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Introduction. The influence of two ways of organizing scalar product on the convergence rate of the solution in the en-

ergy method of boundary states is considered. The method is based on the spaces of internal and boundary states which 

are conjugated through isomorphism. Both spaces are orthonormalized using one scalar product or another. The desired 

state is expanded in the Fourier series according to the elements of the orthonormalized basis; and the coefficients of 

this linear combination are determined. The two methods differ in the assignment of scalar products and the calculation 

of the Fourier coefficients. 

Materials and Methods. In relation to the method of boundary states, a new theory of organizing a scalar product in the 

spaces of internal and boundary states is proposed. Computational algorithms are constructed for its practical imple-

mentation. In the traditional (first) approach, the internal energy of elastic deformation is used as an orthogonalizer in 

the space of internal states. Here, the Fourier coefficients are the work of given forces on the basis vectors of displace-

ment of the boundary points. In the studied (second) approach, scalar products are integrals of the cross products of the 

basis force vectors at the boundary. Accordingly, the Fourier coefficients are calculated as integrals of the product of 

the given forces at the body boundary by the basic force vectors. 

Results. A numerical study of the first primal axisymmetric problem of the elasticity theory for a transversely isotropic 

cylinder in the absence and presence of mass forces is conducted. In the absence of mass forces, an analysis of the elas-

tic fields obtained for the same number of used basic elements has shown that the second method has the greatest accu-

racy of the results. Under solving the problem with the presence of mass forces, the second method did not show effi-

ciency in terms of the uniqueness of the solution; however, it is quite suitable for constructing a multitude of elastic 

fields used to solve more complex problems. 

Discussion and Conclusions. The results obtained can be used to solve boundary-value problems of mechanics of not 

only an anisotropic body, but also an isotropic one. When solving more complex problems, such as contact and mixed 

ones, the issue of the rate of convergence requires a separate study. 
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Introduction. The boundary-value problems of the elasticity theory in mechanics are sufficiently studied; 

therefore, in recent years, case studies have been carried out. For example, the first primal axisymmetric problem for a 

half-strip [1] is considered, the solution of which is constructed in the form of expansions in systems of Fadl-Papkovich 

functions and has an explicit form. A general method for solving the first primal problem of the elasticity theory for a 

rectilinear anisotropic body in the case of plane deformation is proposed [2]. Closed systems of boundary value prob-

lems similar to Hilbert's problems are used, which makes it possible to achieve a more general method. Plane isotropic 

problems are solved using the finite element method based on the Castigliano variational principle [3]. This has provid-
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ed for obtaining stress fields on grids of a sufficiently low dimension including those for incompressible materials. Con-

tact problems on the implementation of elliptical stamps in a transversely isotropic elastic half-space are solved [4]. 

The method of boundary states under solving boundary value problems for anisotropic bodies also found its 

application. For example, the elastic equilibrium of a transversely isotropic cylinder under the action of axisymmetric 

surface forces is considered [5]. The problems of torsion of extended cylinders of a material with general anisotropy are 

studied [6]. A mathematical model is shown for obtaining explicit parametric solutions for isotropic and anisotropic 

bodies [7, 8], where the medium constants are included as parameters in the elastic fields. A technique has been devel-

oped for solving problems of the elasticity theory using computer algebra [9]. In solving problems of a stress-strain un-

bounded elastic medium containing spherical cavities or inclusions, the boundary-state method was used under different 

conditions [10]. 

In this paper, we study two approaches to the assignment of a scalar product in the “body” of the boundary 

state method. In this case, each state is tested using the example of solving the first primal problem of the elasticity the-

ory. In each task, the same number of used elements is held and the error level is estimated. 

Materials and Methods. The boundary state method (BSM) [11] is an energy one; it uses the fundamental 

theory of series to solve the basic problems of mechanics. The concepts of internal and boundary states are used as sup-

porting ones.  

The internal state  is due to a set of displacement vector u, strain tensor ε , and stress tensor Т: 

 { , , }u ε Т  . (1) 

The boundary state is determined by a set of displacement vector of the boundary points vu  and forces p on the body 

boundary: 

{ , }vu p  . 

The totality of such states forms the basis of the spaces of internal  1 2 3, , ,..., ,...k       and boundary 

 1 2 3, , ,..., ,...kГ       states. Next, orthogonalization of state bases is carried out, where the following expression is 

used as an orthogonalizer in the basis of boundary states: 

( , )i j i j
V
ε T dV    , 

in the basis of boundary states – the expression: 

 ( , ) v
i j i j

S
u p dS    . (2) 

A single element k   corresponds to each element k Г  , besides, this correspondence is one-to-one: k k   . 

This enables to reduce finding the internal state to the construction of a boundary state isomorphic to it. In the case of 

the first primal problem, the desired internal and boundary states are the Fourier series: 

 
1

k k
k

c



   ; 

1
k k

k
c




   , (3) 

here, kc are the Fourier coefficients: 

 k k
S

c pu dS  , (4) 

where p is the vector of given surface forces; uk is the displacement vector in the k-th basic element of the basis of inter-

nal states. In this case, basic sets are formed on the ground of a general or fundamental solution to the problem.  

The first general solutions to the Lame equation of the linear elasticity theory were built back in the 30s of the 

last century. The Lame equation is the Euler equation of motion (in this case, equilibrium):  

0T f   , 

where Т is stress tensor;   is Hamilton operator acting as a divergence; f  is mass forces. 
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In the Lame equation, the stress tensor Т in accordance with Hooke's law is represented through the strain ten-

sor ε . In turn, the strain tensor in accordance with the Cauchy relation is represented through the displacement vector u. 

In general solutions to the Lame equation, the displacement vector is determined: through the harmonic vector В and 

the harmonic scalar in the theory of isotropic elasticity, and through the stress function F ― in the theory of anisotropic 

elasticity. 

Vector В (function F) can be represented as a series of basic vectors ( )i
k kB B   ― coordinate functions i . 

As a result, the following basic elements will be associated with each harmonic basis vector kB  (function kF ): 

 displacement vector ku ; 

 strain tensor kε ; 

 stress tensor kT ; 

 mass forces vector kf  (from equilibrium equations); 

 surface forces vector (from Cauchy fundamental relationship): 

k kp n T  , 

where n is the external unit normal to the surface of the body. 

According to the listed basic elements, the corresponding vectors or tensors are expanded in Fourier series with 

the same coefficients kc , which are determined from the conditions of orthogonality of the basic functions. For example, 

for the first primal problem in the absence of mass forces, when external forces р are given on the entire surface of the 

body S and orthogonalization of the basis vectors 

kp  ( i j ij
S

p p dS   is Kronecker delta) is implemented, the coefficients kc  are determined from the expression: 

 k k
S

c p p dS  . (5) 

This expression follows from the representation: 

1
k k

k
p c p




  . 

Thus, we study the solution generation method using the expression for scalar products in the basis of boundary states: 

 ( , )i j i j
S

p p dS     (6) 

and the expression for Fourier coefficients (5). 

In the case of the second primal problem, there are the dependencies: 

( , ) v v
i j i j

S
u u dS    ; 

v
k k

S
c uu dS  , 

where u is the given displacement vector of points of the body boundary; v
ku  is the displacement vector in the k-th base 

element of the boundary states basis.  

Research Results. Parameters of the convergence rate of series and the result accuracy are considered using 

the example of solving the problem of the elastic equilibrium of a transversely isotropic cylinder of dark-gray siltstone 

[12] in a dimensionless form (Fig. 1). 

The boundary conditions are: 

10, 2, 0 1p S z r     ; 

20, 2, 0 1p S z r    ; 
2

34 , 0, 1, 2 2r zp z p S r z       . 

<…> 
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Fig. 1. Boundary conditions for the transtropic cylinder 

The methodology for solving the first primal problem in the traditional way using the scalar product (2) is de-

scribed in detail in [6]. The basis of internal states (1) is constructed as follows: 

• using a general solution to the plane deformation problem [13], basis sets of plane auxiliary states are con-

structed; 

• basis sets of spatial axisymmetric states are determined from the transition formulas; 

• orthonormalization of the internal states basis is carried out according to the Gram-Schmidt matrix algorithm 

using the scalar product (2); 

• the orthonormal basis of boundary states is reduced from the orthonormal basis of internal states; 

• Fourier coefficients (4) are calculated, and series (3) are constructed in an expanded form (index k is placed 

on top): 

1

k
i k i

k
u c u




  ; 

1

k
i k i

k
p c p




  ; 

1

k
ij k ij

k
c




   ; 

1

k
ij k ij

k
c




   . 

We omit the information on the fields of the stress-strain state characteristics obtained with one and the other 

method of assigning the scalar product, and we give only the main results. In addition, we call the traditional approach 

used in [11] as the first method for solving the problem, and the approach using the scalar product (6) and Fourier coef-

ficients (5) as the second method. The solution accuracy while keeping the same number of basic elements is higher in 

the second method. In Fig. 2, a comparison of the obtained boundary conditions (BC) with the specified ones when us-

ing the 8 values of the Fourier coefficient is given for each method. The efforts are shown to scale, for example, the true 

value rp in the first graph of Fig. 2 is equal to the value on the graph multiplied by the coefficient  . 
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<…> 

1st method 2nd method 

3S  

rp , 1k   rp , 1k   

  

zp , 310k   zp , 310k   

 
 

1S  

rp , 310k   rp , 310k   

  

zp , 210k   zp , 210k   

  
Fig. 2. Verification of BC for cylinder with 8 basis elements  

This trend is preserved with an increase in the number of basis elements used. For the 61st element, verifica-

tion of the boundary conditions is presented in Fig. 3 (comparison of the force zp  on the border section 3S is given). If 

we evaluate an error as the maximum deviation of the obtained value from the given value, then in the second method 

the error is less. 
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<…> 

1st method 2nd method 

3S  

zp , 510k   zp , 510k   

  

Fig. 3. Verification of BC for cylinder with 61-st basis element  

 

Next, we examine the solution accuracy for a transversely isotropic axisymmetric body of noncanonical shape 

(Fig. 4). Border conditions are: 

1 20,p S S  ; 

30, 0,25, 1, 0 1r zp p S z r     ; 

40, 1, 1, 0 0,5r zp p S z r       . 

<…> 

 

Fig. 4. Boundary conditions for axisymmetric body  

 

 

15 elements of the basis are kept. Fig. 5 presents a comparison of the boundary conditions for each method 

(not all boundary sections and components of the force vector are shown). 
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15 elements of the basis are kept. Fig. 5 presents a comparison of the boundary conditions for each method

(not all boundary sections and components of the force vector are shown).
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rp , 210k  rp , 210k 

Fig. 5. Verification of BC for axisymmetric body 

As can be seen from the graphs, for a body of a more complex shape, a difference in the convergence rate is 
observed in favor of the second method. Consider tasks involving mass forces. The sequence of the solution generation 
is as follows: 

1. The dependence of the displacement vector of the planar auxiliary state on the coordinates y z   is specified

and, on its basis, the displacement vector of the spatial axisymmetric state is determined.
2. For such a vector, the following parameters are determined:

• strain tensor according to the Cauchy relation;
• stress tensor from Hooke's law;
• efforts on the body surface from the fundamental Cauchy relation;
• mass forces from the equilibrium equation.

3. An exact particular solution to the problem corresponding to the displacement function specified at each point
of the body is constructed.

4. Sorting n   (n = 1, 2, 3 ...), a set of exact particular solutions of the problem of the linear theory of elas-

ticity for the parameters is constructed:
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• displacement vectors;
• strain tensors;
• stress tensors;
• vectors of surface forces;
• vectors of mass forces.

5. The bases of internal  1 2 3, , ,..., ,...k      and boundary  1 2 3, , ,..., ,...kГ      states in which the

equalities are respected, are generated: 

{ , , }k k k ku ε Т  ,

{ , , }v
k k k ku p X  .

6. We leave only linearly independent among these solutions and carry out their orthogonalization in accordance
with scalar products in the bases of internal and boundary states: 

( ) ( )( , ) i j
i j ij ij

V
dV     ,

( ) ( ) ( ) ( )( , ) i j i j
i j i vi i i

S V
p u dS X u dV    

(indices i and j, responsible for the numbers of elements, are placed on top and are enclosed in brackets). 
7. As a result, we obtain a basis through which the corresponding vectors or tensors are expanded to series (3)

with equal coefficients: 
v

k k k
V S

c X u dV pu dS   , 

where X  is the vector of given mass forces. 
We study the possibility of constructing an elastic field in the presence of mass forces using relations (6) and 

(5). Consider the first primal problem with unbalanced forces for a transversely isotropic cylinder (Fig. 6). Border con-
ditions are: 

1 30,p S S  ; 
2

30, , 2, 0 1r zp p r S z r     .

<…> 

Fig. 6. Boundary conditions for cylinder 

The expressions for the orthonormal basis set of the displacement vector components { , }u u w are given in 
Table 1. 

r 

z 

0 

2 

S3 

S2 

S1 -2

1 -1

p 



M
ec

ha
ni

cs

23

Vestnik of Don State Technical University. 2020. Vol. 20, no. 1, pp. 15–24.   ISSN 1992-5980 eISSN 1992-6006

• displacement vectors;
• strain tensors;
• stress tensors;
• vectors of surface forces;
• vectors of mass forces.

5. The bases of internal  1 2 3, , ,..., ,...k      and boundary  1 2 3, , ,..., ,...kГ      states in which the

equalities are respected, are generated:

{ , , }k k k ku ε Т  ,

{ , , }v
k k k ku p X  .

6. We leave only linearly independent among these solutions and carry out their orthogonalization in accordance
with scalar products in the bases of internal and boundary states:

( ) ( )( , ) i j
i j ij ij

V
dV     ,

( ) ( ) ( ) ( )( , ) i j i j
i j i vi i i

S V
p u dS X u dV    

(indices i and j, responsible for the numbers of elements, are placed on top and are enclosed in brackets).
7. As a result, we obtain a basis through which the corresponding vectors or tensors are expanded to series (3)

with equal coefficients:
v

k k k
V S

c X u dV pu dS   ,

where X is the vector of given mass forces.
We study the possibility of constructing an elastic field in the presence of mass forces using relations (6) and

(5). Consider the first primal problem with unbalanced forces for a transversely isotropic cylinder (Fig. 6). Border con-
ditions are:

1 30,p S S  ;
2

30, , 2, 0 1r zp p r S z r     .

<…>

Fig. 6. Boundary conditions for cylinder

The expressions for the orthonormal basis set of the displacement vector components { , }u u w are given in
Table 1.
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Table 1 
Orthonormal basis set of displacement vector components 

u w

1 0 0.1213z

2 0.0788r 0.1126z

3 0 20.0331z

4 0.0592rz 20.0268z

5 0.02rz 2 20.0975 0.009r z

6 0.1535r 30.9163 0.0691z z 

7 20.2896 0.0724r rz  31.2067 0.1005z z  

8 21.8629 0.4824r rz 2 38.2447 0.4824 0.6701z r z z  

9 0.0908rz  2 2 40.0454 0.4347 0.0511r z z  

10 30.1757 0.0439rz rz  2 2 40.0195 0.3661 0.0457r z z  

11 30.2881 0.0804rz rz  2 2 2 2 40.144 0.7209 0.1206 0.0837r z r z z   
<…> 

To obtain a rigorous solution, it took 11 Fourier coefficients, non-zero values: 1 0.2178с  ; 2 0.1226с   ; 

3 0.2377с  ; 4 0.0732с   ; 5 0.0247с  ; 8 0.1443с  ; 11 0.1443с  . We give the expressions for displacements and 

mass forces (4 decimal places are kept): 
2 30.2592 0.0367 0.0696 0.0116u r rz rz rz    ;

2 2 20.0183 1.1497 0.0696 0.094w r z r z z      ;
2 2 3 40.0174 0.0967 0.0121r z z z   ;

0.2814 0.1407R r rz   ; 2 21.2012 0.25 3.6038 0.9Z r z z    . 

If we construct a basis of internal states through planar auxiliary states formed using monomial z y  , then the 
orthonormal basis and the Fourier coefficients change. In this case, the decision will also be rigorous and will be ac-
cepted in: 

3 20.0363 0.0913 0.0309 0.0287u r rz r z rz    ;
2 4 2 2 30.0456 0.0077 0.4148 0.0287 0.0257 0.0399w r r z r z z z      ; 

2.0145 1.6178R r rz   ; 20.25 1.4893Z r z   . 
Similarly, other particular solutions to the problem can be obtained using different types of polynomials, for 

example, z y z   , etc. to form the basis. 
The approach under study provides for lots of solutions of one boundary value problem of the elasticity theory 

in the presence of mass forces. Displacements and mass forces whose combinations give the distribution of stresses 
satisfying the given forces at the boundary are also subject. The first method is devoid of this feature because mass 
forces in it are part of the given conditions, and the task is only to find the field of displacements. 

Discussion and Conclusions. The second method to solve the problem has the best convergence. In addition, 
unlike the first method, when calculating scalar products in the process of orthogonalization and in determining the 
Fourier coefficients, the second method does not use deformations and displacements. Here, a basic set of stresses is 
generated, and its trace at the boundary is a basis set of surface forces with which orthogonalization and series construc-
tion are performed. This means that when calculating scalar products, there is no error associated with the components 
responsible for the rigid displacement that may occur during the formation of the basis [11]. 

If problems with mass forces are considered, then the second method may be useful in the formation of many 
particular solutions whose stresses satisfy certain conditions at the boundary. These solutions can be used as the basis 
ones for a more complex problem, and also be useful under determining the elastic fields realized from fictitious loads 
resulting from the application of the Poincare method [7, 8]. 

The accuracy of solving problems of the elasticity theory by the boundary-state method is analyzed using dif-
ferent approaches to the construction of scalar products. The solution to the problem of the linear elasticity theory using 
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the representation of a general solution to the Lame equation in the form of a Fourier series on basis functions and ex-
pression (6) as the orthogonalizer of these functions had the best convergence. 
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