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Introduction. A new approach to the formation of the methodological basis of system analysis in the application to the 
problems on mechanical oscillatory structure dynamics is considered. The study objective is to develop a method for 
evaluating properties of the mechanical oscillatory systems with account for viscous friction forces based on frequency 
functions and damping functions that depend on the so-called coefficient of connection forms, which is the ratio of 
characteristics of generalized coordinates.
Materials and Methods. The graphoanalytical methods used for evaluating the dynamic properties of mechanical 
oscillatory two-degree-of-freedom systems are based on determining the extreme values of the frequency functions and 
the damping function, which are determined from the relations between the kinetic, potential energy and the values of 
the energy dissipation function. Mathematical models are based on Lagrange formalism, matrix methods, and elements 
of the theory of functions of a complex variable.
Results. A method is proposed for constructing frequency functions and damping functions for a class of mechanical 
oscillatory two-degree-of-freedom systems based on the analytical expressions that reflect features of the ratio of the 
potential and kinetic energy of the system considering viscous friction forces represented by the dissipative function. 
General analytical expressions for the frequency function and the damping function are derived. Graphoanalytical 
analysis of extreme properties of the corresponding frequency functions and damping functions is performed for 
mechanical vibrational systems with elastic-damping elements with symmetry properties. The results of numerical 
experiments are presented. A criterion for classifying frequency functions and damping functions based on the 
topological features of the graphs of the corresponding functions is proposed.
Discussion and Conclusions. The developed method for constructing frequency functions and damping functions can be 
used to display the dynamic features of mechanical oscillatory systems. The proposed matrix method for constructing a 
frequency-damping function for a two-degree-of-freedom system can be extended to the mechanical vibrational systems 
considered in different coordinate systems.
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Introduction. Considerable attention is paid to the methods of using mechanical vibration systems as 
calculation schemes in the problems on evaluating the dynamic properties of technical objects operating under intense 
vibration loads [1–9]. Methods based on extreme properties of the ratio of potential and kinetic energy can be 
considered as common approaches to evaluating the dynamic properties of mechanical oscillatory systems [10, 11]. 
Methods based on energy relations have been developed in the use of the frequency function as a function of the 
coefficient of connection forms of the mechanical system coordinates to evaluate the dynamics of mechanical 
oscillatory systems disregarding friction forces [12–15].

At the same time, methods for evaluating the dynamic properties of mechanical oscillatory systems, with 
account for the viscous friction forces based on the frequency function, require detailed representations depending on 
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the viscous friction value. In particular, this is due to the fact that for systems with aperiodic motion, the concept of 
oscillation frequency may lose its meaning. 

The proposed work is devoted to the creation of a method for evaluating the properties of mechanical 
movements based on the development of the concept of the frequency function, when an additional damping function 
reflecting the features considering viscous friction forces depending on the coefficients of connection forms, is 
introduced.

Materials and Methods. Free motions of a mechanical elastic-dissipative system with concentrated two-
degree-of-freedom parameters are considered. The schematic diagram of the system is shown in Fig. 1. 

1m
2m

1k 2k0k

1y 2y

1b 2b0b

Fig. 1. Mechanical oscillating system with account for viscous friction

Generalized coordinates 1y , 2y denote the displacement of mass-inertial elements 1m , 2m relative to the static 
equilibrium position. Kinetic energy T , potential energy Π and scattering function F have the form: 

2 2
1 1 2 2

1 1
2 2

T m y m y= +  , (1)

2 2 2
1 1 2 2 0 2 1

1 1 1 ( )
2 2 2

k y k y k y yΠ = + + − , (2)

2 2 2
1 1 0 2 1 2 2

1 1 1( )
2 2 2

F b y b y y b y= + − +    . (3)

The system of Lagrange equations of the second kind has the form: 

1 1 1

2 2 2

0;

0.

d T F
dt y y y
d T F
dt y y y

∂ ∂Π ∂ + + = ∂ ∂ ∂
 ∂ ∂Π ∂ + + =
 ∂ ∂ ∂

 

 

(4)

After substituting expressions T ,Π , F , the system of differential equations (4) takes the form: 

1 1 0 1 1 0 2 0 1 1 0 2

2 2 0 2 2 0 1 0 2 2 0 1

( ) ( ) 0;
( ) ( ) 0.

m y b b y b y k k y k y
m y b b y b y k k y k y

+ + − + + − =
 + + − + + − =

  

  

(5)

The forms of free motions of the presented system (5) are generally determined by the eigenvalues of the 
characteristic equation, taking into account their multiplicity. The case of simple roots is considered. Thus, let the 
solution 1 1( )y y t= , 1 2 ( )y y t= of the system (5) be represented as:

pty Ye=


 , (6)

where 1

2

y
y

y
 

=  
 

 is the solution vector, 1

2

Y
Y

Y
 

=  
 



is the numeric vector, p j= σ + ω is the complex parameter, t is the 

time variable. It is assumed that the initial conditions are consistent with the type of solution you are looking for (6). 
The task is to construct and evaluate the extreme properties of functions that display the characteristics of the 

proper motions of the system with account for the viscous friction forces.
Research Results 
1. Construction of the frequency function and the dissipation function based on the energy ratio. The 

system (5) in the notation (6) has the form:
2

11 0 1 0 1 0 0
2

20 0 2 0 2 0 2

( )
0

( )
Ym p b b p k k b p k
Yb p k m p b b p k k

 + + + + − −  
=   − − + + + +   

. (7)

We introduce the notations:

  

   

   
  

b1 b0 b2

k1 k0 k2

y2y1

m1 m2
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1

2

0
0
m

A
m

 
=  
 

, 0 1 0

0 0 2

b b b
B

b b b
+ − 

=  − + 
, 0 1 0

0 0 2

k k k
C

k k k
+ − 

=  − + 
. (8)

Considering (8), the matrix relation (5) takes the form: 
2( ) 0p A pB C Y+ + =



. (9)
On the basis of the matrix relation (9), various scalar equations can be obtained. With account for their extreme 

properties, in turn, the properties of the solution p of the equation (9) can be determined. In particular, scalar 
multiplication of the left and right parts of the equation (9) by vector Y



results in the scalar expression:
2 , , , 0p AY Y p BY Y CY Y+ + =

     

. (10)

Using substitution p j= σ + ω , we can write (10) as:
2 2( 2 ) , ( ) , , 0j AY Y j BY Y CY Yσ −ω + σω + σ+ ω + =

     

, (11)

Let the following relation be fulfilled for the coordinates of vector Y


:

2 1Y Y= α , (12)

where α is the coefficient of the connection form. In this case, vector Y


can be presented as:

1Y Y= α


 , (13)

where 
1 

α =  α 

 is vector defined by the connectivity coefficient α . After substituting (13), the expression (11) takes 

the form:
2 2( 2 ) ( ) 0j A j B Cα α ασ −ω + σω + σ+ ω + = , (14)

where ,A Aα = α α
  , ,B Bα = α α

  , ,B Bα = α α
  are scalar functions of the coefficient of the connection form α . The 

equation (14) can be presented in the equivalent form:
2 2 ;

2 0.
A A B C

A B
α α α α

α α

ω = σ + σ +

σω +ω =

(15)

We find the solution to the system (15) with respect to ,σ ω , as functions α . Function ( )ω α is considered as a 

frequency function, ( )σ α is the damping function. Features of the solution to the system are determined by the sign of 

the expression 2A B Cα α ασ + σ + .

Considering dissipation. The level of energy dissipation can be characterized by discriminant 2 4B A Cα α α− .
Under the following condition:

2 4B A Cα α α< , (16)
which is understood as a small amount of friction, the solution (15) can be presented as:

2
2 ;

2

.
2

C B
A A
B
A

α α

α α

α

α

  
ω = −  
  
σ = −


(17)

It should be noted that when the conditions of smallness of the viscous friction forces (16) are met, the equation is 
performed:

2 2 C
A
α

α

ω + σ = . (18)

Under the condition of “large viscous friction forces”: 
2 4B A Cα α α> , (19)

the solution (15) can be presented as:

0ω = , (20)
2

1( )
2 2
B B C
A A A
α α α

α α α

 
σ α = − − − 

 
,

2

2 ( )
2 2
B B C
A A A
α α α

α α α

 
σ α = − + − 

 
. (21)

The damping function has two components 1( )σ α , 2 ( )σ α , such that: 

1 2( ) ( )
B
A
α

α

σ α + σ α = − , 1 2( ) ( )
C
A
α

α

σ α ⋅σ α = . (22)
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The damping function has two components 1( )σ α , 2 ( )σ α , such that: 

1 2( ) ( )
B
A
α

α

σ α + σ α = − , 1 2( ) ( )
C
A
α

α

σ α ⋅σ α = . (22)
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Thus, depending on the level of viscous friction forces, different types of presentation of the frequency 
function and the damping function are possible. If 2 4 0B A Cα α α− < , then the frequency function 2 ( )ω α and one 

component of the damping function ( )σ α are defined. If 2 4 0B A Cα α α− > , then it is assumed that the frequency 

function 2 ( )ω α takes zero values, and the damping function has two different negative components 1( )σ α , 2 ( )σ α .

As for the condition 2 4 0B A Cα α α− = , it requires a separate analysis. However, the condition 2 4 0B A Cα α α− =

can be interpreted as a boundary between two different modes of motion of a mechanical system.
The presented analytical expressions of the frequency function, the damping function, and the conditions of 

“small” and “large” viscous friction forces can be detailed when considering specific options of mechanical oscillatory 
systems obtained on the basis of a two-degree-of-freedom system.

2. Frequency function and damping function for a mechanical two-degree-of-freedom system. Parameter 
options for the mechanical system shown in Fig.1 are considered. It is supposed that a set of boundary parameters 
separating the modes of motion for small and large forces of viscous friction is determined from the equation:

2 4B A Cα α α= , (23)
where:

2
1 2A m mα= + α , (24)
2

0 2 0 0 1( ) 2B b b b b bα= + α − α + + , (25)
2

0 2 0 0 1( ) 2C k k k k kα= + α − α + + . (26)
The conditions of smallness of viscous friction forces have the form:

2 4B A Cα α α< . (27)
In this case, frequency function 2 ( )ω α and damping function ( )σ α :

22 2
2 0 2 0 0 1 0 2 0 0 1

2 2
1 2 1 2

2
0 2 0 0 1

2
1 2

( ) 2 ( ) 21( )
2

( ) 21( )
2

k k k k k b b b b b
m m m m

b b b b b
m m

  + α − α + + + α − α + +
ω α = −  + α + α  

+ α − α + +
σ α = − + α

. (28)

The conditions of large viscous friction forces have the form:
2 4B A Cα α α> . (29)

Under the conditions (29), functions 2ω and ( )σ α have the form: 

2

2
0 2 0 0 1

1 2
1 2

22 2
0 2 0 0 1 0 2 0 0 1

2 2
1 2 1 2

2
0 2 0 0 1

2 2
1 2

22 2
0 2 0 0 1 0 2 0 0

2
1 2

0;
( ) 21( )

2

( ) 2 ( ) 21 ;
2

( ) 21( )
2

( ) 2 ( ) 21
2

b b b b b
m m

b b b b b k k k k k
m m m m

b b b b b
m m

b b b b b k k k k
m m

ω =

+ α − α + +
σ α = − −

+ α

 + α − α + + + α − α + +
− − + α + α 

+ α − α + +
σ α = − +

+ α

 + α − α + + + α − α +
+ − + α 

1
2

1 2

.
k

m m















 +


+ α

(30)

The presented expressions reflect motions in the form of exponential decrease in the absence of fluctuations.
3. Features of frequency functions and damping functions for symmetric mechanical oscillatory systems.

We consider a mechanical oscillating system with elastic damping elements, whose parameter values are imposed by 
symmetry conditions in the form 1 2 0b b b b= = = , 1 2 0k k k k= = = . The schematic diagram is shown in Fig. 2.
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1m
2m

1y 2y

k

b

k

b

k

b

Fig. 2. “Symmetrical” mechanical system

The system of differential equations (5) has the form:

1 1 2 1 2

2 2 1 2 1

2 2 0;
2 2 0.

my by by ky ky
my by by ky ky

+ − + − =
 + − + − =

  

  

(31)

Functions A α , B α , C α can be presented by the expressions:
2

1 2A m mα= + α , (32)
22 ( 1)B bα= α −α + , (33)
22 ( 1)C kα= α −α + . (34)

On the basis of the presented components, frequency function and damping function can be constructed, and 
the conditions for the smallness of the viscous friction forces can be formulated.

Accounting for viscous friction forces. The condition of smallness of the friction forces can be presented from 
the inequality:

2

2
B C
A A
α α

α α

 
< 

 
. (35)

After substituting the functions (32) – (34), the condition of smallness of the friction forces (35) can be written 
as:

0 ( )Mγ < α , (36)

where
2

0 4
b
k

γ = is a generalized viscoelastic parameter, 
2

1 2
2

1( )
2 1

m mM + α
α = ⋅

α −α +
is a generalized mass-inertia coefficient 

that depends on the shape coefficient α . The graph of function Mα for each fixed 0γ defines a set of values for α , at 
which the condition of smallness of the friction forces is satisfied. 

As an example, Fig. 3 shows a graph of the parameterizing function ( )M α . Function ( )M α has global 

minimum 1M and maximum 2M at α →∞ 2( )
2

mM α → .

Fig. 3. Parameterizing function ( )M α : 1 — global maximum level 2M ,

3 — global minimum level 1M , 2 — level of horizontal asymptote 2

2
m

γ0

(2)

(3)

(1)

-10                  -5                    0                        5                    10

4

3

2

1

-1
α

  

   

  
   

y2y2

b b b

k k k

m1 m2
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The change in parameter 0γ in the intervals 1(0, )M , 2
1( , )
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characteristic intervals of the shape coefficient α , under which the conditions for low friction forces are met.
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(38)

On the basis of analytical representations of the frequency function and the damping function, characteristic 
variants and features of the extreme properties of the corresponding functions can be determined, taking into account 
the viscous friction forces.

Discussion and Conclusion. Of interest are the characteristic variants of frequency functions and damping 
functions depending on the conditions of low viscous friction forces. Variants of value 0γ , that determine the 
characteristic intervals of the shape coefficient α , under which the conditions of smallness of the viscous friction forces 
are met, are considered.

1. Let 0 1(0, )Mγ ∈ . The example 0 0.1γ ≈ is considered. In this case, the conditions for low friction forces for 

any shape coefficient ( .. )α∈ −∞ ∞ are met. Fig. 4 and 5 show the frequency function 2 ( )ω α and damping function 

( )σ α for the mechanical elastic-dissipative system with parameters 1b = , 1 3m = , 2 4m = , 3k = .

Fig. 4. Frequency functions 2 ( )ω α :
(1) and (2) are extreme levels

Fig. 5. Damping function ( )σ α :

(1) and (2) are extreme levels

Roots of the equation that is equal to zero of the corresponding determinant
2 0Ap Bp C+ + = , (39)

are i i ip j= ω + σ , 1..4i = , where 1 0.91ω ≈ ; 2 1.56ω ≈ ; 3 1.56ω ≈ − ; 4 0.91ω ≈ − ; 1 0.14σ ≈ − ; 2 0.44σ ≈ − ;
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In Fig. 4, the frequency function reaches extreme values equal to the squares of the frequencies 2
2 2.46ω ≈ and 

2
1 0.82ω ≈ . In Fig. 5, the damping function reaches extreme values that are 3 0.44σ ≈ − and 4 0.14σ ≈ − . The 
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frequency function and the damping function reach their extreme values when the form coefficients are 1* 0,65α = −

and 2* 1.15α = .

2.Let 2
0 1( , )

2
mMγ ∈ . We consider a mechanical system with parameters 4b = , 0 1.33γ ≈ . Fig. 6 and 7 show 

the corresponding frequency function and damping function. The set of coefficients of forms for which the condition of 
low friction forces is satisfied is: 1 2( , ) ( , )−∞ α ∪ α ∞ , where iα are the roots of the equation 0( )M α = γ . For parameters 

4b = , 1 3m = , 2 4m = , 3k = the roots of the characteristic equation (39) have real parts representing the dissipation 

coefficients, 1 0.57σ ≈ − ; 2 1.08σ ≈ − ; 3 2.46σ ≈ − ; 4 0.57σ ≈ − and imaginary parts representing the frequencies 

1 0.73ω ≈ ; 2 0ω ≈ ; 3 0ω ≈ ; 4 0.73ω ≈ − . In Fig. 6, the frequency function has a local minimum 2
4 0.53ω ≈ in the 

interval 1 2( , ) ( , )−∞ α ∪ α ∞ .

Fig. 6. Frequency function:
(1) is extreme level at point *

2α
Fig. 7. Damping function:

(3) is extreme level at point *
2α ; (1), (2) are extreme levels at 

point *
1α on the two-valued interval

On the interval 1 2( , )α α , the frequency function is zero. In turn, in Fig. 7, the damping function in the interval 1 2( , )α α

is double-valued and reaches simultaneously two extreme values 2 1.08σ ≈ − and 3 2.46σ ≈ − at point 2 *α . In the 

domain 1 2( , ) ( , )−∞ α ∪ α ∞ , the damping function is single-valued and has one local extremum 1 0.57σ ≈ − at point 

2 *α .

3. Let 2
0 2( , )

2
m Mγ ∈ . We consider a mechanical system with parameters 6b = ; 1 3m = ; 2 4m = ; 3k = . The 

roots of the characteristic equation (39) have real 1 0.85σ ≈ − ; 2 0.56σ ≈ − ; 3 4.74σ ≈ − ; 4 0.85σ ≈ − and imaginary 

parts 1 0.36ω ≈ ; 2 0ω ≈ ; 3 0ω ≈ ; 4 0.36ω ≈ − . The conditions for low friction forces are met in the interval 1 2( , )α α ,

where 1 0.63α ≈ ; 2 2.37α ≈ . In Fig. 8, the corresponding frequency function is positive only on the interval 1 2( , )α α .

The local extremum of the frequency function is 2
4 0.13ω ≈ . Outside the interval 1 2( , )α α , the frequency function is 

zero. 

In Fig. 9, the damping function is double-valued in the interval 1( , )−∞ α and reaches simultaneously two extreme 

values at point 1 *α , which are 3 4.74σ ≈ − and 2 0.56σ ≈ − . In the interval 2( , )α ∞ the damping function is also 

double-valued. In the interval 1 2( , )α α , the damping function is single-valued and has one local extremum 1 0.85σ ≈ −

at point 2 *α .
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In Fig. 9, the damping function is double-valued in the interval 1( , )−∞ α and reaches simultaneously two extreme 
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Fig. 8. Frequency function: 
(1) is extreme level at point *

2α

Fig. 9. Damping function: (1), (3) are extreme levels at point *
1α

on the two-valued interval, (2) is extreme level at point *
2α

4. Let 0 2( )M ,  γ ∈ ∞ . For parameters 6.52b = ; 1 3m = ; 2 4m = ; 3k = , the characteristic equation (39) has 

only real roots 1 0.50σ ≈ − ; 2 0.88σ ≈ − ; 3 0.96σ ≈ − ; 4 5.26σ ≈ − . The corresponding frequency function and damping 
function are shown in Fig. 10 and 11. The interval of fulfillment of the conditions of smallness of the friction forces 
degenerates into an empty set.

Fig. 10. Frequency function:
case of degeneracy

Fig. 11. Damping function, formed by two branches: (1), (2) are 
extreme levels of the “upper” branch at points *

1α and *
2α ; (3), (4) are 

extreme levels of the “lower” branch at points *
1α and *

2α

In Fig. 10, the frequency function is zero on the whole number axis. In Fig. 11, the corresponding damping 
function is double-valued on the entire numeric axis and has 4 local extrema 1 0.50σ ≈ − ; 2 0.88σ ≈ − ; 3 0.96σ ≈ − ;

4 5.26σ ≈ − at points *
1α and *

2α .

Fig. 12. Pictograms of topological features of frequency function and damping function graphs: (a)-(d) are pictograms associated 
with graphs of frequency functions shown in Fig. 4, 6, 8, 10, respectively; (e)-(h) are pictograms associated with damping functions 

in Fig. 5, 7, 9, 11, respectively 
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The pictograms shown in Fig. 12, compared to the function graphs in Fig. 4–11, reflect a number of 
topological features of the frequency function and damping function graphs. These features include the shape of the 
graph as a single curve, the presence of bifurcation points on the graph of one curve into two, the presence of two 
nonintersecting curves or a “ring”.

Thus, the achieved extreme values of the frequency function and the damping function are related to the 
dynamic characteristics of the mechanical oscillatory system taking into account the friction forces. In particular, the 
extreme values of the constructed frequency function and damping function are related to the proper frequencies and 
dissipative coefficients of damped oscillations. In this case, the issue on the existence of extreme values of the 
frequency function and the damping function that do not coincide with the squares of the proper oscillation frequencies 
requires additional consideration. At the same time, it can be assumed that the forms of frequency functions and 
damping functions that determine the modes of free motions of mechanical oscillatory systems with friction are of 
interest for evaluating a wider range of dynamic properties.

In terms of practical implementation of the possible control of oscillatory modes of mechanical systems based 
on the connectivity coefficient, there are no fundamental obstacles. For example, possible dynamic state control systems 
may include sensors of vibration amplitudes at control points of a vibrating process machine or vehicle. However, the 
construction of such systems requires detailed consideration of a wide range of features related to the technical object.

In conclusion, the following points can be noted as the conclusions of the presented studies.
1. For the mechanical vibrating system considering forces of viscous friction, a method of constructing

frequency function and damping function that are dependent on the connection form coefficient of the free motion 
coordinates, is developed. It is shown that the set of extreme values of the frequency function and the damping function 
displays the proper characteristics of an elastic-dissipative mechanical oscillatory system.

2. It is shown that the frequency function and damping functions for a mechanical oscillatory two-degree-of-
freedom system with account for viscous friction, can be represented in two variants determined by the conditions for 
the value of the viscous friction forces for a fixed connection form coefficient; for the conditions of low viscous friction 
forces, the values of the frequency function take positive values, and the damping function has one negative component; 
if the conditions of high viscous friction forces are met, the frequency function takes zero values, and the damping 
function has two negative components.

3. A method is proposed for constructing possible variants of frequency functions and damping functions for
various values of system parameters based on a parameterizing function that allows determining the regions of values of 
the connection form coefficient in which the condition of smallness of viscous friction forces is met. A criterion for 
classifying frequency functions and damping functions depending on the topological features of their graphs is 
proposed. 

4. The matrix method for constructing the frequency-damping function for a two-degree-of-freedom system
can be extended to mechanical oscillatory systems considered in different coordinate systems.

5. As a physical interpretation of the connection coefficient used in the frequency function and the damping
function, we can consider the linkage in the form of a gear ratio expressed from the ratio of the amplitudes of the partial 
block coordinate oscillations. The ratio under consideration, along with the static state, can be determined for steady-
state and damped oscillation modes. Thus, a concept is developed in which the starting point for the analysis of a 
mechanical system is the linkage.
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