
ht
tp

://
ve

st
ni

k-
do

ns
tu

.ru

14

Advanced Engineering Research 2021. V. 21, no. 1. P. 14−21. ISSN 2687−1653

UDC 531.36 https://doi.org/10.23947/2687-1653-2021-21-1-14-21

Three-dimensional integral dry friction model for the motion
of a rectangular body

M. S. Salimov, I. V. Merkuriev
National Research University "MPEI" (Moscow, Russian Federation)

Introduction. A three-dimensional dry friction model in the interaction of a rectangular body and a horizontal rough 
surface is considered. It is assumed that there is no separation of the body from the horizontal surface. The body motion 
occurs under the conditions of combined dynamics when, in addition to the longitudinal movement, the body partici-
pates in twisting.
Materials and Methods. Linear fractional Pade approximations are proposed, which replaced the cumbersome analytical 
expressions that most accurately describe the motion of bodies on rough surfaces. New mathematical models describing 
sliding and twisting of bodies with a rectangular base are proposed.
Results. Analytical expressions of the principal vector and moment of friction for rectangular contact areas are devel-
oped and scientifically established. A friction model that takes into account the relationship between sliding and twist-
ing speeds, which provides finding solutions for Pade dependences, is developed. After numerical solution to the equa-
tions of motion, the dependences of the sliding speed and angular velocity on time were obtained and constructed. 
Graphs of the dependences of the friction forces and their moment on two parameters (angular velocity and slip veloci-
ty) were constructed, which enabled to compare the integral and normalized models of friction. The comparison results 
showed good agreement of the integral model and the model based on Pade approximations.
Discussion and Conclusions. The results obtained provide considering the dynamic coupling of components, which 
determines the force interaction of a rectangular body and a horizontal surface. These results can be used in mobile ro-
botics. The analyzed motion of the body occurs through the motion control of a material point inside the body. Such 
mobile robots can be used when solving a wide class of problems: when creating autonomous robots for the exploration 
of outer space and planets; in the diagnosis and treatment in case of passing through complex structures of veins and 
arteries; in research under water, in places of large differential temperature; in underground operations.

Keywords: dry friction, rectangular body, solid body, dynamics, sliding, twisting, friction force, Pade approximations.

For citation: M. S. Salimov, I. V. Merkuriev. Three-dimensional integral dry friction model for the motion of a 
rectangular body. Advanced Engineering Research, 2021, vol. 21, no. 1. — p. 14–21. https://doi.org/10.23947/2687-
1653-2021-21-1-14-21

© Salimov M. S., Merkuriev I. V., 2021

Introduction. The study of the movement of a rectangular body is a challenge in the mobile robotics [1]. This 
movement is due to the control of the material point inside the body. Such mobile robots can be used to solve a wide 
range of tasks. For example, when creating autonomous robots for the exploration of outer space and planets; for 
medical purposes, in diagnosis and treatment, for example, in case of passing through complex structures of veins and 
arteries; as well as for underground work and research under difficult conditions, for example, under water and in places 
of large differential temperature [1, 2]. 

Thus, more and more challenges are being set for robotics, which require theoretical research, including 
studying models of friction between the body and the surface under the conditions of combined dynamics [3, 4]. Since 
the movement of the mobile robot occurs in different directions, it is required to consider the longitudinal movement 
and rotation. Thus, in the structure of the friction model, it is required to provide the relationship between the sliding 
and twisting speeds [5]. An important development in the description of this relationship was made in [6]. Its author 
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managed to solve the equations for the principal moment and the vector of friction forces where a rectangle was 
considered as a contact area. Such analytical expressions enable to most accurately describe the motion of bodies on 
rough surfaces, but they are cumbersome and complex since they contain integral expressions. Hence, the authors of [7]
constructed linear fractional Pade approximations, which made it possible to find solutions for the resulting 
dependences.

Pade approximation can be used to explain the effects of combined dry friction for linear and angular 
velocities. On the basis of Pade approximations, it became possible to create new models of friction [8, 9], which later 
began to be classified for better interpretation [10]. The classification occurs depending on the number of parameters. 
Thus, in [11], the authors introduced the notions of dimension and order of the dry friction model depending on the 
order of the used Pade approximations.

The model of sliding and twisting friction, which is proposed in the paper [12], provides considering the 
dynamic connection of the components that determine the force interaction of a rectangular body and a horizontal 
surface [13]. 

Problem Statement. We consider a solid body of mass 0m , which is a rectangular body with uniform faces of 

length а, width b and height 2h . A fixed coordinate system Oxyz , associated with the body (Fig. 1) is introduced.  

Point O is located on the horizontal plane. The system. 1 1 1 1O x y z starts at a point 1O , that corresponds to the geometric 

center of the body. The axis 1 1O z is parallel to the axis Oz . The axis 1 1O x is parallel to the long edge of the body. We 

introduce the unit vectors ,x ye e of the axes 1 1O y and 1 1O x , respectively.

Fig. 1. Coordinate systems

Consider the continuous motion of the body on the surface (Fig. 2), which consists of translational movement 
and rotation about the axis 1 1O z . Three coordinates determine the position of the body. The coordinates 0x , 0y and h

set the origin of the coordinate system 1 1 1 1O x y z in the coordinates Oxyz . The rotation of the body relative to its initial 

position on the axis 1 1O x is specified by the angle φ. This paper considers the case when the center of mass of the body 

G and the center of mass of the system 1O coincide (Fig. 2) [14].

Fig. 2. Movement of the system body
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Materials and Methods. The contact area is a rectangle with sides a and b , in which the normal voltage 
depends on the distance from the point P to the faces of the rectangle (Fig. 3).

Fig. 3. Velocities of the points 1O and P

Consider an infinitesimal area dS at an arbitrary point M on the contact surface. We introduce the angle φ

between the relative sliding velocity and the axis 1 1O x . Let us draw the radius vector MPr from the point P  to the point

М. The velocity vector of the point M is denoted υ𝑀𝑀, and to find it, we use the Euler formula describing the velocity 

distribution in a perfectly rigid body:

υ𝑀𝑀 = υ𝑃𝑃 + ω⋅�̄�𝑟𝑀𝑀𝑃𝑃.

The sliding speed at the point M is decomposed into two components along the axes 𝑂𝑂1𝑥𝑥1 and 𝑂𝑂1𝑦𝑦1:

υ𝑀𝑀𝑀𝑀 = υ𝑀𝑀 − 𝑦𝑦ω;

υ𝑀𝑀𝑀𝑀 = υ𝑀𝑀 + 𝑥𝑥ω.

Using Coulomb's law, we find a small increment of the friction force directed against the relative velocity at 

the point M [15]:

𝑑𝑑�̄�𝐹 = −𝑓𝑓σ(𝑥𝑥,𝑦𝑦) υ𝑀𝑀
|υ𝑀𝑀|

𝑑𝑑𝑑𝑑,

where 𝑓𝑓 ― coefficient of friction; σ(𝑥𝑥,𝑦𝑦) ― contact stress distribution function depending on the 𝑥𝑥 and 𝑦𝑦 coordinates;

𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦 ― small area increment [15].

We rewrite the differential of the friction force and the moment of this force in projections on the axes under 

consideration:

𝑑𝑑𝐹𝐹𝑀𝑀 = −𝑓𝑓σ(𝑥𝑥, 𝑦𝑦) υ𝑀𝑀𝑀𝑀
|υ𝑀𝑀|

𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦;

𝑑𝑑𝐹𝐹𝑀𝑀 = −𝑓𝑓σ(𝑥𝑥, 𝑦𝑦) υ𝑀𝑀𝑀𝑀
|υ𝑀𝑀|

𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦;

𝑑𝑑𝑀𝑀𝑧𝑧 = �
𝑖𝑖 𝑗𝑗 𝑘𝑘
𝑥𝑥 𝑦𝑦 0
𝑑𝑑𝐹𝐹𝑀𝑀 𝑑𝑑𝐹𝐹𝑀𝑀 0

� = 𝑥𝑥𝑑𝑑𝐹𝐹𝑀𝑀 − 𝑦𝑦𝑑𝑑𝐹𝐹𝑀𝑀.  

As a special case, we consider a uniform distribution of stress in the absence of internal masses in the body, 

then these stresses will be equal to:  σ = 𝑚𝑚0𝑔𝑔
𝑎𝑎𝑎𝑎

, but then we will continue the record in general form:  σ(𝑥𝑥, 𝑦𝑦).

Having integrated the expressions for the friction forces, we obtain:

𝐹𝐹𝑀𝑀 = −𝑓𝑓 ∫ ∫ σ(𝑥𝑥,𝑦𝑦) υ𝑀𝑀−𝑀𝑀ω
|υ𝑀𝑀|

𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦𝑎𝑎 2⁄
−𝑎𝑎 2⁄

𝑎𝑎 2⁄
−𝑎𝑎 2⁄ ; (1)

𝐹𝐹𝑀𝑀 = −𝑓𝑓 ∫ ∫ σ(𝑥𝑥,𝑦𝑦) υ𝑀𝑀+𝑀𝑀ω
|υ𝑀𝑀|

𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦𝑎𝑎 2⁄
−𝑎𝑎 2⁄

𝑎𝑎 2⁄
−𝑎𝑎 2⁄ . (2)

Relative slip module |υ𝑀𝑀| is calculated from the formula:

|υ𝑀𝑀| = �υ𝑀𝑀𝑀𝑀2 + υ𝑀𝑀𝑀𝑀2 = �υ𝑀𝑀2 + υ𝑀𝑀2 + ω2(𝑥𝑥2 + 𝑦𝑦2) + 2ω�υ𝑀𝑀𝑥𝑥 − υ𝑀𝑀𝑦𝑦�. (3)
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Imagine the relative positions of the vectors of variable sliding speed υ and the components of the friction 

force: 𝐹𝐹∥ ― the component opposite to the sliding speed υ; 𝐹𝐹⊥ ― the component perpendicular to the instantaneous slip 

velocity. At the same time, imagine the coordination of this system with respect to the axes 𝑂𝑂1𝑥𝑥1 and 𝑂𝑂1𝑦𝑦1 (Fig. 4).

Fig. 4. Components of the friction force and velocity

We will make a transition from the projections of the sliding speed:

�
υ𝑀𝑀 = υcosφ,
υ𝑀𝑀 = υsinφ, (4)

to the speed module and the sliding angle:

�
𝐹𝐹∥ = 𝐹𝐹𝑀𝑀cosφ + 𝐹𝐹𝑀𝑀sinφ,

𝐹𝐹⊥ = 𝐹𝐹𝑀𝑀(−sinφ) + 𝐹𝐹𝑀𝑀sinφ. (5)

We will integrate the moment of the friction force on the contact area:

𝑀𝑀𝑧𝑧 = −𝑓𝑓 ∫ ∫ σ(𝑥𝑥,𝑦𝑦) υ(𝑀𝑀sinφ−𝑀𝑀cosφ)+ω�𝑀𝑀2+𝑀𝑀2�
�υ2+ω2(𝑀𝑀2+𝑀𝑀2)+2ωυ(𝑀𝑀sinφ−𝑀𝑀cosφ)

𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦𝑎𝑎 2⁄
−𝑎𝑎 2⁄

𝑎𝑎 2⁄
−𝑎𝑎 2⁄ .

Let us substitute the expressions (1)–(3) into the system (5), and also rewrite the expression for the moment of 

force. As a result, we obtain a three-dimensional model of friction sliding and twisting:

𝐹𝐹∥ = −𝑓𝑓 ∫ ∫ σ(𝑥𝑥,𝑦𝑦) ∙ υ�cos2φ+sin2φ�−ω(𝑀𝑀cosφ+𝑀𝑀sinφ)

�υ2+ω2(𝑀𝑀2+𝑀𝑀2)+2ωυ(𝑀𝑀sinφ−𝑀𝑀cosφ)
𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦𝑎𝑎 2⁄

−𝑎𝑎 2⁄
𝑎𝑎 2⁄
−𝑎𝑎 2⁄ ; (6)

𝐹𝐹⊥ = −𝑓𝑓 ∫ ∫ σ(𝑥𝑥,𝑦𝑦) ∙𝑎𝑎 2⁄
−𝑎𝑎 2⁄

𝑎𝑎 2⁄
−𝑎𝑎 2⁄

ω(𝑀𝑀sinφ+𝑀𝑀cosφ)
�υ2+ω2(𝑀𝑀2+𝑀𝑀2)+2ωυ(𝑀𝑀sinφ−𝑀𝑀cosφ)

𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦; (7)

𝑀𝑀𝑧𝑧 = −𝑓𝑓 ∫ ∫ σ(𝑥𝑥,𝑦𝑦) ·𝑎𝑎 2⁄
−𝑎𝑎 2⁄

𝑎𝑎 2⁄
−𝑎𝑎 2⁄

υ(𝑀𝑀sinφ−𝑀𝑀cosφ)+ω�𝑀𝑀2+𝑀𝑀2�
�υ2+ω2(𝑀𝑀2+𝑀𝑀2)+2ωυ(𝑀𝑀sinφ−𝑀𝑀cosφ)

𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦. (8)

In order not to solve cumbersome integrals, we use the replacement of the corresponding Pade expansions [16, 

17]. Thus, based on the Pade theory [18], these expressions can be formulated as the ratio of two functions of several 

variables in the entire domain of definition, provided that the functions must have the same order [7]. To define these 

functions, it is required to determine the behavior of integral expressions (6)–(8) under the following conditions:

𝜕𝜕𝐹𝐹∥
𝜕𝜕υ |υ=0

= − 𝑓𝑓
ω∫ ∫ σ(𝑥𝑥,𝑦𝑦) ·𝑎𝑎 2⁄

−𝑎𝑎 2⁄
𝑎𝑎 2⁄
−𝑎𝑎 2⁄

�𝑀𝑀2+𝑀𝑀2�𝑀𝑀2+𝑀𝑀2�+(𝑀𝑀cosφ+𝑀𝑀sinφ)(𝑀𝑀sinφ−𝑀𝑀cosφ)
(𝑀𝑀2+𝑀𝑀2)2

𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦 = − 𝑓𝑓
ω
𝐼𝐼0;

𝜕𝜕𝑀𝑀𝑧𝑧
𝜕𝜕υ |υ=0

= − 𝑓𝑓
ω∫ ∫ σ(𝑥𝑥,𝑦𝑦) ∙ (2𝑀𝑀2𝑀𝑀sinφ−2𝑀𝑀3cosφ)

(𝑀𝑀2+𝑀𝑀2)2
𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦𝑎𝑎 2⁄

−𝑎𝑎 2⁄
𝑎𝑎 2⁄
−𝑎𝑎 2⁄ = − 𝑓𝑓

ω
𝐼𝐼3;

𝑀𝑀𝑧𝑧|ω→∞ = −𝑓𝑓 ∫ ∫ σ(𝑥𝑥,𝑦𝑦) ∙ 𝑀𝑀2−𝑀𝑀2

�𝑀𝑀2+𝑀𝑀2
𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦𝑎𝑎 2⁄

−𝑎𝑎 2⁄
𝑎𝑎 2⁄
−𝑎𝑎 2⁄ = −𝑓𝑓𝐼𝐼6;

𝐹𝐹⊥|ω→∞ = −𝑓𝑓 ∫ ∫ σ(𝑥𝑥,𝑦𝑦) ∙ 𝑀𝑀sinφ+𝑀𝑀cosφ
�𝑀𝑀2+𝑀𝑀2

𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦𝑎𝑎 2⁄
−𝑎𝑎 2⁄

𝑎𝑎 2⁄
−𝑎𝑎 2⁄ = 𝑓𝑓𝐼𝐼9;

𝜕𝜕𝐹𝐹∥
𝜕𝜕υ |ω=0

=
𝜕𝜕𝐹𝐹∥
𝜕𝜕ω |𝜐𝜐=0

=
𝜕𝜕𝐹𝐹∥
𝜕𝜕ω |ω=0

= 𝐹𝐹∥|ω→∞ =
𝜕𝜕𝐹𝐹⊥
𝜕𝜕υ |ω=0

=
𝜕𝜕𝐹𝐹⊥
𝜕𝜕ω |υ=0

=

= 𝐹𝐹⊥|υ→∞ = 𝜕𝜕𝐹𝐹⊥
𝜕𝜕ω |ω=0

= 𝜕𝜕𝑀𝑀𝑧𝑧
𝜕𝜕υ |ω=0

= 𝜕𝜕𝑀𝑀𝑧𝑧
𝜕𝜕ω |υ=0

= 𝑀𝑀𝑧𝑧|υ→∞ = 0.
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Values of the expressions ∂F⊥
∂υ |υ=0

and ∂Mz
∂ω |ω=0

are not involved in finding the subsequent Pade approximants, 

therefore, their writing is omitted due to their cumbersomeness. The identical equality to zero is realized under the 

condition that the voltage σ is symmetric about the center of the rectangular contact spot, i.e., the point 𝑃𝑃.

An accurate three-dimensional integral model [13] (6)–(8) provides a logical description of dry friction 

phenomena, but for solving problems of dynamics, such a model is difficult to accept due to the need to calculate 

impressive integrals [10]. To avoid this procedure, we use [6] to replace the exact integral system with the 

corresponding expressions using Pade approximations in the whole range of variables. Linear fractional Pade 

expansions give a three-dimensional model of first-order sliding and twisting friction [19]:

𝐹𝐹∥ = 𝐹𝐹0
υ+𝑎𝑎1ω
υ+𝑑𝑑1ω

; (9)

𝑀𝑀𝑧𝑧 = 𝑀𝑀0
ω+𝑎𝑎2υ
ω+𝑑𝑑2υ

; (10)

𝐹𝐹⊥ = 𝐹𝐹0
ω+𝑎𝑎3υ
ω+𝑑𝑑3υ

. (11) 

To determine the Pade coefficients, it is required to study the properties of this model at the boundary points 

by analogy with integral expressions. To do this, we differentiate the parameters 𝐹𝐹∥,  𝐹𝐹⊥,  𝑀𝑀𝑧𝑧 and thus satisfy the

corresponding integral expressions:

⎩
⎪⎪
⎨

⎪⎪
⎧𝐹𝐹∥ = −𝑓𝑓𝐼𝐼1

υ

υ + 𝐼𝐼0
𝐼𝐼1
ω

𝑀𝑀𝑧𝑧 = −𝑓𝑓𝐼𝐼6
𝐹𝐹⊥ = −𝑓𝑓𝐼𝐼9

ω

ω + 𝐼𝐼3
𝐼𝐼9
υ

.  

The system of equations of motion has the form:

𝐽𝐽
𝑑𝑑ωO1
𝑑𝑑𝑑𝑑

= 𝑀𝑀𝑧𝑧;

(𝑚𝑚0 + 𝑚𝑚1) 𝑑𝑑υ𝑀𝑀
𝑑𝑑𝑑𝑑

= 𝐹𝐹𝑀𝑀 + (𝑚𝑚0 + 𝑚𝑚1)υ𝑀𝑀ωO1; (12)

(𝑚𝑚0 + 𝑚𝑚1)
𝑑𝑑υy
𝑑𝑑𝑑𝑑

= 𝐹𝐹𝑀𝑀 − (𝑚𝑚0 + 𝑚𝑚1)υ𝑀𝑀ωO1 .

We express the time derivatives of the sliding speed and the angular speed using the formulas (3)–(5): 

𝑑𝑑υ
𝑑𝑑𝑑𝑑

=
1

2�υ𝑀𝑀2 + υ𝑀𝑀2
�2υ𝑀𝑀

𝑑𝑑υ𝑀𝑀
𝑑𝑑𝑑𝑑

+ 2υ𝑀𝑀
𝑑𝑑υ𝑀𝑀
𝑑𝑑𝑑𝑑

� ;

𝑑𝑑φ
𝑑𝑑𝑑𝑑

=
1

𝑚𝑚0 + 𝑚𝑚1
�−

υ sinφ
υ2

𝐹𝐹𝑀𝑀 +
υ cosφ
υ2

𝐹𝐹𝑀𝑀�.

We rewrite these equations using the formulas (3)–(5) for ωO1 = ω/𝑎𝑎 and add the first equation from the 

system (12):

𝐽𝐽
𝑑𝑑ω
𝑑𝑑𝑑𝑑

= 𝑀𝑀𝑧𝑧𝑎𝑎;

(𝑚𝑚0 + 𝑚𝑚1) 𝑑𝑑υ
𝑑𝑑𝑑𝑑

= 𝐹𝐹∥; (13)

(𝑚𝑚0 + 𝑚𝑚1)υφ̇ = 𝐹𝐹⊥.

Research Results. Next, we calculate the integral expressions of the parameters 𝐼𝐼0,  𝐼𝐼1,  𝐼𝐼3,  𝐼𝐼6 ,  𝐼𝐼9 с using the 

Wolfram Mathematica software package for the following values:

𝑓𝑓 =  1;  𝑎𝑎 =  0.5 m;  𝑏𝑏 =  0.2 m;  𝑚𝑚0 =  1 kg, σ =  𝑚𝑚0𝑔𝑔
𝑎𝑎𝑏𝑏� = 87 kg

s2m�
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∂υ |υ=0

and ∂Mz
∂ω |ω=0

are not involved in finding the subsequent Pade approximants, 

therefore, their writing is omitted due to their cumbersomeness. The identical equality to zero is realized under the 

condition that the voltage σ is symmetric about the center of the rectangular contact spot, i.e., the point 𝑃𝑃.

An accurate three-dimensional integral model [13] (6)–(8) provides a logical description of dry friction 

phenomena, but for solving problems of dynamics, such a model is difficult to accept due to the need to calculate 

impressive integrals [10]. To avoid this procedure, we use [6] to replace the exact integral system with the 

corresponding expressions using Pade approximations in the whole range of variables. Linear fractional Pade 

expansions give a three-dimensional model of first-order sliding and twisting friction [19]:

𝐹𝐹∥ = 𝐹𝐹0
υ+𝑎𝑎1ω
υ+𝑑𝑑1ω

; (9)

𝑀𝑀𝑧𝑧 = 𝑀𝑀0
ω+𝑎𝑎2υ
ω+𝑑𝑑2υ
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To determine the Pade coefficients, it is required to study the properties of this model at the boundary points 

by analogy with integral expressions. To do this, we differentiate the parameters 𝐹𝐹∥,  𝐹𝐹⊥,  𝑀𝑀𝑧𝑧 and thus satisfy the

corresponding integral expressions:

⎩
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⎨

⎪⎪
⎧𝐹𝐹∥ = −𝑓𝑓𝐼𝐼1

υ
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𝐹𝐹⊥ = −𝑓𝑓𝐼𝐼9
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𝐼𝐼9
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.  

The system of equations of motion has the form:

𝐽𝐽
𝑑𝑑ωO1
𝑑𝑑𝑑𝑑

= 𝑀𝑀𝑧𝑧;

(𝑚𝑚0 + 𝑚𝑚1) 𝑑𝑑υ𝑀𝑀
𝑑𝑑𝑑𝑑

= 𝐹𝐹𝑀𝑀 + (𝑚𝑚0 + 𝑚𝑚1)υ𝑀𝑀ωO1; (12)

(𝑚𝑚0 + 𝑚𝑚1)
𝑑𝑑υy
𝑑𝑑𝑑𝑑

= 𝐹𝐹𝑀𝑀 − (𝑚𝑚0 + 𝑚𝑚1)υ𝑀𝑀ωO1 .

We express the time derivatives of the sliding speed and the angular speed using the formulas (3)–(5): 

𝑑𝑑υ
𝑑𝑑𝑑𝑑

=
1

2�υ𝑀𝑀2 + υ𝑀𝑀2
�2υ𝑀𝑀

𝑑𝑑υ𝑀𝑀
𝑑𝑑𝑑𝑑

+ 2υ𝑀𝑀
𝑑𝑑υ𝑀𝑀
𝑑𝑑𝑑𝑑

� ;

𝑑𝑑φ
𝑑𝑑𝑑𝑑

=
1

𝑚𝑚0 + 𝑚𝑚1
�−

υ sinφ
υ2

𝐹𝐹𝑀𝑀 +
υ cosφ
υ2

𝐹𝐹𝑀𝑀�.

We rewrite these equations using the formulas (3)–(5) for ωO1 = ω/𝑎𝑎 and add the first equation from the 

system (12):

𝐽𝐽
𝑑𝑑ω
𝑑𝑑𝑑𝑑

= 𝑀𝑀𝑧𝑧𝑎𝑎;

(𝑚𝑚0 + 𝑚𝑚1) 𝑑𝑑υ
𝑑𝑑𝑑𝑑

= 𝐹𝐹∥; (13)

(𝑚𝑚0 + 𝑚𝑚1)υφ̇ = 𝐹𝐹⊥.

Research Results. Next, we calculate the integral expressions of the parameters 𝐼𝐼0,  𝐼𝐼1,  𝐼𝐼3,  𝐼𝐼6 ,  𝐼𝐼9 с using the 

Wolfram Mathematica software package for the following values:

𝑓𝑓 =  1;  𝑎𝑎 =  0.5 m;  𝑏𝑏 =  0.2 m;  𝑚𝑚0 =  1 kg, σ =  𝑚𝑚0𝑔𝑔
𝑎𝑎𝑏𝑏� = 87 kg
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and substitute in the system of equations (13). Based on numerical expressions, we build graphs of integral and 

normalized functions depending on the parameter = υ ω⁄ . Fig. 5 shows graphs of the functions of the integral friction 

models (11)–(13), as well as models based on Pade approximations (14)–(16). 

Fig. 5. Graphs of integral (solid lines) and normalized (dotted lines) functions of the tangent (a), normal (b) components of friction 
force and friction moment (c)

Based on the graphs of the functions (Fig. 5), we can talk about good matching of the considered models. 

Next, we obtain graphs of the dependences of the characteristic parameters on time (Fig. 6).

Fig. 6. Dependences of sliding velocity v (a) and angular velocity w (b) on time t

Discussion and Conclusions. The movement of the mobile robot, starting from the contact of its body and the 

reference plane, under the conditions of combined dynamics, when there is sliding and twisting, is described. Analytical 

integral expressions are obtained for the tangent and normal components of the friction force [19] and the moment of 

friction applied to a rectangular contact area. The corresponding Pade approximations are determined for the obtained 

expressions. The integral and normalized models are compared through plotting the dependences of the friction forces 

and the moment of friction on the angular velocity and the slip velocity. The comparison results showed good matching 

of the integral model and the model based on the Pade decompositions. The graphs correspond to the logical behavior 

when a rectangular body moves, since the sliding speed and angular velocity increase according to the specified 

parameters. Consequently, the combined friction model implemented using Pade approximations can be applied to 

solve problems related to mobile robots with a rectangular base.
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