Vestnik of Don State Technical University. 2019. Vol. 19, no. 4, pp. 389-397. ISSN 1992-5980 eISSN 1992-6006
Becmuux /lonckozo zocydapcmeennozo mexnuueckoz2o ynugepcumema. 2019. T. 19, Ne 4. C. 389-397. ISSN 1992-5980 eISSN 1992-6006

INFORMATION TECHNOLOGY, COMPUTER
SCIENCE, AND MANAGEMENT
NHOOPMATUKA, BBIYUCJIUTEJIBHASA
TEXHUKA U YITPABJIEHUE

UDC 681.3.681.5

https://doi.org/10.23947/1992-5980-2019-19-4-389-397

Genetic algorithm efficiency improvement in the course of set cover problem solution”

I. S. Konovalov', V. A. Fatkhi?, V. G. Kobak®"

123Don State Technical University, Rostov-on-Don, Russian Federation

IoBbimenue 3pGpeKTUBHOCTH PA0OTHI FeHETHYECKOr0 AJrOPUTMA B NIpoLecce pelieHus 3212491 NOKPbITUS

ook
MHOXKECTB

H. C. KOHOBaJIOBl, B. A. (l)aTXl/IZ, B.T. KoGak®"

123 ToHCKO# ToCyaapCcTBeH b TeXHUUeCKHit yHuBepcuTeT, PocTos-Ha-J[oHy, Poccuiickas denepartus

Introduction. Practical tasks (location of service points, crea-
tion of microcircuits, scheduling, etc.) often require an exact
or approximate to exact solution at a large dimension. In this
case, achieving an acceptable result requires solving a set cov-
er problem, fundamental for combinatorics and the set theory.
An exact solution can be obtained using exhaustive methods;
but in this case, when the dimension of the problem is in-
creased, the time taken by an exact algorithm rises exponen-
tially. For this reason, the precision of approximate methods
should be increased: they give a solution that is only approxi-
mate to the exact one, but they take much less time to search
for an answer at a large dimension.

Materials and Methods. One of the ways to solve the covering
problem is described, it is a genetic algorithm. The authors use
a modification of the Goldberg model and try to increase its
efficiency through various types of mutation and crossover
operators. We are talking about gene mutations, two-point
mutations, addition and deletion mutations, insertion and dele-
tion mutations, saltation, mutations based on inversion. The
following types of crossover operator are noted: single-point,
two-point, three-point and their versions with restrictions,
uniform, triad. The effect of the stopping condition and the
probability values of genetic operators on the accuracy of the
solutions is investigated. It is shown how an increase in the
number of individuals in a generation affects the efficiency of
a solution.

Research Results. The experiment results allow us to draw
three conclusions.

1) It is recommended to use a combination of gene mutation
and single-point crossing.

2) With an increase in the number of individuals, the accuracy
of the result and the time to obtain it increases. The average
deviation from the exact result at a task size of 25 x 25 was
0%, at 50 x 50 — 0%, at 75 x 75 — 0.013%, at 100 x 100 — 0%,
at 110 x 110 — 0% (the number of individuals was 500).

3) It is advisable to use the probabilities of the mutation and

" The research is done within the frame of the independent R&D.
* E-mail: xigorx92@mail.ru, fatkhi@mail.ru, valera33305@mail.ru
" PaGoTa BHITIONHEHA B pamkax uHMImatuBHONH HUP.

Beeoenue. Tlpaktuueckue 3amaun (pa3sMeIICHHE IMyHKTOB 00-
CITy’)KMBaHUS, CO3IaHAE MHKPOCXEM, COCTABICHHUE PACIIHCAHUH
U Tp.) 3a49acTyi0 TpeOyIOT TOYHOTO WM MPUOIIKCHHOTO K
TOYHOMY peIIeHUs IpH OOJIBIION pa3MepHOCTH. JlocTmkeHHne
MPUEMIIEMOTO pe3yibTaTa B JAHHOM Cllydae TpeOyeT peleHus
3aJa4M ITOKPBITHS MHOXXECTB — (YHIAMEHTAJIbHON JUIST KOM-
OMHATOPUKU U TEOPUH MHOXKECTB. TOUHOE pEIIeHHE MOXHO
HOJYYHUTH C MOMOIIBIO EPEOOPHBIX METOJIOB, OJJHAKO B ITOM
cllydqae IpH MOBBIIICHHH Pa3MEpPHOCTH 33ahadyd BO MHOTO pa3
BO3pacTaeT BpeMs pabOTHl TOYHOTO ajaroputMma. [lo aToii mpu-
YHHE CJIeIyeT YBEINYUBATh TOUYHOCTh HPHOIIMKEHHBIX METO-
JIOB: OHU JAIOT PEIICHUE, JHIIb NPUOIMKEHHOE K TOYHOMY,
OJTHAaKO 3aTPAauMBAIOT Ha MOMCK OTBETa HAMHOT'O MEHBINE Bpe-
MEHH TIPH OOJIBIION pa3MEpPHOCTH.

Mamepuanvt u memoowi. ONHCHIBaETCS OIUH H3 CIIOCOOOB
pelIeHus 3a1aul MOKPBITHS — TeHETHYECKUH alropuT™. AB-
TOPBI HCHONB3YIOT MogupuKkanuio monxenu [onnbepra u mel-
TAIOTCSI MOBBICHTH €€ AP ()EKTUBHOCTH C MMOMOIIIBIO Pa3IMYHBIX
BHUJIOB OIlepaTopa MyTaIlMH U CKpemuBaHus. Peds uzer o ren-
HOHM MyTanuH, JBYXTOUSUHOH MyTalluy, MyTaIluy J00aBICHHS
U y/IaJIeHUs], MyTallii BCTaBKU M yJaJeHus, CalbTalllH, MyTa-
IUAX Ha OCHOBe HMHBepcHH. OTMEYEHBI CIEAYIONIIHe BHJBI
oreparopa CKpEI[MBAaHMSA: OJHOTOYEYHBIH, JBYXTOYEUHBIM,
TPEXTOYEUHBIII M MX BEPCHU C OTPAaHWICHHSAMH, PaBHOMEp-
HBIH, TpuangHelid. MccaenyeTcs BIMsSHUE YCIOBHUS OCTaHOBA U
3HAUEHUI BEPOSTHOCTEH T'€HETHYECKHX OIEepaTopoB Ha TOY-
HOCTh TIONy4aeMbIX pemeHud. IlokazaHo, KakuM oOpa3om
YBEIUUCHHUE YUCIIa 0COOCH B TOKOJCHUH BIHSIET Ha d(dek-
THUBHOCTD PEIICHUS.

Pesynomamor ucciedosanus. VITOrn 3KCIEPUMEHTOB MO3BO-
JUSIFOT CZIeaTh TPH BBIBOJA.

1) PexomeHmyeTcss MCHONB30BaTh COYETAHHWE T€HHON MyTa-
WA U OTHOTOYECYHOI'O CKPECIINBAHUA.

2) Ilpu moBBINIEHNM KONMYECTBA OCOOEH pacTeT TOYHOCTDH
pe3yabTaTa u Bpems ero nonydeHus. CpeaHee OTKIOHEHHE OT
TOYHOTO pe3yJibTaTa MpHU pa3Mepe 3aaadu 25x25 cocTaBHIIO
0 %, ipu 50x50 — 0%, ipu 75%x75 — 0,013 %, mpu 100x100
— 0 %, mpu 110x110 — 0 % (xommgecTBO ocobeit — 500).

3) IlenecooOpa3HO HCHONB30BaTh BEPOSTHOCTH OIEpaTopa

Information technology, computer science, and management

389

http://vestnik.donstu.ru

390

Vestnik of Don State Technical University. 2019. Vol. 19, no. 4, pp. 389-397. ISSN 1992-5980 eISSN 1992-6006
Becmuux /lonckozo zocydapcmeennozo mexnuueckoz2o ynugepcumema. 2019. T. 19, Ne 4. C. 389-397. ISSN 1992-5980 eISSN 1992-6006

crossover operator 100% and 100%, respectively.

Discussion and Conclusions. Recommendations are given to
improve the efficiency of covering problem solution. To this
end, a preferred combination of the genetic algorithm parame-
ters, of types of crossover and mutation operators is indicated.

Keywords: genetic algorithm, set cover problem, Goldberg
model, stopping condition, crossing, mutation.

For citation: 1.S. Konovalov, et al. Genetic algorithm effi-
ciency improvement in the course of set cover problem solu-
tion. Vestnik of DSTU, 2019, vol. 19, no. 4, pp. 389-397.
https://doi.org/10.23947/1992-5980-2019-19-4-389-397

Mmyranuu u ckpemuBanug 100 % u 100 % cooTBeTCTBEHHO.
Obcyscoenue u 3axnovenus. JlaHpl PEKOMEHAAINH, TT03BOJIS-
FONIHE TIOBBICUTH 3()QEKTUBHOCTh PEIICHUS 3a/1a91 TTOKPBITHUSI.
C 5TOl 1eNbI0 yKa3aHO MPEANOYTUTENbHOE COYeTaHHe Mapa-
METPOB T€HETHYECKOTO AJITOPUTMa, THIIOB ONEPaTOPOB CKpe-
NIMBaHUS U MyTaIli{

KiroueBble ciioBa: TeHETHUCCKHUI AIITOPUTM, 3aJlavda MOKPLI-
THA MHOXECTB, MOJICIIb Fonz[6epra, yCJIOBUE OCTaHOBA, CKpE-
HUBaHUE, MyTallusd.

Oébpasey ona yumuposanus: Konosanos, 1. C. IloBsienue
3P PEeKTUBHOCTH PabOTHI TCHETHYECKOTO AITOPUTMA B MPOIIEC-
ce pereHus 3aga4n MokpeiTHs MHOXecTB / Y. C. KoHoBanos,
B. A. ®atxy, B. I'. Kobak // Bectruk JIoHCKOTO TOC. T€XH. YH-

Ta. — 2019. — T.19, Ned4. — C.389-397.
https://doi.org/10.23947/1992-5980-2019-19-4-389-397

Introduction. Many of practical problems require an exact or approximate to exact solution with high dimensionali-
ty. Among these tasks there are the location of service points, the creation of microcircuits, scheduling. In this case, achieving
an acceptable result requires solving a set cover problem, which is fundamental for combinatorics and the set theory. An exact
solution can be obtained using exhaustive methods (for example, the branch-and-bound method). Naturally, with an increase
in the problem dimension, the time taken by the exact algorithm rises exponentially. For this reason, the accuracy of approxi-
mate methods should be increased: they give a solution that is only approximate to the exact one, but they take much less time
to find an answer with high dimensionality.

The following practical task can also serve as a good example. Assume, you need to assemble a team of specialists
for a ship. Crew members should possess in aggregate all the required skills, but the number of co-workers should be minimal.
This is an unweighted covering problem, that is, the “scales” of group members are the same and therefore not important. If to
assign a certain value - weight (for example, working experience) to each member of the team, then the task will be balanced.
An actual practical problem is to solve this problem in a shorter time, which provides achieving a result that is as close as pos-
sible to the exact one.

Materials and Methods

Research Objective. Given a population U of n elements and an aggregate of subpopulations U, S = {S,,..., S;}.
Each subpopulation S; is associated with some non-negative cost c: S — Q. S’ S is a covering if any element of U belongs to
at least one element of S'[1, 2].

The task can be presented in two versions: weighted and unweighted. The weighted covering problem involves find-
ing an aggregate of subpopulations that covers the whole population U and has minimum weight. In the unweighted version,
the resulting population should have the smallest possible number of subpopulations.

Problem-solving techniques. Genetic algorithm. Covering problems are solved using heuristic methods, approxi-
mate algorithms with a priori estimate, and exact algorithms [3, 4].

Exact algorithms (the best-known of them is the branch-and-bound method) give an exact solution, but are useless in
large-dimensional problems, because they take too much time. If the accuracy of the solution can be neglected to a certain
extent, it is recommended to use approximate algorithms [5] which solve the problem in an acceptable time. We are talking
about algorithms with a priori estimate (for example, the greedy algorithm [6]) and probabilistic heuristics (ant colony method
[7, 8], neural networks, evolutionary calculations).

This paper discusses genetic algorithms (GA) and ways to improve their efficiency. In 1975, John Holland proposed
a probabilistic GA based on the rules of natural selection and inheritance. The GA properties are studied in [10, 11]. A de-
tailed description of the applicability of the genetic algorithm for solving a covering problem is given in [1]. GA application
methods for this task are described in [12, 13].

The authors use the Goldberg model [14] which is modified as follows: various types of the mutation and crossover
operator are used, protection against the appearance of “incorrect” covering under the variation of individuals is provided.

We describe basic parameters of this algorithm. Relating to the individual, binary coding is used (“0”, “1”). The
evaluation function can be expressed by the following formula:

n
ZC‘I-X]- — min,
J=1

where x* is n- dimensional vector for which the j-th element x]f,- is equal to 1 if the subpopulation §j is an integral part of
the covering and is equal to 0 otherwise; c; is the cost of the subpopulation S;.

The condition for stopping the algorithm is the number of generations of persistency of the solution.

The Goldberg model uses tournament elimination of individuals. The authors use the equal-probability random
selection — the choice of two individuals of the generation to apply the crossover and (or) mutation operator to them.

Konovalov 1. S., et al. Genetic algorithm efficiency improvement in the course of set cover problem solution

Konoeanos H. C. u op. Ilogv depexm mu p bl 2EHEMUYECKO20 ANZOPUMMA 6 NPOYECCe PEUEHUA 3A0auU ROKPLIMUA MHOIICECING

In [15], a modification of this algorithm using the strategy of elitism is described.

Overview of the types of crossover operator. When two individuals are crossed, the offsprings descend a
part of the genes from each of the parents, and thereby the search space is expanded. In the classic GA version, a single-
point crossover is used. Scientists involved in genetic algorithms offer their versions of this operator [16, 17]. As men-
tioned earlier, the authors have proposed binary coding of an individual, rather than real, so only some certain versions
of all can be used. Crossover of the individuals with real genes is described in [16]. Here is an overview of the types of
crossover appropriate for the application in this GA.

Single-point crossover (Fig. 1). Two individuals are selected for crossover.

Parent 1
Lfofrfrfofofrfrfrfe]
Parent 2
Lofofrjofrjrjofojrjo]
Crossover point is gene #4
Offspring 1
Cfofrfryefrjefojrfe]
Offspring 2
ofofrjofofofrfrirjo]

Fig. 1. Single-point crossover

The crossover point is played at random. A part of the genes of parent 1 is copied to offspring 1 to the crosso-
ver point, and a part of the genes of parent 2 is copied after the crossover point. Offspring 2 is created in a similar way,
but vice versa.

Two-point crossover (Fig. 2). Two individuals are selected for crossover.

Parent 1
Lfefrfrfefofrfrfrfe]
Parent 2
(ofofrfofrfrjofejrfo]

Crossover point 1 is gene #3, crossover point 2 is gene #7

Offspring 1
Lfefrfofrfrjofrfrie]
Offspring 2
ofofrfrjofojrfejrio]

Fig. 2. Two-point crossover

Two different crossover points are played at random. A part of the genes of parent 1 to the crossover point 1, a
part of the genes of parent 2 between the crossover points, and a part of the genes of parent 1 after the crossover point 2
are copied to offspring 1. Offspring 2 is generated in the same way, but vice versa.

A multipoint crossover and its special case, a three-point crossover, operate in like manner. The operators de-
scribed can be modified, namely: verify, in addition, that the crossover points are selected only in those places where
the genes of the individuals of the parents have different meanings. Thus, limited single-point, two-point, and three-
point crossovers appeared.

Uniform crossover [16] (Fig. 3). A mask is randomly generated, a binary individual. In this case, a part of the
offspring genes descends from one parent, and a part - from another.

Parent 1
[rfefrfrfofojrfrfrfo]
Parent 2
[ofofrfofrjrjofofrfo]
Mask

Offspring 1
Lo fefrfofrye]
Offspring 2
Lofofrfefofofefrfrje]

Information technology, computer science, and management

Fig. 3. Uniform crossover 391

http://vestnik.donstu.ru

392

Vestnik of Don State Technical University. 2019. Vol. 19, no. 4, pp. 389-397. ISSN 1992-5980 eISSN 1992-6006
Becmuux /lonckozo zocydapcmeennozo mexnuueckoz2o ynugepcumema. 2019. T. 19, Ne 4. C. 389-397. ISSN 1992-5980 eISSN 1992-6006

Next, the mask is analysed. If it includes “1”, then the corresponding gene of parent 1 goes to the correspond-
ing place of offspring 1. If otherwise, then offspring 1 descends the gene of parent 2.

Offspring 2 is generated in the opposite way. The gene is borrowed from parent 1 if there is “0” at the same
place in the mask. If otherwise, then offspring 1 descends the parent gene.

A similar idea is used in the triad crossover [16]. The difference is that a randomly selected individual from a
generation is used as a mask. Then, 10% of the mask genes undergo mutation. Further, if the gene of parent 1 matches
the gene of the mask, then this gene proceeds to offspring 1, otherwise, the gene descends from parent 2. In offspring 2,
at the places where offspring 1 descended the genes of parent 1, the genes of parent 2 are located, and vice versa.

Overview of the binary mutation operator types. What is the role of mutation in the evolutionary process? If
only the crossover operator is used, in the end, the appearance of new individuals will be stopped. To qualitatively mod-
ify an individual, the mutation operator, which helps to increase genetic diversity, should be used.

In the classical GA, single-point mutation operator is used (Fig. 4): a mutation point is randomly selected in an
individual — a gene which then swaps its value with the neighbouring gene.

Parent
[tfoft]rofofuftfrfo]
Mutation point = gene #4
Offspring
[tfoftfofrjofrfrjtfo]

Fig. 4. Single-point mutation operator

In addition to this mutation, several more types are considered.
Two-point mutation operator (Fig. 5) is a one-point mutation operator modification: two genes are randomly se-

lected, and they exchange their values.
Parent

LfofrfrfoJoftft]tfo]
Mutation point = gene #4 and #7
Offspring
[tfofr]rofofrfrftfo]

Fig. 5. Two-point mutation operator

Gene mutation (Fig. 6) is based on the fact that the value of one randomly selected gene is inverted.
Parent
[foftfrfofofujtfrfo]
Mutation point = gene #4
Offspring
[t[oftofofofrftfrfo]

Fig. 6. Gene mutation

Addition and deletion mutation [16] (Fig. 7) is obtained through combining two operations: adding a random
gene to the chromosome tail and removing a random gene from the resulting chromosome.

P t
o[To[o[1[1[1[0]
Addition of gene «0» to individual tail
[toft]tfofofrftftfofo]
Deletioofr]lC of gene #4
sprin
(o oo T o]0]

Fig. 7. Addition and deletion mutation

Insertion and deletion mutation [16] is similar to the addition and deletion mutation: a random gene is added to
a random chromosome position and a random gene is removed from the resulting chromosome.

Mutation based on mutation density [16]. Each gene of an individual mutates with a certain probability. The
probability of gene mutation is usually selected so that 1% to 10% of the genes undergo modification.

Saltation [17] (Fig. 8) is mutation based on the inversion of k-genes of an individual.

Konovalov 1. S., et al. Genetic algorithm efficiency improvement in the course of set cover problem solution

Konoeanos H. C. u op. Ilogv depexm mu p bl 2EHEMUYECKO20 ANZOPUMMA 6 NPOYECCe PEUEHUA 3A0auU ROKPLIMUA MHOIICECING

Parent
HEDREEN R
k =3, mutation of genes #4, #6, #7
Offspring
[t[ofrfofofrfofrfrfo]

Fig. 8. Saltation
Inversion [17] (Fig. 9) is mutation of genes between two randomly selected change points.
Parent
[LfofrftfojoJtjtftfo]
Change points are gene #4 and #7

Offspring
Lfofrfofrjrjofrjrfo]

Fig. 9. Inversion
Translocation [17] (Fig. 10) is mutation of genes which appear in two randomly selected parts of an individual.
Parent
[tfoft]t]ofoJtfrft]o]
Interval #1 = [gene #1; gene #3], Interval #2 = [gene #5; gene #7]

Offspring
[oftfofrfrfrjofrfrio]

Fig. 10. Translocation

Addition [17] is mutation in which an offspring individual is generated through inverting each gene of a parent
individual.

Research Results

Analysis of the genetic algorithm performance using various “mutation + crossover” combinations. What
combinations of types of binary mutation and crossover are used for more advantage to increase the GA efficiency? The
authors have developed a software tool using the C Sharp language to compare genetic algorithms for optimal solutions
and time consuming. For experiments, we used a personal computer with the Microsoft Windows 10 Pro x 64 operating
system, Intel (R) Core (TM) i5-2500KCPU 3.30GHz processor, and 6 GB RAM.

100 experiments were carried out with n x m matrices, where 7 is the number of subpopulations of population
U, m is the number of elements of the population U. The matrices are generated randomly. The following conditions are
observed.

- Coefficient of the matrix for occupancy of subpopulations with units p = 0.5.

- Weights of subpopulations are randomly generated from the interval from 1 to 200.

- The number of subpopulations = 100, power of the population U = 100.

For GA, the following parameters are used.

- Number of generations = 50.

- Crossover probability = 1.

- Mutation probability = 1.

- Stopping condition = 100 generations.

- Crossover operator:

Crl — single-point;

Cr2 - limited single-point;

Cr3 - two-point;

Cr4 - limited two-point;

Cr5 - three-point;

Cr6 - limited three-point;

Cr7 - uniform;

Cr8 - triad.

- Mutation operator:

Mutl - gene; 393

Information technology, computer science, and management

http://vestnik.donstu.ru

394

Vestnik of Don State Technical University. 2019. Vol. 19, no. 4, pp. 389-397. ISSN 1992-5980 eISSN 1992-6006
Becmuux /lonckozo zocydapcmeennozo mexnuueckoz2o ynugepcumema. 2019. T. 19, Ne 4. C. 389-397. ISSN 1992-5980 eISSN 1992-6006

Mut2 — single-point;

Mut3 - two-point;

Mut4 - addition and deletion mutation;

Mut5 - insertion and deletion mutation;

Mut6 - saltation;

Mut7 - addition;

Mut8 - inversion;

Mut9 — translocation.

Table 1 shows the average values of the comparison results of the algorithms for cover weights, and Table 2 -
by operating time. Also, Tables 1 and 2 include the results of a genetic algorithm operation with 50 individuals pro-
posed by Nguyen Minh Hang in [13].

Table 1
Comparison of the efficiency of crossover and mutation operator types by cover weights
Algorithm Nguyen
100x100 Mutl Mut2 Mut3 Mut4 Mut5 Mut6 Mut7 Mut8 Mut9 | Minh Hang
50 individuals GA
Crl 41.78 60.35 45.02 60.12 55.07 67.46 67.46 67.46 67.46
Cr2 42.29 58.23 44.87 59.37 51.83 67.46 67.46 67.46 67.46
Cr3 42.53 58.75 45.38 61.35 55.93 67.41 67.46 67.72 67.46
Cr4 4291 63.63 45.75 63.38 57.64 67.46 67.46 67.46 67.46
Cr5 42.41 60.58 45.18 63.11 54.92 67.46 68.52 67.46 67.46 1623

Cr6 42.71 65.96 46.37 65.38 58.2 67.46 67.46 67.46 67.32
Cr7 41.74 50.61 45.52 53.75 48.31 67.46 67.46 67.29 67.46
Cr8 43.39 57.84 45.3 60.37 54.07 67.46 67.46 67.46 67.46

Table 2
Comparison of the efficiency of crossover and mutation operator types by time costs (ms)

Algorithm Nguyen
100%100 Mutl Mut2 Mut3 Mut4 Mut5 Mut6 Mut7 Mut8 Mut9 | Minh Hang
50 individuals GA
Crl 2418 1363 2028 1996 1777 1569 2251 1746 1853
Cr2 2365 1399 1974 2175 1817 1571 2257 1756 1855
Cr3 2485 1417 2111 2008 1824 1627 2325 1841 1935
Cr4 2568 1416 2126 2145 1884 1626 2304 1809 1909
Cr5 2537 1406 2131 1862 1825 1631 2338 1834 1927 1900

Cr6 2509 1422 2139 1902 1822 1636 2315 1820 1903
Cr7 2679 1569 1970 2220 2124 1697 2410 1905 2008
Cr8 2484 1443 2084 1950 1910 1654 2353 1866 1942

Following from these results, to improve the GA efficiency, it is recommended to use the “uniform crossover +
gene mutation” and “single-point crossover + gene mutation” combinations.

Impact of the mutation and crossover probability on the genetic algorithm efficiency. To study this prob-
lem, the software tool described above was applied. The “gene mutation + uniform crossover” combination was consid-
ered as the most efficient (along with “gene mutation + single-point crossover”). The problem dimension is 100 x 100,
50 individuals. The results are given in Tables 3 and 4.

Konovalov 1. S., et al. Genetic algorithm efficiency improvement in the course of set cover problem solution

Konoeanos H. C. u op. Ilogv

dhdpexm.

Y

mu p

bl 2eHeMUY4eCKOo20 aizopumma 6 npovecce peuieHus 3a0auu ROKpbImMUs MHOJICECME

Table 3
Comparison of the efficiency of crossover and mutation operator probabilities by cover weights

Crossoner Mutation 02 | 04 | 06 | 08 | 1

0.2 60.31 | 59.45 | 59.37 | 54.65 | 44.35

0.4 58.2 | 58.09 | 57.51 | 54.71 | 45.01

0.6 57.98 | 57.58 | 54.67 | 52.67 | 44.75

0.8 54.03 | 55.18 | 55.07 | 51.11 | 44.68

1 52.17 | 50.95 | 50.28 | 48.89 | 44.33

Table 4. Comparison of the efficiency of crossover and mutation operator probabilities by time costs (ms)

Crossover Mutation 02 | 04 | 06 | 08 | 1

0.2 992 | 1038 | 1121 | 1293 | 2047

0.4 1038 | 1101 | 1196 | 1418 | 2115

0.6 1111 | 1205 | 1325| 1504 | 2273

0.8 1237 | 1314 | 1420 | 1656 | 2338

1 1338 | 1448 | 1602 | 1858 | 2594

The fittest combination was specified: the mutation probability is 100% and the crossover probability is 100%.
The generation dimension impact on GA efficiency. Tables 5 and 6 show the results with 50, 100, 200, 500,

1000 individuals and the problem dimension of 100 x 100 (GA1 - single-point crossover + gene mutation, GA2 - uni-
form crossover + gene mutation, GA3 - Nguyen Minh Hang’s GA).

Table 5
Generation dimension impact on cover weights obtained by genetic algorithm
Individuals GAl GA2 GA3
50 43.76 43.68 49.53
100 42.88 42.8 47.12
200 42.7 42.61 46.87
500 42.67 42.61 47.64
1000 42.61 42.61 50.35
Table 6
Generation dimension impact on the time required for genetic algorithm implementation (ms)
Individuals GAl GA2 GA3
50 2229 2377 1842
100 4175 4791 2219
200 8185 8722 2611
500 19109 20992 8440
1000 37588 41855 14581

Naturally, with an increase in the generation size, the operating time of the GA rises, and the problem solution

accuracy increases.

The stopping condition impact on the problem solution efficiency. In the framework of the research pre-
sented, the number of generations of persistency of the fittest solution is used as a stopping condition. Tables 7 and 8
show the results of a comparative analysis of GA from a previous experiment with a stopping condition of 100, 200,
300, 500.

Information technology, computer science, and management

395

http://vestnik.donstu.ru

396

Vestnik of Don State Technical University. 2019. Vol. 19, no. 4, pp. 389-397. ISSN 1992-5980 eISSN 1992-6006
Becmuux /lonckozo zocydapcmeennozo mexnuueckoz2o ynugepcumema. 2019. T. 19, Ne 4. C. 389-397. ISSN 1992-5980 eISSN 1992-6006

Table 7
Stopping condition impact on covering weights obtained by the genetic algorithm
Stopping condition GAl GA2 GA3
100 49.96 50.28 56.74
200 49.23 48.79 56.29
300 50.14 48.5 57.2
500 49.82 49.66 57.17
Table §
Stopping condition impact on the time required to implement the genetic algorithm (ms)
Stopping condition GAl GA2 GA3
100 2264 2517 1834
200 3840 4251 3479
300 4994 5955 5001
500 7892 8429 8370

With an increase in the stopping condition, the algorithm running time increases. This is appropriate under the
stopping condition of 200-250 individuals.

Discussion and Conclusions. The authors of this paper made an attempt to increase the GA efficiency as ap-
plied to a set cover problem. For this purpose, various types of the operator of mutation, crossover, and GA parametri-
zation were used. The influence of the probabilities of genetic operators on the problem solution efficiency, the selec-
tion of the stopping condition and the number of individuals were investigated. The appropriate application scope of the
GA and the branch-and-bound method are identified. Based on the results of the study, several conclusions can be
drawn.

1) It is recommended to use a combination of gene mutation and single-point crossover.

2) If the number of individuals increases, the accuracy of the result and the time it is obtained increases. The
average deviation from the exact result at the task dimension of 25 x 25 was 0%, 50 x 50 - 0%, 75 x 75 - 0.013%, 100 x
100 - 0%, 110 x 110 - 0% with 500 individuals.

3) It is efficient to use the probability of the mutation and crossover operator 100% and 100%, respectively.

References

1. Konovalov, L.S., Fatkhi, V.A., Kobak, V.G. Primenenie geneticheskogo algoritma dlya resheniya zadachi
pokrytiya mnozhestv. [Application of genetic algorithm for the set-covering problem solution.] Vestnik of DSTU, 2016,
no. 3, pp. 125-132 (in Russian).

2. Konovalov, 1.S., Fatkhi, V.A., Kobak, V.G. Sravnitel'nyy analiz raboty zhadnogo algoritma Khvatala i
modifitsirovannoy modeli Goldberga pri reshenii vzveshennoy zadachi nakhozhdeniya minimalnogo pokrytiya
mnozhestv. [Comparative analysis of work greedy algorithm of Chvatal and modified Goldberg models weighted in
solving the problem of finding minimal coverings of sets.] Trudy SKF MTUSI, 2015, Part I, pp. 366—371, Rostov-on-
Don: SKF MTUSI (in Russian).

3. Yeremeev, A.V., Zaozerskaya, L.A., Kolokolov, A.A. Zadacha o pokrytii mnozhestva: slozhnost', algorit-
my, eksperimental'nye issledovaniya. [The set covering problem: complexity, algorithms, and experimental investiga-
tions.] Discrete Analysis and Operations Research, 2000, vol. 7, ser. 2, no. 2, pp. 22—46 (in Russian).

4. Yesipov, B.A., Muraviev, V.V. Issledovanie algoritmov resheniya obobshchennoy zadachi o minimal'nom
pokrytii. [Study of algorithms for solving the generalized problem of the minimal covering.] Proc. of Samara Scientific
Center RAS, 2014, no. 4 (2), pp. 308-312 (in Russian).

5. Kononov, A.V., Kononova, P.A. Priblizhennye algoritmy dlya NP-trudnykh zadac.h [Approximate algo-
rithms for NP-hard problems.] Novosibirsk: Novosibirsk State University, 2014, 117 p. (in Russian).

6. Chvatal, V. A greedy heuristic for the set-covering problem. Mathematics of Operations Research, 1979,
vol. 4, no. 3, pp. 233-235.

7. Lebedev, O.B. Pokrytie metodom murav'inoy kolonii. [Ant colony covering.] CAI-2010. XIIth National
Conference on Artificial Intelligence with int. participation: Proc. Vol. 2. Moscow: Fizmatlit, 2010, pp. 423—431 (in
Russian).

Konovalov 1. S., et al. Genetic algorithm efficiency improvement in the course of set cover problem solution

Konoeanos H. C. u op. Ilogv depexm mu p bl 2EHEMUYECKO20 ANZOPUMMA 6 NPOYECCe PEUEHUA 3A0auU ROKPLIMUA MHOIICECING

8. Lebedev, B.K., Lebedev, V.B. Pokrytie na osnove metoda roya chastits. [Particle Swarm Covering.] Ney-
roinformatika-2011: sb. nauch. tr. XIII Vseros. nauch.-tekhn. konf. Ch. 2. [Neuroinformatics-2011: Proc. XIII All-
Russian Sci.-Tech. Conf. Part 2.] Moscow: Fizmatlit, 2011, pp. 93—103 (in Russian).

9. Holland, J. H. Adaptation in Natural and Artificial Systems. Ann Arbor: University of Michigan Press,
1975, 245 p.

10. Stanovov, V.V., Semenkin, E.S. Issledovanie effektivnosti razlichnykh metodov samonastroyki genetich-
eskogo algoritma. [Study of efficiency of various methods of self-tuning of a genetic algorithm.] Actual problems of
aviation and astronautics, 2012, no. 8, pp. 319-320 (in Russian).

11. Koromyslova, A.A., Semenkin, E.S. Issledovanie svoystva masshtabiruemosti geneticheskogo algoritma.
[Investigation of the scalability property of a genetic algorithm.] Actual problems of aviation and astronautics, 2012,
no. 8, pp. 305-306 (in Russian).

12. Yeremeev, A.V. Geneticheskiy algoritm dlya zadachi o pokrytii. [A genetic algorithm for the covering
problem.] Discrete Analysis and Operations Research, 2000, ser. 2, vol. 7, no. 1, pp. 47—60 (in Russian).

13.Nguyen, M.H. Primenenie geneticheskogo algoritma dlya zadachi nakhozhdeniya pokrytiya mnozhestva.
[Application of genetic algorithm to the problem of finding cover sets.] Dinamika neodnorodnykh system, 2008, vol.
33, iss. 12, pp. 206-219. Moscow: LKI, 2008 (in Russian).

14. Goldberg, D. E. Genetic algorithms in search, optimization and machine learning. Reading, MA: Addison-
Wesley, 1989, 432 p.

15. Konovalov, I.S., Fatkhi, V.A., Kobak, V.G. Strategiya elitizma modifitsirovannoy modeli Goldberga genet-
icheskogo algoritma pri reshenii zadachi pokrytiya mnozhestv. [Elitism strategy of modified Goldberg model of genetic
algorithm in solving the set covering problem.] Herald of Computer and Information Technologies, 2016, no. 4, pp. 50—
56 (in Russian).

16. Panchenko, T.V. Geneticheskie algoritmy. [Genetic algorithms.] Astrakhan: Astrakhan University, 2007,
88 p. (in Russian).

17. Batishchev, D.I. Geneticheskie algoritmy resheniya ekstremal'nykh zadach. [Genetic algorithms for solving
extreme problems.] Voronezh: VSTU, 1995, 69 p. (in Russian).

Submitted 20.09.2019
Scheduled in the issue 20.11.2019

Authors:

Konovalov, Igor S.,

postgraduate student, Don State Technical University (1, Gagarin Square, Rostov-on-Don, 344000, RF),
ORCID: http://orcid.org/0000-0001-6296-3660

xigorx92(@mail.ru

Fatkhi, Viadimir A.,

Head of the Computer Systems and Information Security Department, Don State Technical University (1, Gagarin
Square, Rostov-on-Don, 344000, RF), Dr.Sci. (Eng.), professor,

ORCID: http://orcid.org/0000-0002-0373-7126

fatkhi@mail.ru

Kobak, Valery G.,

associate professor of the Computer and Automated Systems Software Department, Don State Technical University
(1, Gagarin Square, Rostov-on-Don, 344000, RF), Dr.Sci. (Eng.), professor,

ORCID: http://orcid.org/0000-0002-1001-0574

valera33305@mail.ru

Information technology, computer science, and management

397

