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Stability of a nonlinear elastic plate under lateral compression
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Introduction. Loss of stability and buckling of a round plate may be observed if the plate is loaded on the lateral surface. 
The solution to this problem is based on a bifurcation approach. In this case, a plate is considered as a nonlinear elastic 
body. It is important to choose the relation between stresses and deformations in sustainability problems of nonlinear 
elasticity. Simple laws of state (constitutive equations) were considered in early works devoted to this problem, for 
example, material of the “harmonic type” (Sensenig). 
Materials and Methods. Equations of neutral equilibrium for round plates made of Murnaghan and Blatz-Ko materials 
are obtained. Assuming a uniform initial deformation on the plate, the stability problem is considered. Strict three-
dimensional neutral equilibrium equations provide exploring related forms of equilibrium taking into account physical 
and geometric nonlinearity. Derivation of these equations is based on the application of the theory of superposition of 
small deformation on the final one.
Results. Progress in solution to the corresponding secular equation (with non-linear parameter entry) for practically 
important laws of elasticity of Murnaghan and Blatz-Ko is possible using the numerical methods only. The developed 
method for calculating bifurcation values of loading parameters makes it possible to analyze the effect of nonlinearity.
Discussion and Conclusions. The influence of physical and geometric nonlinearity on the upper critical value of the 
initial deformation parameter is explored. The results obtained can be used under the assessment of reliability of elastic 
third-order moduli for various physical materials. Data on these moduli is still scarce. The numerical research has 
shown that the constants given in some sources should be treated with caution. The use of elasticity moduli in the law of 
state of Blatz-Ko is also discussed.
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Introduction. Currently, the study of new relatively simple and adequate laws of state for various materials 
that require considering nonlinear deformations is an actively developing area of continuum mechanics [1–10]. In the 
framework of the theory of superposition of small deformation on the finite one, three-dimensional equations of neutral 
equilibrium are derived for the materials of Murnaghan and Blatz-Ko. Based on these equations, an example of end 
buckling of a uniformly compressed round plate is considered [11, 12].

Materials and Methods
Equations of neutral equilibrium. Let , ,r φ z be the cylindrical coordinates of a point in an undeformed 

state. We assume that the initial deformation of the body is determined by the radius vector R:
r 3R ( )e iR r dz= + , (1)

where ( )R r ar= , parameters ,a d are constants, 3e , e , ir ϕ
are basis vectors.

For the coordinates of this point in the initial deformed state, we have:
, ,R ar φ Z dz= Φ = = .

Therefore, the strain gradient, the Finger strain measure, and its principal invariants are determined through the 
relations:

3 3R R ( )T
r ra e e e e d i i ,∇ = ∇ = + +ϕ ϕ

2F R= ∇ ,
2 2 4 2 2 4 2

1 2 32 , 2 ,I a d I a a d I a d= + = + = . (2)

From now on, ,∇ ∇ is the nabla operator in the metric of the undeformed and initial-deformed state: 
1R−∇ = ∇ ⋅∇ .
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We will use the neutral equilibrium equations proposed by A. I. Lurie [13]: Θ 0∇ = , where the tensor Θ is a 
linear differential operator over the vector of additional displacements W. The expressions of the components of this
tensor concretized with account of the laws of state of Murnaghan and Blatz-Ko were obtained in [14, 15]. In the 
representations of the tensor Θ, the components are some functions defined as a result of solving the boundary value 
problem of the initial deformation.

Research Results. To consider the bending form of the plate equilibrium bifurcation, similarly to [11, 12], we 
accept the following additional displacement vector

( , ) ( , )w r 3u r z e w r z i= + . (3)
Considering (1), (2) and (3), Lurie tensor has the form:

3 3 3 3Θ r r r rAe e Be e Ci i Gi e He iϕ ϕ= + + + + .
Here,

1 2 3
u u wA A A A
r r z

∂ ∂
= + +

∂ ∂
, 1 2 3

u u wB B B B
r r z

∂ ∂
= + +

∂ ∂
, 1 2 3

u u wC C C C
r r z

∂ ∂
= + +

∂ ∂
,

1 2
u wG G G
z r
∂ ∂

= +
∂ ∂

, 1 2
u wH H H
z r
∂ ∂

= +
∂ ∂

.

We note that the structure of these operators is typical in the stability problems of cylindrical nonlinear elastic 
bodies. Omitting the expressions of the remaining coefficients, we give, for example, formulas for 1A . In the case of 

Murnaghan law of the state [13, 14] 1A is expressed through the relation

2 21 2 1
1 1 2

3 4
( 2 )

2 2
ν ν νaA λ d ν ν a

d
+ = − + + + 

 
.

Henceforward, λ and μ are Lame elasticity moduli, 1ν , 2ν , 3ν are the third-order elasticity constants. For 
Blatz-Ko material [15]:

2 2
1 3 3

3

2 (1 )
1

λ μ λ μμA I I
a I

− −β β
= + −β 

,

where β is the refining elasticity modulus.
The equation of neutral equilibrium is equivalent to the system of differential equations with respect to the 

components of the vector w :

( )

2 2 2

2 3 2 12 2 2

2 2

3 1 2 32 2

1 0,

1 0.

u u u a w a uA A G G
r r d r z dr r z

u u w w a wA H H C
z r r r r dr z

  ∂ ∂ ∂ ∂ + − + + + =    ∂ ∂ ∂∂ ∂   


 ∂ ∂ ∂ ∂ ∂  + + + + + =   ∂ ∂ ∂∂ ∂   

(4)

Assuming that the plate is loaded with uniform pressure along the lateral surface, we supplement the 
differential equations (4) with the equilibrium conditions at the boundary:

( , ) 0, 0.
н н

rzr r r r
u r z

= =
= Θ =

At the ends, i.e., at

2
hz = ± 0, 0zr zzΘ = Θ = . (5)

We apply the substitution

1

0

( ) ( ),
( ) ( ).

n n

n n

u X z J k r
w Z z J k r
=

 =
(6)

Here, n = 1, 2, … , 0J , 1J are Bessel functions of zero order and first kind, and numbers n нk r are null functions 1( )J x .

Let us assume nx k r= and use the equations
2

21 1 0
1 1 0 12

( ) ( ) ( )
( ), ( ), ( ) ( )n n n

n n n n
dJ k r d J k r dJ k r

k J x k J x k J x k J x
dr drdr

′ ′′ ′ ′= = = = − ,

and well-known identities for Bessel functions 

1 1 1 1 0 0 02

1 1 1,J J J J J J J
x xx

′′ ′′′ ′+ − = − + = − .

Having completed the above steps, we obtain that the variables in the differential equations (4) and under the 
boundary conditions (5) are separated. We arrive at the following boundary value problem for ordinary differential 
equations:
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We will use the neutral equilibrium equations proposed by A. I. Lurie [13]: Θ 0∇ = , where the tensor Θ is a 
linear differential operator over the vector of additional displacements W. The expressions of the components of this
tensor concretized with account of the laws of state of Murnaghan and Blatz-Ko were obtained in [14, 15]. In the 
representations of the tensor Θ, the components are some functions defined as a result of solving the boundary value 
problem of the initial deformation.

Research Results. To consider the bending form of the plate equilibrium bifurcation, similarly to [11, 12], we 
accept the following additional displacement vector

( , ) ( , )w r 3u r z e w r z i= + . (3)
Considering (1), (2) and (3), Lurie tensor has the form:

3 3 3 3Θ r r r rAe e Be e Ci i Gi e He iϕ ϕ= + + + + .
Here,

1 2 3
u u wA A A A
r r z

∂ ∂
= + +

∂ ∂
, 1 2 3

u u wB B B B
r r z

∂ ∂
= + +

∂ ∂
, 1 2 3

u u wC C C C
r r z

∂ ∂
= + +

∂ ∂
,

1 2
u wG G G
z r
∂ ∂

= +
∂ ∂

, 1 2
u wH H H
z r
∂ ∂

= +
∂ ∂

.

We note that the structure of these operators is typical in the stability problems of cylindrical nonlinear elastic 
bodies. Omitting the expressions of the remaining coefficients, we give, for example, formulas for 1A . In the case of 

Murnaghan law of the state [13, 14] 1A is expressed through the relation

2 21 2 1
1 1 2

3 4
( 2 )

2 2
ν ν νaA λ d ν ν a

d
+ = − + + + 

 
.

Henceforward, λ and μ are Lame elasticity moduli, 1ν , 2ν , 3ν are the third-order elasticity constants. For 
Blatz-Ko material [15]:

2 2
1 3 3

3

2 (1 )
1

λ μ λ μμA I I
a I

− −β β
= + −β 

,

where β is the refining elasticity modulus.
The equation of neutral equilibrium is equivalent to the system of differential equations with respect to the 

components of the vector w :

( )

2 2 2

2 3 2 12 2 2

2 2

3 1 2 32 2

1 0,

1 0.

u u u a w a uA A G G
r r d r z dr r z

u u w w a wA H H C
z r r r r dr z

  ∂ ∂ ∂ ∂ + − + + + =    ∂ ∂ ∂∂ ∂   


 ∂ ∂ ∂ ∂ ∂  + + + + + =   ∂ ∂ ∂∂ ∂   

(4)

Assuming that the plate is loaded with uniform pressure along the lateral surface, we supplement the 
differential equations (4) with the equilibrium conditions at the boundary:

( , ) 0, 0.
н н

rzr r r r
u r z

= =
= Θ =

At the ends, i.e., at

2
hz = ± 0, 0zr zzΘ = Θ = . (5)

We apply the substitution

1

0

( ) ( ),
( ) ( ).

n n

n n

u X z J k r
w Z z J k r
=

 =
(6)

Here, n = 1, 2, … , 0J , 1J are Bessel functions of zero order and first kind, and numbers n нk r are null functions 1( )J x .

Let us assume nx k r= and use the equations
2

21 1 0
1 1 0 12

( ) ( ) ( )
( ), ( ), ( ) ( )n n n

n n n n
dJ k r d J k r dJ k r

k J x k J x k J x k J x
dr drdr

′ ′′ ′ ′= = = = − ,

and well-known identities for Bessel functions 

1 1 1 1 0 0 02

1 1 1,J J J J J J J
x xx

′′ ′′′ ′+ − = − + = − .

Having completed the above steps, we obtain that the variables in the differential equations (4) and under the 
boundary conditions (5) are separated. We arrive at the following boundary value problem for ordinary differential 
equations:
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2 2 2 2

2 1

2 1 2 2

3 3

0,

0.

n n n n n

n n n n n

A G CX k X k Z
H G
G G CZ k Z k X
C C

+ ′′ ′− − =
 + ′′ ′− + =


(7)

( ) ( )
( ) ( )

1 3

2 1

2 2 0,
2 2 0.

n n n

n n n

k C X h C Z h
k G Z h G X h

′± + ± =
′± − ± =

(8)

Two homogeneous linear ordinary differential equations (7) and four boundary conditions (8) result in the 
eigenvalue problem with a nonlinear occurrence of the parameter. In this problem, such a parameter is the 
quantity ( )1 a− . The system (7) is ended in the standard form:

1 2,

2 2 2 2
2 1 4

2 1

3 4

2 1 2 2
4 3 2

3 3

,

,

.

n n

n n

y y
A G Cy k y k y
H G

y y
G G Cy k y k y
C C

′ =
 + ′ = +

 ′ =
 +′ = −


The following notations are accepted here: argument t z≡ , ( ) ( )1 2 3 4; ; ; ; ; ;T T
n n n ny y y y X X Z Z′ ′≡ . Let the 

fundamental system of solutions be the following four vectors ( )1 2 3 4y ; ; ; T
i i i i iy y y y≡ . Then, the general solution to the 

system is given by ( )
4

. 1
; ; ; yT

n n n n i iобщ i
X X Z Z ξ

=
′ ′ = ∑ , where iξ are arbitrary constants. For example, we set the initial data 

for 2z h= − by the columns of the fourth-order unity matrix. Then we solve numerically the Cauchy problem with 
these initial conditions. As a result, on the right-hand side, we obtain the values of the basis functions, i.e., 
vectors y ( 2)i h+ . Using the boundary conditions (8), we arrive at a homogeneous system of linear algebraic equations 

with respect to 1ξ , 2ξ , 3ξ , 4ξ :
4

1
0ij j

j
a ξ

=
=∑ , where i = 1, 2, 3, 4.

Here, the coefficients are the elements of matrix A :
( ) ( )1 1 1 3 42 2j n j ja k C y h C y h= − + − , ( ) ( )2 1 1 3 42 2j n j ja k C y h C y h= + ,

( ) ( )3 2 3 1 22 2j n j ja k G y h G y h= − − − , ( ) ( )4 2 3 1 22 2j n j ja k G y h G y h= − .
The homogeneous system has a nontrivial solution if the condition is met 

det A 0= . (9)
The determinant expression includes the load parameters a , d , Bessel null-functions, as well as the elasticity 

moduli λ , μ , 1ν , 2ν , 3ν (for the Murnaghan material) or λ , μ , β (for the Blatz-Ko material).

The parameters a , d , which set the initial deformation, are interconnected. The axial force acting on the cross-

sectional area is determined by the relation [13]: 
0

2
нR

ZQ π σ RdR= ∫ , where Zσ is the physical component of the stress 

tensor. Since the initial deformation is assumed in the form (1), the Cauchy stress tensor T and the Finger strain 
measure F are coaxial. 

Moreover, the stress tensor is constant:

( )(0) 2 2 (1) 4 4 ( 1)
3 3 3 3 3 32

2T ( ( ) ) ( ( ) ) ( )r r r r r rc a e e e e d i i c a e e e e d i i c e e e e i i
a d

−
ϕ ϕ ϕ ϕ ϕ ϕ= + + − + + + + + .

The ends of the plate are free of load, therefore 0Zσ = . This implies the condition relating the coefficients of 
the Finger law

( 1)
(0) (1) 2

2 0cc c d
d

−

− + = . (10)

Considering the law of state, we can write a specific expression of the condition (10), which establishes a 
connection between a and d. So, for the Murnaghan material, we get the condition:

4 2 21 2 1
3 2 3 1 2

3 3
2 λ 2 5 4 ( 2 )

4 2 2
ν νν d μ ν ν ν ν a dν   + + + + − − − + + −   

   



ht
tp

://
ve

st
ni

k.
do

ns
tu

.ru

140

Vestnik of Don State Technical University. 2020. Vol. 20, no. 2, pp. 137–142.   ISSN 1992-5980 eISSN 1992-6006

2 43 31 2
3 1 2 1 2

3 159 9
3λ 2μ (2λ 3 4 ) ( ) 0

4 2 4 8
ν νν ν ν ν a ν ν a− − + + + ν + − − − + + − = .

In particular, if 1 2 3 0ν ν ν= = = , then we get

( )2 22λ1 1
λ 2μ

d a= + −
+

.

When considering the Blatz-Ko law of state, d is expressed by the formula
2 3d a−= .

Thus, through setting the elasticity moduli and Bessel null-functions, we find the bifurcation values of the 
initial strain parameter a∗ from (9).

Note that the value 1 a∗Λ ≡ − is a small parameter for relatively thin disks. So, in the classical theory of plate 

buckling, the critical value of a∗ is determined by the formula 
22(3,8317)1

12(1 ) н

ha
ν r∗

 
= −  +  

,

where ν is the Poisson's ratio, and 3.8317 is the first root of the Bessel function 1( )J x .
When solving the initial boundary value problem, it is assumed that the Signorini’s perturbation method can be 

applied. At this, we assume that the coefficients of the operator Θ depend on a small parameter Λ in a power-law 
manner. This means that the boundary conditions for the incremental displacement components Λ are specified by the 
matrix A A( )= Λ . In this problem, a partial eigenvalue problem — the determination of the lowest eigenvalues — has 
physical meaning. The higher degrees Λ , which contain the matrix elements, slightly affect the values of the smallest 
roots of the secular equation (9). If we restrict ourselves to the linear theory under solving the initial problem, then 
A( )Λ is a regular binomial [16].

Numerical experiments under studying the stability of nonlinear elastic bodies of not too large relative 
thickness confirm this conclusion. Therefore, a characteristic equation with non-linear occurrence of parameter (9) can 
be replaced by the characteristic equation of the linear operator. Iterative processes that converge to one eigenvalue, 
where a number close to the value in the theory of plates is chosen as the null approximation, can be applied.

Discussion and Conclusions. Using the equations obtained above, a numerical analysis of the influence of 
physical and geometric nonlinearity on the value of the upper critical parameter a∗ is performed. The calculations are 
implemented in the Matlab environment for various options of specifying elasticity moduli, relative plate thickness, and 
waveformation number n . It is found that in all cases of loss of disk stability, the first-mode buckling that corresponds 
to the minimum critical value of the parameter, which corresponds to the root of the Bessel function 3.8317 [17], 
answers the smallest critical parameter value a∗ .

Table 1 shows the critical parameter values a∗ for plates with a relative thickness of 0.05; 0.1; 0.15; 0.2; 0.25; 
and 0.3.

Table 1
Critical parameter values a∗ for plates of various relative thicknesses

нh r Relative plate thickness
0.05 0.1 0.15 0.2 0.25 0.3

1 0.9922
0.9972

0.9869
0.9867

0.9800
0.9735

0.9660
0.9549

0.9530
0.9300

0.9330
0.8914

2 0.9977
0.9967

0.9908
0.9869

0.9801
0.9690

0.9664
0.9410

0.9504
—

0.9332
—

3 0.9976
0.9965

0.9907
0.9856

0.9800
0.9665

0.9662
0.9372

0.9502
—

0.9330
—

4 0.9977
0.9881

0.9907
—

0.9798
—

0.9659
0.9965

0.9497
0.9613

0.9324
0.9861

5 0.9914
0.9929

0.9865
0.9729

0.9783
0.9341

0.9668
0.9114

0.9520
—

0.9350
—

6 0.9978
0.9985

0.9912
0.9941

0.9800
0.9871

0.9675
0.9775

0.9520
0.9651

0.9340
0.9539

7 0.9985
0.9985

0.9941
0.9941

0.9859
0.9863

0.9735
0.9749

0.9560
0.9594

0.9320
0.9396
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2 43 31 2
3 1 2 1 2

3 159 9
3λ 2μ (2λ 3 4 ) ( ) 0

4 2 4 8
ν νν ν ν ν a ν ν a− − + + + ν + − − − + + − = .

In particular, if 1 2 3 0ν ν ν= = = , then we get

( )2 22λ1 1
λ 2μ

d a= + −
+

.

When considering the Blatz-Ko law of state, d is expressed by the formula
2 3d a−= .

Thus, through setting the elasticity moduli and Bessel null-functions, we find the bifurcation values of the
initial strain parameter a∗ from (9).

Note that the value 1 a∗Λ ≡ − is a small parameter for relatively thin disks. So, in the classical theory of plate 

buckling, the critical value of a∗ is determined by the formula 
22(3,8317)1

12(1 ) н

ha
ν r∗

 
= −  +  

,

where ν is the Poisson's ratio, and 3.8317 is the first root of the Bessel function 1( )J x .
When solving the initial boundary value problem, it is assumed that the Signorini’s perturbation method can be

applied. At this, we assume that the coefficients of the operator Θ depend on a small parameter Λ in a power-law 
manner. This means that the boundary conditions for the incremental displacement components Λ are specified by the
matrix A A( )= Λ . In this problem, a partial eigenvalue problem — the determination of the lowest eigenvalues — has
physical meaning. The higher degrees Λ , which contain the matrix elements, slightly affect the values of the smallest 
roots of the secular equation (9). If we restrict ourselves to the linear theory under solving the initial problem, then
A( )Λ is a regular binomial [16].

Numerical experiments under studying the stability of nonlinear elastic bodies of not too large relative
thickness confirm this conclusion. Therefore, a characteristic equation with non-linear occurrence of parameter (9) can
be replaced by the characteristic equation of the linear operator. Iterative processes that converge to one eigenvalue,
where a number close to the value in the theory of plates is chosen as the null approximation, can be applied.

Discussion and Conclusions. Using the equations obtained above, a numerical analysis of the influence of
physical and geometric nonlinearity on the value of the upper critical parameter a∗ is performed. The calculations are 
implemented in the Matlab environment for various options of specifying elasticity moduli, relative plate thickness, and
waveformation number n . It is found that in all cases of loss of disk stability, the first-mode buckling that corresponds
to the minimum critical value of the parameter, which corresponds to the root of the Bessel function 3.8317 [17],
answers the smallest critical parameter value a∗ .

Table 1 shows the critical parameter values a∗ for plates with a relative thickness of 0.05; 0.1; 0.15; 0.2; 0.25;
and 0.3.

Table 1
Critical parameter values a∗ for plates of various relative thicknesses

нh r Relative plate thickness
0.05 0.1 0.15 0.2 0.25 0.3

1 0.9922
0.9972

0.9869
0.9867

0.9800
0.9735

0.9660
0.9549

0.9530
0.9300

0.9330
0.8914

2 0.9977
0.9967

0.9908
0.9869

0.9801
0.9690

0.9664
0.9410

0.9504
—

0.9332
—

3 0.9976
0.9965

0.9907
0.9856

0.9800
0.9665

0.9662
0.9372

0.9502
—

0.9330
—

4 0.9977
0.9881

0.9907
—

0.9798
—

0.9659
0.9965

0.9497
0.9613

0.9324
0.9861

5 0.9914
0.9929

0.9865
0.9729

0.9783
0.9341

0.9668
0.9114

0.9520
—

0.9350
—

6 0.9978
0.9985

0.9912
0.9941

0.9800
0.9871

0.9675
0.9775

0.9520
0.9651

0.9340
0.9539

7 0.9985
0.9985

0.9941
0.9941

0.9859
0.9863

0.9735
0.9749

0.9560
0.9594

0.9320
0.9396

Volokitin G. I. Stability of a nonlinear elastic plate under lateral compression

The following numbers indicate the materials listed below.
1. Steel Rex 535 ( 1.09λ = , 0.818μ = , 1 1.75ν = − , 2 2.40ν = − , 3 1.69ν = − ).

2. Steel 50HGSM2F ( 1.129λ = , 0.803μ = , 1 2.8ν = − , 2 2.7ν = − , 3 1.87ν = − ).

3. Steel Hecla 37 ( 1 2 31.11, 0.821, 3.58, 2.82, 1.77λ μ= = ν = − ν = − ν = − ).

4. Steel Hecla ATV ( 2 30.34, 5.52, 1.01λ=0.87, μ=0.716, ν ν ν= = − = − ).

5. Beryllium bronze ( 2 34.0, 1.7, 0.61λ=1.042, μ=0.49, ν ν ν= − = − = − ).

6. Organic glass ( 2 30.078, 0.07, 0.0471λ=0.39, μ=0.186, ν ν ν= − = − = ).
In the first six cases, the Murnaghan law of state is considered. The last option presents the results for the 

material of Blatz-Ko. The top number in the table cell refers to the case in which physical non-linearity is not taken into 
account, i.e., 1 2 3 0ν ν ν= = = in the Murnaghan law; 0β = in the Blatz-Ko law. The second (lower) number takes into
account physical nonlinearity. In the Murnaghan law, data were used for the third-order elasticity moduli from [14] in 

units 12
210 dyne

cm
.

In the last row of Table 1, there are the results for the Blatz-Ko law, which was chosen in a simplified version 
(the Knowles-Sternberg equation): the Poisson's ratio was taken equal to 0.25, and the refining module 0.45β = . A

dash means no critical value a∗ was found.
The analysis of the results provides drawing some conclusions. At small relative thicknesses of the disk, the 

exact theory and the linear theory of plates give the same critical parameter values a∗ . Geometric nonlinearity has 
marked impact at relative thicknesses greater than 0.1. Physical nonlinearity is even more pronounced. However, care 
should be exercised in choosing third-order elasticity moduli. For example, in the fourth version (Hecla ATV steel) and 
for thin plates, no reliable critical values of the parameter a∗ were found; although acceptable values indicating a loss of 
stability are observed for the same Lame elasticity moduli. As in the stability problem for a nonlinear elastic sphere 
made of Blatz-Ko material [15], the constant β weakly affects the critical value a∗ .
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