENCE, AND MANAGEMENT
NHO®OPMATHUKA, BBIYNCJIUTEJBHAS
TEXHUKA U YIIPABJIEHHUE

UDC 519.689

https://doi.org/10.23947/1992-5980-2019-19-3-290-300

Accelerated preprocessing in task of searching substrings in a string "

A. V. Mazurenko', N. V. Boldyrikhin>"
' DDoS-GUARD LLC, Rostov-on-Don, Russian Federation
?Don State Technical University, Rostov-on-Don, Russian Federation

o *ok
YCKopeHH])II/l NPENnpPoOueCCCHHI B 3a/laY€ MOUCKA IMOACTPOK B CTPOKE

A. B. Ma3ypemc01, H. B. BOJ‘I[[[:I[)]/IXHHZ**
000 «OC-I'Bapa», r. PoctoB-Ha-/lony, Poccuiickas ®enepauus

*

2 JloHCKO#i roCy[apCTBEHHbIN TeXHHUECKHI YHIHBEpCHTET, T. Poctos-Ha-Jlony, Poccuiickas denepanus

Introduction. A rapid development of the systems such as
Yandex, Google, etc., has predetermined the relevance of the
task of searching substrings in a string, and approaches to its
solution are actively investigated. This task is used to create
database management systems that support associative search.
Besides, it is applicable in solving information security issues
and creating antivirus programs. Algorithms of searching sub-
string in a string are used in signature-based discovery tasks.
Materials and Methods. The solution to the problem is based
on the Aho-Corasick algorithm which is a typical technique of
searching substrings in a string. At the same time, a new ap-
proach regarding preprocessing is employed.

Research Results. The possibility of constructing the transition
function and suffix references through suffix arrays and spe-
cial mappings, is shown. The relationship between the prefix
tree and suffix arrays was investigated, which provided the
development of a fundamentally new method of constructing
the transition and error functions. The results obtained enable
to substantially shorten the time intervals spent on the pre-
election processing of a set of pattern strings when using an
integer alphabet. The paper lists eight algorithms. The devel-
oped algorithms are evaluated. The results obtained are com-
pared to the formerly known. Two theorems and eight lemmas
are proved. Two examples illustrating features of the practical
application of the developed preprocessing procedure are giv-
en.

Discussion and Conclusions. The preprocessing procedure
proposed in this paper is based on the communication between
the suffix array built on the ground of a set of pattern strings

and the construction of transition and error functions at the

" The research is done within the frame of the independent R&D.
" E-mail: mazurencoal@gmail.com, boldyrikhin@mail.ru
" PaGoTa BBIIIOJIHEHA B pamkax uHHIaTuBHONH HUP.

Beeoenue. bypHOe pa3BUTHE TakMX CHCTeM, Kak Yandex,
Google u 1p., IpeNONPENETHIO aKTyaTbHOCTh 3aJa4H ITOUCKa
MOJACTPOK B cTpoke. Ha ceropHsmHuii AeHb aKTUBHO HCCIe-
IYIOTCSI TIOAXOMBI K €€ PEeIIeHHI0. DTa 3amada HCIOIb3yeTcs
IIPY CO3/IaHUM CHCTEM YIpaBJeHHs 0a3aMU NaHHBIX, OALEP-
JKMBAIOIIUX acCOIMAaTHBHBIA mouck. KpoMe Toro, oHa mpume-
HUMa TpU PEIICHUH BOMPOCOB MH(POPMALMOHHOH Ge30macHo-
CTH, CO3/IaHUH aHTUBUPYCHBIX MPOTrPaMM. AJITOPUTMBI ITOUCKA
MOJICTPOK B CTPOKE HCIIOJB3YIOTCS B 3a7adax OOHapyXKeHWs,
OCHOBAaHHOT'O Ha CUTHATYypax.

Mamepuaner u memoowsr. Pemenune 3amaunm Gasupyercs Ha
airoputMe Axo — Kopacuk, KOTOpBIi mpeacTaBiser codoit
KJIACCHYECKHH CIOCOO OCYIIECTBICHUS! MOUCKA TOJACTPOK B
cTpoke. Bmecre ¢ TeM mpuMeHEH HOBBII HOAXOJ B YacTH,
Kacaromieics: mpeIBapuTeIbHON 00pabOTKH.

Pesynomamor uccredosanus. [lokazana BO3MOKHOCTh TIOCTPO-
eHns1 QYHKIUH Tepexoaa M CyQPHUKCHBIX CCBUIOK IPH TTOMO-
M cy(pGHUKCHBIX MAacCHBOB ¥ CIICIMAIBHBIX OTOOpa)KeHHH.
HccnenoBana B3aMMOCBSI3b MEXIY NMPEePUKCHBIM TEPEBOM M
cydukcHBIME MaccuBaMu. JTO a0 BO3MOXKHOCTH pazpado-
TaTh NPUHIUITNAIGHO HOBBIH CIIOCOO TOCTpoeHHs (QyHKIMi
Mepexo/ia U OMIHOOK.

[NonyueHHbIE pe3yabTaThl MO3BOJIIOT CYIIECTBEHHO COKpa-
TUTHh BpEMs, 3aTpayrBacMoOe Ha IPEIBBIOOPHYIO 00pabOTKy
MHOXKECTBA CTPOK OOpaslOB NP HCIOIb30BAaHUM IIEJIOYHC-
JICHHOTO an(aBuTa.

B craThe mpuBEAEHO BOCeMb anroputMoB. OLeHeHbI pa3pado-
TaHHBIC aJITOPUTMBI. l_[OJ'ly‘-lCHHbIe PE3yIbTAaThl COTIOCTABJICHBI
C paHee HM3BECTHBIMH. J[OKa3aHBI JIBE TEOPEMbl U BOCEMb
nemM. ITpuBeneHb! Ba NpHMepa, WLTFOCTPUPYIOIIHE 0COOCH-
HOCTH NPaKTUYECKOTO MPUMEHEHUsI pa3paboTaHHOM HpoIeny-
PBI IPETIPOLIECCHHTA.

Obcyarcoenue u 3axmovenus. IIpennoxeHHas B JaHHOH CTaTbe
MpoILeaypa MPENPOLECCHHIa OCHOBBIBACTCS Ha CBSI3M MEXIY
Ccy(hUKCHBIM MacCHBOM, CO3/IaHHBIM Ha OCHOBE MHOXKECTBA
CTPOK 00pa3loB, U MOCTPOeHUEM (YHKIMI Mepexoia U OIIH-
00K Ha Ha4aJbHBIX 3Tanax pabots! aaropurma Axo — Kopac-
uk. Takodl MOAXOA OTIMYEH OT TPAAMIHOHHOTO U Tpedyer

Mazurenko A. V., et al. Accelerated preprocessing in task of searching substrings in a string

Masypenko A. B. u dp. Yckopennstit npenpoy

CUHZ 6 300

noucka nm)cmpox 6 cmpoke

initial stages of the Aho-Corasick algorithm. This approach
differs from the traditional one and requires the use of algo-
rithms providing a suffix array in linear time. Thus, the algo-
rithms that enable to significantly reduce the time for prepro-
cessing of a set of pattern strings under the condition of using
a certain type of alphabet in comparison to the known ap-
proach proposed in the Aho- Corasick algorithm are described.
The research results presented in the paper can be used in anti-
virus programs that apply searching for signatures of mali-
cious data objects in the memory of a computer system. In
addition, this approach to solving the problem on searching
substrings in a string will significantly speed up the operation

of database management systems using associative search.

Keywords: string searching, Aho-Corasick algorithm, prefix
tree, suffix array, information search, error function, transition
function

For citation: A.V. Mazurenko, N.V.Boldyrikhin. Accelerated
preprocessing in task of searching substrings in a string. Vest-
nik of DSTU, 2019, vol. 19, no. 3, pp. 290-300.
https://doi.org/10.23947/1992-5980-2019-19-3-290-300

HCTIONB30BaHMS AITOPUTMOB, MO3BOJIIIOIINX IIOCTPOUTH Cy(d-
(UKCHBII MaccuB 3a JuHeHHoe Bpems. TakuMm oOpa3oM, omu-
CaHBl aNTOPHUTMBL, IO3BOJIIIOIINE CYIIECTBEHHO COKPATHUThH
BpeMsi Ha NpeABapUTENbHYI0 00pabOTKy MHOXKECTBAa CTPOK
00pa3IoB NpH yCIOBUH UCIOIb30BAHHS ONPEIEICHHOTO THIIA
angaBuTa IO CPaBHEHUIO C W3BECTHBIM IIOIXOJIOM, NPEAJIO-
*eHHbIM A. Axo 1 M. Kopacuk.

PesynbTaTsl HcCleOBaHUH, NPHBEACHHBIE B CTAaThe, MOTYT
OBbITh MIPUMEHEHBI B AHTHBHUPYCHBIX NPOTpaMMax, UCIOIb3Y-
IOIMUX IOUCK CHUTHATYyp BPEIOHOCHBIX HH(GOPMAIMOHHBIX
00BEKTOB B IaMSTH BEMHCIUTENBFHONH cucTeMbl. Kpome Toro,
JaHHBIA TOIXOJ K PEIICHHIO 3aJadd TOHMCKa MOACTPOKU B
CTPOKE II03BOJISIET 3HAYUTENBHO YCKOPHTH pabOTy CHCTEM
ynpaBieHus: 6a3 JaHHBIX, NPUMEHSIOIINX AaCCOLUATHBHBII
TIOUCK.

KiioueBble cJI0Ba: MOWCK MOJACTPOKH, aIOPHTM AX0 —
Kopacuk, npepuxcHoe nepeBo, cypuKCHBIN MaccHB, MOUCK
nHpopmarmy, GyHKINs omHO0K, HYHKINS epexoaa.

Oébpasey ona yumuposanusa: Masypenko, A.B. YckopeHHbII
MIPETMPOIIECCHHT B 3aJaue MOMCKa MOJICTPOK B cTpoke / A. B.
Masypenko H. B. bonasipuxun // BectHuk [oH. TOC. TE€XH.
ya-Ta. — 2019. — T. 19, Ne 3. — C. 290-300. https://doi.org/
10.23947/1992-5980-2019-19-3- 290-300

Introduction. Nowadays, awareness of the cybersecurity of distributed information systems and individual

computing facilities is growing essentially [1]. A range of such tasks is wide enough [1-10]. Of special interest is the
creation of powerful antivirus software (SW). One of the most important tasks solved through such SW is searching
substrings in a string [1, 5, 6, 10-13].

Materials and Methods. The task of substring searching is to find all the lines in the text 7 with a total length
m matching any pattern from a given set of patterns P. Suppose that the sum of the lengths of all elements P consisting
of characters of the alphabet [is n. A solution to this problem was proposed by A. Aho and M. Corasick [6, 10]. In their

algorithm, the pre-election processing time is O(n|1 \) , and the search time is O(m|1 | + k) . Here, k is a number of match-

es found in the text with lines belonging to a set of samples.

Currently, the task of finding a substring in a string is being intensely investigated for two reasons:

- search engines are rapidly developing [11];

- the detection process in antivirus software products is based on signatures [1].

In this regard, algorithms have been created that have to be selected due to specific needs of the user. The latest
results obtained under solving the problem of searching a set of substrings are described in [13].

The results presented in this paper are based on the relationship between the suffix array created from a set of
pattern strings and the construction of transition and error functions at the initial stages of the Aho - Corasick algorithm.
This approach differs from the traditional one and requires using algorithms to construct a suffix array in linear time.

So, the paper describes the algorithms by which the pre-election processing time is reduced to O(n) .

, — k
Given the alphabet 7, a set of patterns P ={R.,P,,...,F,} where . €l , i=1k. Let us denote by n =Z' 1|P.|.

Assume that the alphabet / is a limited range of integers. The boundary may depend on the length of the string in ques-
tions el or may involve an interval [O,C] where c is a positive integer: ¢ 2 |s| . Let € € I be an empty string.

Let goto be a transition function and a failure — an error function. These modifications are concerned with the
methods for constructing the mentioned functions used in the Aho — Corasick algorithm [6, 10].

Suppose SuffArr(s) is a certain algorithm for constructing a suffix array for a string s e/ "in linear time. A
description of such algorithms can be found, for example, in [12—15].

Suppose x,y el * . Then, lep(x, y) is the largest common prefix of the strings x and y.

Information technology, computer science, and management

[\
\O
—_

http://vestnik.donstu.ru

292

Vestnik of Don State Technical University. 2019. Vol. 19, no. 3, pp. 290-300. ISSN 1992-5980 eISSN 1992-6006
Becmmuux /lonckozo zocydapcmeennozo mexnuueckoz2o ynugepcumema. 2019. T. 19, Ne 3. C. 290-300. ISSN 1992-5980 eISSN 1992-6006

Consider the strings € 1", s = s[s[0]s[1]...s[n—1]]. Let s[s[i]s[i +1]...s] /]| be a substring s including characters

fromitojwherei<j, i,j= 0,n—1. Let us denote p, by the suffix array corresponding to the string s. Suppose
ps = ps [p,[01p[1]...p[n —11],

that is s[s[ps[O]]...s[n—l]] < S[s[ps[l]]...s[n —1]] <..< SI:S [ps[n—l]]...s [n —1]] .

To construct a suffix array, the algorithm described in [15] will be used.

Supposea; &7, o, #0;, 1<i<j<k+l, oy <o, <..<oy,.Let Vbel o, <b, where 1<i<k+1. Grant-
ing P# &, alpha={0y,0,,....,04,0,} .

Suffix Array Processing Algorithm p_

Here, sel : s=o o, B...0 R0y, P el 1<i<k.
Adaptation (s, ps,alpha)
1. new_array < ¢

2. for (i <—|alpha|;i < |s

si++) |

3.j«0

4. while (s [s[ps [i]]...s[|s| —l]][j] ¢ alpha) {
5. new_array[i][j] <« s[s[ps[i]]...s[|s| —l]][j]
6.j«—j+1

7.}

8.}

9. ordered_list [0] <« new_array [O]

10. for (i < L;i <|s|~|alpha

;i++) {
11.j«<0
12. if(newiarray[i] # new__ array[i—l]) {

13. ordered_list[i] <« new_array[i]

4. j«j+1

15.}

16. }

17. return ordered_list

Lemma 1. Let P={R,P, ... 5}, s=oRa,P,...0; B0y, . Then the Adaptation algorithm builds an array of

lexicographically ordered suffixes of the patterns belonging to P over the time O(|s|—|alphal).

Proof. In the loop of 2—38, the construction of the new_array is performed, whose i-th element is a prefix of the
corresponding suffix s which includes all the characters of this suffix starting with the zero position to its first element
belonging to the set alpha. In this case, using the suffix array p,, all suffixes s are looped over according to their lexi-

cographic order. Thus, the new_array consists of all suffixes of the patterns belonging to P according to their lexico-
graphic sequencing, and the recurrence of some suffixes is possible.

Note that all strings starting with characters belonging to the alpha array, that is, the ﬁrst|alpha| suffixes, are

excluded from consideration. Then, in the loop of 10—16, using the new array, the ordered list array is constructed
through eliminating repetition strings. To do this, due to the lexicographic sequence of the strings, it is sufficient to
check whether the string in question coincides with the previous one.

The loop of 2-8 is executed over the time O(|s| —|alpha|) since all strings starting with characters belonging to
the alpha array are excluded from consideration. In the loop 10-16, |s| —|alpha| of string matches occur. Thus, we ob-

tain an asymptotic estimate of O(|s| —|alpha|) algorithm running time. The lemma is proved.

Partitioning algorithm according to lexicographic sequencing
Here, s is an array of lexicographically ordered strings.

Mazurenko A. V., et al. Accelerated preprocessing in task of searching substrings in a string

Ma3sypenko A. B. u op. YckopeHnHulit npenpoyeccunz 6 3a0 noucka noocmpox 6 cmpoke
DandC (s)
1. sub [0] <0
2.j«0

3. for (i(—O;i<|s|—l;i++) {
4. if (s[i]# s[i+1]) {
5.sub[j]«i+1

6.j« j+1

7.}

8. Sub[j]<—|s|

9. return sub

Lemma 2. The DandC algorithm based on an array of lexicographically ordered strings s constructs a sub array
consisting of positive integers that show the indices corresponding to the first strings among the strings with the first

characters equal over the time O(|s|) .

Proof. The boundary corresponding to the first character begins with 0, which corresponds to the assignment
performed in step 1. In the loop of 37, the first characters of the i-th and (i + 1)-th strings are sequentially compared

wherei = 0,|s| —2. If the characters are not equal, then the beginning of the boundary corresponding to the next charac-

ter is written to the sub array. Otherwise, the loop execution continues. The right boundary of the last character corre-
sponds to the number of strings in the s array (step 8).

The comparison in step 4 occurs over the time 0(1) , as the recording in step 5 and the increment in step 6 do.
Thus, the loop of 3—7 is performed over the time O(|s|) . The lemma is proved.

First link algorithm

Here, tree is a tree, lex words € 1 ’, link _num is the number of some character in lex words string, v is a
serial number of a new node that joins the node with the serial number node number .

BuildFirstLink (tree&, lex words&,v&,link _num,node _ number)

1. new tree.node [v]

2. tree.node [v] .State <— lex_words [lex_ words[0]...lex _ words[link]]

3. new tree.node [node_number] dink < tree.node [v]

4. tree.node [node _ number] dink.symbol <— lex_words [link _ num]

5. vev+l
Lemma 3. The BuildFirstLink algorithm constructs a new node with the sequence number v and an arc leading

from node_number to a new node v, in the tree over the time O(l) .

Substring link algorithm

Here, tree is a tree, lex words € 1 * , v is a serial number of a new node that joins the node with the serial
number sfart .

BuildSubstringLink (tree&, lex words&,v&, start)

1. for (k <« start;k < |lex7words|;k + +) {

2. new tree.node [v]

3. tree.node [v] State <— lex_words [lex _words[0]...lex _ Words[k]]

4. new tree.node [v —l] dink < tree.node [v]

5. tree.node[v—l] dink.symbol < lex_words [k]

6. v<ev+l1
7.}

Information technology, computer science, and management

[\
\O
(O8]

Vestnik of Don State Technical University. 2019. Vol. 19, no. 3, pp. 290-300. ISSN 1992-5980 eISSN 1992-6006
Becmmuux /lonckozo zocydapcmeennozo mexnuueckoz2o ynugepcumema. 2019. T. 19, Ne 3. C. 290-300. ISSN 1992-5980 eISSN 1992-6006

Lemma 4. The BuildSubstringLink algorithm constructs new nodes in free matching all prefixes of the string

lex_words starting with the prefix lex _words[lex _words[0]..lex_words[start]] over the time O(|lex _words|—start) .
Last link algorithm
Here, tree is a tree, lex _words € 1 * , v is a serial number of a new arc, / is an alphabet.

BuildLastLink (tree&, lex _words,v,I)

1. new tree.node [O] .link[v] <« tree.node [O]
2. symbols < &

3. for (i «—0i< |lex7words|;i++) {

4. symbols[i] < lex_words[i][0]

5.j«0

6. for (i <—O;i<|1|;i++) {

7.if (I[i] esymbols) {

8. tree.node[O] .link[v] symbol[j] « I[i]
9.j«j+1

10. }

11.}
Lemma 5. The BuildLastLink algorithm builds a loop at the root node. Its marking corresponds to a set of sym-

bols by which it is impossible to go to other nodes of the tree from the root node over the time O(|lex _ words|+|1]).

Transition Algorithm
Here, lex _words is an array of lexicographically ordered strings.

CreateLink (lex _ words)

l.str< <
2. sub < DandC (lex_ words)

3.vel
4. tree <~ J

5. tree.node [0] State «— €

6. for (i <—O;i<|sub|—l;i++) {

7. BuildFirstLink (tree, lex _words [sub[i]] 1,0, 0)

8. BuildSubstringLink (tree, lex _words [sub[i]] ,V, 1)

9. for (j < sublil+1; j < subli+1]; j++) {

10. temp < |lcp (lex_ words[j—1],lex _ words[j])| +1

11. z <« tree.getStateNumber(lcp (lex __words[j—1],lex _words| j]))
12. BuildFirstLink (tree, lex _words[j],v,temp, z)

13. BuildSubstringLink (tree, lex _words [J] Y, temp)

14.}
15.}

16. BuildLastLink (tree, lex _words,v,lex _ words)

17. return tree
Lemma 6. The CreateLink algorithm builds a prefix free with a loop at the root node over the time

O(Z ‘llj: wordsf |lex _ words[i]|j .

http://vestnik.donstu.ru

294

Mazurenko A. V., et al. Accelerated preprocessing in task of searching substrings in a string

A3YPeHKOo A. b. U . Y CKO, eHHbllZ” e CUHZ 6 RHOUCKA NOOCMPOK 6 CmMpOKe
M A.B.uop.y penpoy o 0

Proof. In step 2, the DandC algorithm is executed (see Lemma 2), after which, in step 5, the root node with the
serial number 0 of the tree is created. Its state is taken equal to a blank string € . Consider the loop of 6—15 at the i-th
step.

In step 7, using the BuildFirstLink algorithm, a node is created whose state corresponds to the first character of
the string lex words [sub[i]]. Given the construction of the sub array, it can be argued that such a character has not oc-
curred before among the first characters of the previous strings. Then, in step 8, the implementation of the BuildSub-
stringLink algorithm sequentially creates nodes whose state matches all prefixes of the string lex words [sub[i]] ex-

cluding the prefix built in the previous string.
In the loop of 9-14, using BuildFirstLink and BuildSubstringLink algorithms, we perform the same actions

with strings lying in an integer space [sub[i]+1,sub[i +1]—1]. Since each such string has a common non-zero prefix

with the previous string, the algorithm immediately switches to the state corresponding to the largest common prefix,
starting with which, it is required to build new nodes. In step 16, using the BuildLastLink algorithm, a loop at the root
node is created.

Steps 12 and 13 are performed over the time

0(1)+ O(|lex_ words[j]| —|lcp(lex_ words[j —l],lex_ words [j])| —1) =

= O(|lex_words [j]| —|lcp (lex_words [j —l],lex_words [j])|) .

Thus, it follows from Lemmas 2, 3, and 4 that the loop of 9-14 is executed over the time

O(Zsub[m]_l |lex_W0”dS[j]| —|lcp(lex_w0rds[j —l],lex_ words[j])D .

J=sub[il+1

The loop of 6-14 is executed over the time

O(Z_S_us_z |lex __words [sub[i]]U +

+O(Zmb—2 Zsub[i-*—l-]_l |lex _ words []]| - |le (Iex _words[j—1],lex _words []])U =

i=0 J=sublil+1

‘sub‘fl
=0 / ds [sub[i]||—|/ ds| |.
(Zi—O |ex_w0r s[su [1]]| |ex_w0r s|
It follows from Lemma 5, that step 16 is performed over the time
lex _words|-1
0(|lex_words|+z‘0 | |lex_w0rds [Z]U Thus, we obtain an asymptotic estimate of the running time of the

algorithm

O(|lex _ words|) + OKZ%JS_I |lex __words [sub[i]]| - |lex _ words|) +

‘lex_ words‘—l ‘lex_ words"—l

+0(|lex_words|+ |lex_words [i]|j=0(|Zex_words[i]|j.
i=0 i=0

The lemma is proved.
The goto function algorithm
Here, P is a set of pattern strings.

ConstructGoto (P)

l.s<—aBo,B...0 B0,

2. py < SuffArr(s)

3. alpha < {00, ,...,04 0y, }

4. ordered list < Adapmtion(s, D ,alpha)
5. j«0

6. lex words < &

. P_length <« {|R|.|B|....| B}

3

8. for (i «—05i< |ordered_list|;i++)

Information technology, computer science, and management

295

http://vestnik.donstu.ru

296

Vestnik of Don State Technical University. 2019. Vol. 19, no. 3, pp. 290-300. ISSN 1992-5980 eISSN 1992-6006
Becmmuux /lonckozo zocydapcmeennozo mexnuueckoz2o ynugepcumema. 2019. T. 19, Ne 3. C. 290-300. ISSN 1992-5980 eISSN 1992-6006

9.if ((|ordered _list[i]| € P_length) and (ordered list[i] € P))
10. lex_words[j++] <« ordered _list[i]

11. goto <— CreateLink(lex _words)

12. return goto

k
We should remind that » 224 1|Pl.| for a set of patterns P={R, P, ..., B} .

Theorem 1. The ConstructGoto algorithm develops the gofo function over the time O(n) .

Proof. In step 2, a suffix array p, for the string s is constructed. In step 4, using the Adaptation algorithm, all

suffixes of the strings belonging to a set of patterns P are written to the ordered list array. In this case, recurrences are
not excluded. In the loop of 8-10, an array lex words containing suffixes belonging to P and arranged in lexicographic
sequence without recurrences is constructed. In step 11, a prefix tree is built with a loop at the root node based on the
strings contained in the /ex words array. The data structure returned by the CreateLink algorithm defines exactly the
goto function.

Step 2 is completed over the time O(n+k+1) [12]. From Lemma 1, it follows that step 4 is completed over

the time O(n+k+1—k —1)=0(n). In the loop of 8-10, only strings whose length is equal to the length of any pattern

are considered.
Thus, no more than O(n) checks are needed to find patterns of P. From Lemma 6, it follows that step 11 is

|fex _words|-1

completed over the time O(|lex_w0rds[i]|j = O(n) Since k£ < n, we obtain an asymptotic estimate of

i=0
the running time of the O(n)+O(n+k+1)=0(n) algorithm. The theorem is proved.

Research Results

Example 1.
Suppose P = {one, on,once,cell,lull,eye, near} . Then
s = oy onea,onosonceocelloslullageyea,nearayg . (1
Table 1 shows the result of the goto function algorithm on the entry of the string s (1).
Table 1
Prefix tree structure
node number | node state link branched states from node symbols on /ink branches from node

0 € l.c;2.¢;3.1;4.n;5. 0 l.c;2.¢;3.1;4.n;5. 0
1 c 1. ce l.e
2 ce 1. cel 1.1
3 cel 1. cell 1.1
4 cell - —
5 e 1. ey 1.y
6 ey 1. eye l.e
7 eye - -
8 / 1. Iu 1.u
9 lu 1. lul 1.1
10 lul 1. lull 1.1
11 lull - -
12 n 1. ne 1
13 ne 1. nea l.a
14 nea 1. near 1
15 near - -
16 0 1. on l.n
17 on 1. onc; 2. one l.c;2. e
18 onc 1. once l.e
19 once — -
20 one — -

Mazurenko A. V., et al. Accelerated preprocessing in task of searching substrings in a string

Masypenko A. B. u dop. Yckopennutit npenpoyeccunz 6 3a0aue noucKa OOCHpoK 6 cmpoke

Suppose § = a,,,P.q,...a,Ba, R, is mirroring of the string s.
Failure function algorithm
Here, P is a set of pattern strings.

FalseSuﬁ‘(P)

1. § <oy, Boy...0,Bo By,

2. p; < Suffdrr(s)

3. alpha < {a,,0,,...,04 0y, }

4. ordered_list «— Adaptation(§, p;,alpha)
5. link« Q&

6. for (i <« 0;i <|§
7. inLink[i] < ¢

8. sub < DandC (ordered _list)
9.str«

10. for (i «0i< |sub|—1;i++)

si++)

11. for (j <« subli]; j < Sub[i+1]—1;j++)

12. str[j] <« |lcp(0rdered _list] j],ordered _list[j+ 1])|

13. for (i «0i< |sub|—1;i++)

14. for (k <« sub[i+1]-1;k > sub[i];k— —) {

15. for (j < sublil; j <k; j++)

16. min_element <— min (str[k —1],str[k -2],..., str[j])

17.if (min _element = |0rdered 7list[j]|)

18. min _temp [j - sub[i]] <« min_element

19.}

20. max_element <— max (mjn __temp[0],min _temp[1],...,min _ temp[w])
21. naiitn max_index: min _temp|[max_index | = max_element
22. inLink[k] < ordered _list [maxi index + sub[i]]

23}

24. for (i «—0;i< |inLink|;i++) {

25. link[i][0] <« ordered _list[i] ; //string mirroring

26. link[i][1] <« inLink[i] ;// string mirroring

27.}
28. return link

Remark. In string 20, w < sub[i+1]—sub[i]—1.
Theorem 2. The FalseSuff algorithm constructs the failure function over the time O(n) . Proof. In step 1, we

construct an array of characters that contains mirror images of strings belonging to a set of patterns P and some unique
characters. In step 2, we construct a suffix array p; for the string § . In step 4, using the Adaptation algorithm, all suf-

fixes of the strings belonging to a set of patterns P (a set of patterns consisting of mirrored strings P) are written to the
ordered_list array, and recurrences are not excluded.

In step 8, the DandC algorithm is executed (see Lemma 2), after which, in the loop of 10-12, we find the
length of the largest common prefix between the strings that match the first character. We write the result to the st ar-
ray. Note that this value is zero for the strings for which this condition is not satisfied. In the loop of 13-23, a special
mapping is constructed between the strings for which the first character matches. We describe this mapping. Indicate
some string

s € ordered _list [ordered _list [sub[i]] ,...,ordered _list [sub[i +1]— 1]] .

Information technology, computer science, and management

297

Vestnik of Don State Technical University. 2019. Vol. 19, no. 3, pp. 290-300. ISSN 1992-5980 eISSN 1992-6006
Becmmuux /lonckozo zocydapcmeennozo mexnuueckoz2o ynugepcumema. 2019. T. 19, Ne 3. C. 290-300. ISSN 1992-5980 eISSN 1992-6006

Consider a set of strings belonging to ordered _list[ordered _list[subli]],...,ordered _list[subli+1]— 1]] . Their length

is equal to the length of the largest common prefix with s excluding s itself. From this set, we find the string s’ that has
an overall length, and assign it to 5. Obviously, the constructed mapping is a bijection under the condition of s’ # € . The
result is written to the inLink array. In the loop of 24-27, using the inLink array, we explicitly indicate the constructed

~!

mapping while mirroring each of the strings. Thus, we assign the §' node to the § node of the prefix tree constructed
on the basis of the array of patterns P. Its state is equal to the largest proper suffix § that occurs among the many states
of the considered prefix tree. But according to the definition of the failure function, this is the desired result.

k
Suppose n =z ._1|P,.|. Step 2 is completed over the time O(n+k+1) [12]. From Lemma 1, it follows that

step 4 is performed over the time O(n+k+1—k—1)=0(n). The loop of 6-7 is executed over the time O(|5]) = O(n).

From Lemma 2, it follows that step 8 is performed over the time O(n) The loop of 10—12 is executed over the time

sub|—2 subli+1]—
(Z - z ; | jj O(k), Vj v ;=1.The loop of 14-23 is completed over the time
J=sublil+

subli+1]-1 subli+1]—sub[i]-2 . . .
O(Zk by ,]+1Z, g ,) (Z,——o Yj):O(sub[l+l]—sub[l]—l), vy =1

Then the loop of 13-23 is executed over the time
[sub|-2)) B ~
O(Zi—o (subli+1]— sub[i] —1)) = O(sub[|sub| -1]) = O(k

Since |inLink| <n, then the loop of 24-27 is executed over the time 0(|inLink|) = O(n) Thus, considering

that £ <n, we obtain an asymptotic estimate of the running time of the O(n) + O(n +k+ 1)+ O(k) = O(n) algorithm.

The theorem is proved.
Example 2.

Suppose, as in example 1, P ={one,on,once,cell,lull,eye,near} . Then
§ = agraena,eyeolluloslleco,ecnoosnoo,enoaq; . ()

Table 2 shows the result of the failure function algorithm on the entry of the string § (2).

Table 2
False links between nodes

inLink array link array inLink array link array
0. € 0. 0.nea; 1. ¢ 10. [10. 0.cel; 1.1
1. € 1. 0.c;1. ¢ 1. I 11. O.cell; 1.1
2. c 2. 0.onc; 1. ¢ 12. [12, 0. ;1.1
3. € 3. 0.e;1. ¢ 13. [13, 0. lul; 1.1
4, e 4. O.ce; 1. e 14. € 14. 0.m;1. ¢
5. ec 5. 0. once; 1. ce 15. n 15. 0O.om;1.n
6. e 6. 0.ne;1. e 16. € 16. 0.0;1. ¢
7. en 7. 0. one; 1. ne 17. € 17. 0. near; 1. ¢
8. e 8. 0.eye; 1. e 18. € 18. 0.lu;1. ¢
9. € 9. 0.5;1. ¢ 19. € 19. O0O.ep; 1. ¢

For all nodes for which Fig. 1 does not show false links, we believe that a false link leads to a root node.

http://vestnik.donstu.ru

298

Mazurenko A. V., et al. Accelerated preprocessing in task of searching substrings in a string

Masypenko A. B. u dop. Yckopennutit npenpoyeccunz 6 3a0aue noucKa OOCHpoK 6 cmpoke

='--»

mewmerm s s r— - ——————)
v ce e ————————

[™

Fig. 1. Prefix tree with false links

Discussion and Conclusions. A new preprocessing procedure in the Aho-Corasick algorithm is described. It
runs in the linear time O(n) . The connection between the suffix arrays and a prefix tree was investigated which allowed

us to propose a different way of constructing transition and failure functions. The results obtained provide reducing the
time on the pre-election processing of a set of pattern strings when using the integer alphabet.

References

1. Stallings, W. Computer security: principles and practice. Boston: Pearson, 2012, 182 p.

2. Chernyshev, Y.O., et al. Issledovanie vozmozhnosti primeneniya geneticheskikh algoritmov dlya realizatsii
kriptoanaliza blochnykh kriptosistem. [Feasibility study of genetic algorithms application for implementation of block
cryptosystem cryptanalysis.] Vestnik of DSTU, 2015, vol. 15, no. 3 (82), pp. 65-72 (in Russian).

3. Sadovoy, N.N., Kosolapov, Yu.V., Mkrtichyan, V.V. Programmnye utility dlya kontrolya i predotvrash-
cheniya setevykh atak na urovne dostupa k seti. [Software utilities to control and prevent network attacks at the network
access level.] Vestnik of DSTU, 2005, vol. 5, no. 2 (24), pp. 173—178 (in Russian).

4. Mogilevskaya, N.S., Kulbikayan, R.V., Zhuravlev, L.A. Porogovoe razdelenie faylov na osnove bitovykh
masok: ideya i vozmozhnoe primenenie. [Threshold file sharing based on bit masks: concept and possible use.] Vestnik
of DSTU, 2011, vol. 11, no. 10, pp. 1749—1755 (in Russian).

5. Sheludko, A.A., Boldyrikhin, N.V. Poisk informatsionnykh ob"ektov v pamyati komp'yutera pri reshenii
zadach obespecheniya kiberbezopasnosti. [Search of information objects in computer memory solving the problems of
cyber security provision.] Young Researcher of the Don, 2018, no. 6 (15), pp. 81-86 (in Russian).

6. Mazurenko, A.V., Boldyrikhin, N.V. Obnaruzhenie, osnovannoe na signaturakh, s ispol'zovaniem algoritma
Akho — Korasik. [Signature-based detection using the Aho-Corasick algorithm.] Proc. of North Caucasus Branch of
Moscow Tech. University of Communications and Informatics, 2016, no. 1, pp. 339-344 (in Russian).

7. Mazurenko, A.V., Arkhangelskaya, N.S., Boldyrikhin, N.V. Algoritm proverki podlinnosti pol'zovatelya,
osnovannyy na graficheskikh klyuchakh. / [User authentication algorithm based on pattern locks.] Young Researcher of
the Don, 2016, no. 3 (3), pp. 92-95 (in Russian).

Information technology, computer science, and management

299

http://vestnik.donstu.ru

300

Vestnik of Don State Technical University. 2019. Vol. 19, no. 3, pp. 290-300. ISSN 1992-5980 eISSN 1992-6006
Becmmuux /lonckozo zocydapcmeennozo mexnuueckoz2o ynugepcumema. 2019. T. 19, Ne 3. C. 290-300. ISSN 1992-5980 eISSN 1992-6006

8. Mazurenko, A.V., Stukopin, V.A. Geometricheskaya realizatsiya metoda provedeniya elektronnykh vy-
borov, osnovannogo na porogovom razdelenii sekreta. [Geometric realization of electronic elections based on threshold
secret sharing.] Vestnik of DSTU, 2018, vol. 18, no. 2, pp. 246-255 (in Russian).

9. Cherkesova, L.V, et al. Algoritmicheskaya otsenka slozhnosti sistemy kodirovaniya i zashchity informatsii,
osnovannoy na porogovom razdelenii sekreta, na primere sistemy elektronnogo golosovaniya. [Complexity calculation
of coding and information security system based on threshold secret sharing scheme used for electronic voting.] Vestnik
of DSTU, 2017, vol. 17, no. 3, pp. 145—155 (in Russian).

10. Antonov, E.S. Kak nayti million. Sravnenie algoritmov poiska mnozhestva podstrok. [How to find a mil-
lion. Substring set searching algorithms comparison.] RSDN Magazine, 2011, no. 1, pp. 60—67 (in Russian).

11. Tarakeswar, M.K., Kavitha, M.D. Search Engines: A Study. Journal of Computer Applications, 2011,
vol. 4, no. 1, pp. 29-33.

12. Karkkainen, J., Sanders, P., Burkhardt, S. Linear work suffix array construction. Journal of the ACM,
2006, vol. 53, no. 6, pp. 918-936.

13. Baklanovsky, M.V. Khanov, A.R. Povedencheskaya identifikatsiya program. [Identification of programs based on
the dehavior.] Modeling and Analysis of Information Systems, 2014, vol. 21, no. 6, pp. 120—130 (in Russian).

14. Becher, V., et al. Efficient repeat finding in sets of strings via suffix arrays. Discrete Mathematics and The-
oretical Computer Science, 2013, vol. 15, no. 2, pp. 59-70.

15. Shrestha, A.M.S., Frith, M.C., Horton, P. A bioinformatician's guide to the forefront of suffix array con-
struction algorithms. Briefings in Bioinformatics, 2014, vol. 15, no. 2, pp. 138-154.

Submitted 22.01.2019
Scheduled in the issue 12.04.2019

Authors:

Mazurenko, Alexander V.
mathematician-programmer, DDoS-GUARD LLC (62/2, Budenovsky Pr., Rostov-on-Don, 344002, RF)
ORCID: http://orcid.org/0000-0001-9541-3374

mazurencoal@gmail.com

Boldyrikhin, Nikolay V.

associate professor of the Cybersecurity of IT Systems Department, Don State Technical University
(1, Gagarin Square, Rostov-on-Don, 344000, RF), Cand.Sci. (Eng.)

ORCID: http://orcid.org/0000—0002—-9896-9543,

boldyrikhin@mail.ru

