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Introduction. Cylindrical and spherical shells are extensively used in engineering. They face internal and/or external 
pressure and heat. Stresses and strains distribution in elastoplastic shells has been studied by many scientists. Numerous 
works involve the use of the von Mises yield conditions, maximum shear stress, maximum reduced stress. These condi-
tions do not include the dependence on the first invariant of the stress tensor and the sign of the third invariant of the 
stress deviator. In some cases, it is possible to obtain numerical-analytical solutions for stresses, displacements and de-
formations for bodies with spherical and cylindrical symmetry under axisymmetric thermal and force action. 
Materials and Methods. The problem on the state of a thick-walled elastoplastic shell is solved within the framework of 
the theory of small deformations. A plasticity condition is proposed, which takes into account the dependence of the 
stress tensor on three independent invariants, and also considers the sign of the third invariant of the stress deviator and 
translational hardening of the material. A disconnected thermoelastoplastic problem is being solved. To estimate the 
stresses in the region of the elastic state of a spherical shell, an equivalent stress is introduced, which is similar to the 
selected plasticity function. The construction of the stress vector hodograph is used as a method for verification of the 
stress state. 
Results. The problem has an analytical solution for linear plasticity functions. A solution is obtained when the strength-
ening of the material is taken into account. Analytical and graphical relationships between the parameters of external 
action for the elastic or elastoplastic states of the sphere are determined. For a combined load, variants are possible 
when the plastic region is generated at the inner and outer boundaries of the sphere or between these boundaries. 
Discussion and Conclusions. The calculation results have shown that taking into account the plastic compressibility and 
the dependence of the plastic limit on temperature can have a significant impact on the stress and strain state of a hollow 
sphere. In this case, taking into account the first invariant of the stress tensor under the plasticity condition leads to the 
fact that not only the pressure drop between the outer and inner boundaries of the spherical shell, but the pressure values 
at these boundaries, can vary within a limited range. In this formulation of the problem, when there is only thermal 
action, the hollow sphere does not completely pass into the plastic state. The research results provide predicting the 
behavior of an object (a hollow sphere) that experiences centrally symmetric distributed power and thermal external 
influences. 
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Introduction. The solution to the problem of a thick-walled spherical shell experiencing different external 

influences is given in the monographs [1, 2] and a number of scientific papers on the theory of elasticity, plasticity, and 
thermoelastic plasticity [3-9]. Usually, the case is considered when the loading process is simple.  

The problem of a thick-walled spherical shell is one of the simplest elastoplastic problems when the fields of 
external actions and internal parameters have central symmetry. Due to the central symmetry in the plastic region, the 
regime of complete plasticity is performed. For an ideal plastic body, the problem is statically definable, which allows it 
to be solved under any plasticity conditions. In the monograph [1], the most complete solution to the spherical shell 
problem is given, when the dependence of the plastic limit on temperature is not taken into account, and the plasticity 
condition does not depend on the first invariant of the stress tensor and the sign of the third invariant of the stress 
deviator. The cases of only thermal and combined loading are considered, when the temperature on the walls of the 
sphere is set, the pressure on the inner walls is set, and there is no pressure on the outer wall. In [10-13], 
thermoelastoplastic state of various objects was studied, and in [3-9], the process of thermal loading and unloading of a 
sphere free from external forces and a hollow sphere for the Tresca condition was considered with account for the 
dependence of the plastic limit on temperature. The solution to this and similar problems is of interest since it is 
possible to obtain an analytical or partially analytical solution for various mathematical models. An analytical solution 
can be obtained through selecting piecewise linear plasticity functions [11, 13]. Mathematical modeling of objects 
enables to predict their state and behavior depending on the values of the initial parameters [14, 15]. 

Materials and Methods. Problem Statement. We consider the problem of a thick-walled spherical shell (a 
hollow sphere) experiencing centrally symmetric external influences: pressure bp  on the outer wall at b   and 

pressure ap  on the inner wall at a  . The thermal effect on the sphere is also considered: temperature aT  is 

maintained at the boundary a  ,   temperature bT  is maintained at the boundary b  . It is assumed that the sphere 

exhibits elastic and plastic properties. The desired state parameters at each point of the sphere are the components of the 
stress tensor, the components of the strain tensors, and the displacement vectors. In the elastic state region, the elastic 
deformations are complete (there are no residual deformations). 

Basic Ratios. All relations are reduced to a dimensionless form. The outer radius of the sphere b  is selected as a 

length scale. All values having the stress dimension are assigned to the plastic limit under uniaxial tension k . The scale 
unit for temperature is 1 C.  

Due to the specified symmetry of external actions, in the spherical coordinate system , ,    of the matrix, the 

components of the stress and strain tensor will have the form: 

0 0 0 0
(σ) 0 0 , (ε) 0 0

0 0 0 0

 

 

 

    
         
       

. 

In this case, the equalities     ,      are fulfilled.  

If the plasticity functions do not depend on the first invariant of the stress tensor and the sign of the third 
invariant of the stress deviator, then, when solving the sphere problem, the plasticity functions will be reduced to the 
form: 

 | |f k     .    (1) 

Consider the plasticity condition:  

 

1

1/

1

1/

(( ) 2( ) )
, ,

(1 )

(( ( ( ( ) )
( ),

(1 )

p w p w w
p p

m

p p m p p m m

m

f ( , )

| )|
k T

   
   

       

      
     

   

             
 

   

      (2) 

where p
 , p

  — components of the plastic strain tensor; T  — temperature.  
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When the parameters have the values: 00, 1, 0, 0, 1, 0,m k k            , the condition (2) implies the 

condition (1). In Fig. 1, the plane ,    shows the plasticity curves determined from the formula (2) for different 

values of the numerical coefficients in the plasticity function. 
 

  
                                            a)                                              b) 

Fig. 1. Plasticity curves: a) for parameters: 0,2; 2; 0,5; 0; 3; 1w m k         ; solid line 0,5;   

 dotted line 0  ; b) for parameters: 0; 0; 0; 1k        

The results presented in Fig. 1 show that when the first invariant of the stress tensor is taken into account, the 
radial and circumferential stresses can vary in a limited range when the point of the sphere is in an elastic state. 
Accordingly, the pressure on the boundaries of the sphere should also be limited. When the first invariant in the 
plasticity condition is not taken into account, the elastic state is possible for any pressure value at the boundaries of the 
sphere, but the pressure drop is limited a bp p p   . Taking into account the sign of the third invariant of the stress 
deviator, as noted above, affects the values of the plasticity limits. 

If the values of the state parameters ,    determine the point of the region bounded by the plasticity curve, it is 

assumed that the defining equations connecting stresses and deformations are the relations of the Duhamel-Neumann 
law [1, 2]: 
 (1 )E E T         ,   2E E T         ,    (3) 

where the Young's modulus E  and the Poisson's ratio   are constants. 
If the state parameters ,    determine the points on the plasticity curve, then an additive representation of the 

total deformations in terms of reversible and irreversible deformations is assumed:  
 ,e p e p

              .     (4) 

Complete deformations are determined through displacements from the formulas: 

 ,u du
d    

 
.    (5) 

Complete deformations are bound by the condition of compatibility of deformations: 

 0
dr
dr


 


     .    (6) 

Increments of irreversible deformations are related to stresses by the normal law: 

 .
/ /

pp dd
f f



 




   
     (7) 

The relation (7) is generally non-integrable when choosing nonlinear plasticity functions [16]. In the quasi-static 
approximation, the stresses must satisfy the equilibrium equation: 

 2( ) 0
d
d


 


    


.  (8) 

Equivalent Stress. The equivalent stress is the convex isotropic scalar functions of the stress tensor. In special 
cases, the term “equivalent stress” is synonymous with other terms, for example, “stress intensity” [17]. In this paper, 
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the equivalent stress coincides with the plasticity function. In this case, the equivalent stress will not have a 
discontinuity at the elastic-plastic boundary.  

Temperature Field. The temperature field in the sphere is found from the solution to the boundary value 
problem [1]:  

 
2

2
2 0,

| , | .a a b b

d T dT
d d

T T T T 


    
  

  (9) 

The solution to the problem (9) is presented in the form: 

 1 , .
( )b a b

a T bT T T T T
b a

 
        

  (10) 

Elastic Area. In the region of the elastic state of a hollow sphere, the formulas for stresses have the form:  

3 3
, ,

2 2 (1 )( )
B B abE TA A

b a 

  
         

     
. 

Plastic Area. We select the conditions (1). Let us consider the case of only the thermal effect (10). Then, the 
plastic region will originate at the inner boundary of the shell under the condition [1]: 

2 2

1

2( )| |
(1 ) ( 2 )

E a ab b kT
b a b

  
     

 
. 

Denote by 1с  — the radius of the elastic-plastic boundary 1с  . During the loading process, when 1   , the 

plastic area 1a с    increases. When the condition (1) is selected, the stresses in the region 1a с    are calculated 
from the formulas:  

(1) (1) (1)
1 1 12 ln( / ), , ( )k a k sign                 , 

where 
11 ( ) | сsign       . If 0T  , then 1 1   , if 0T  , then 1 1.    

If the region 1с b    remains elastic, then the values A , B  and radius of the elastic-plastic boundary 1с  are 
determined from the conditions of continuity of stresses at the elastoplastic boundary, and the boundary condition 

| 0b  . So, if A  and B  are determined only from the conditions of continuity of stresses at the elastoplastic 

boundary, then, the following expressions take place: 

 
2

31 1
1 1 1

1

1 22 ln ,
3 3 3 3

c cA k B kc
a c

           
  

.   (11) 

The equation to calculate 1с  will have the form: 

 
3 2

1 1 1
1 3 3

1

21 2 12 ln 0
3 3 3 3

c c ck
a b c b b

             
    

.   (12) 

If A  and B  are determined from the conditions of continuity of stresses at the elastoplastic boundary, and the 
conditions | 0b  , then the following expressions take place: 

 
2 3 2

31 1 1 1
1 12 3

2 21 ,
3 3 3 3
c kc cA B kc
b b b

   
      
 

.   (13) 

The choice of formulas (11) or (13) affects the steps of the algorithm for solving the problem, but does not affect the 
final results. 

A second plastic region will be generated at the boundary b   if the following condition is met: 

 2 2 1( ) | ,b k         .    (14) 

To determine the value 1T T   , when the condition (14) is satisfied, it is required to combine the system of equations 
(12), (14). Since the parameter   enters the equations (13) and (1) linearly, it is possible to obtain a separate equation 
for determining the radius of the elastoplastic boundary:  

 
2 2

1 0 1 11
1

1 1

4 ( )( )
2 ln 0,

3( )
k b c c bck

a b c bc
           (15)

 

as well as the formula for calculating the parameter  : 

 
3 3

0 2 1 1
2 2 2

1

2 ( )( )
( )

k b c b a
b c ab

   
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
.   (16) 
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Under further loading, when the inequality 2    is satisfied, the sphere region 2c b    goes into a plastic 

state at the boundary b  . 
A hollow sphere when exposed to heat. Consideration of material hardening. Consider the case when the 

plasticity condition has the form: 
 , , | (p p p pf ( , ) )| k                  .   (17) 

If there are no residual deformations in the sphere before loading, then as a result of thermal heating, the plastic 
zone will be generated at the inner boundary a  , when the conditions (15), (16) are met. With further loading, 

plastic region 1a c    is formed. To find the stresses in this region, it is required to get the corresponding equations 
from the system of equations (3-6), (8), (17): 

 

2
2

2

64 0,
1 3 (1 ) ( )

.
2

d d abE Tk
d d b a

d
d

 


 

    
               


   

     (18) 

The solution to the system (18) is written as: 

 

1
23

1
23

1 32 ln ,
1 3 (1 ) ( )

1 32 ln .
1 3 (1 ) 2 ( ) 2

CabE Tk C
b a

CabE Tk k C
b a





  
           

  
            

  (19) 

The values 1C , 2C , included in the formulas (19), are determined from the boundary condition | 0a    and 

the condition for the absence of plastic deformations at the elastic-plastic boundary 1с  : 
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As a result of substituting (20) in (19), we get: 
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From the solution to the elastic problem, it follows: if 0T  , then 1 1   ; if 0T  , then 1 1   . 
Accounting for plastic compressibility. Consider the case when the plasticity function is linear with respect 

to the components of the stress tensor: 
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k T
sign
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The plasticity condition (21) can be represented as: 
(1 ),

2 ,
.

k T    

     
     

 

Taking into account the introduced notation, to determine the stresses in the plastic region, we obtain the 
problem: 
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Under further loading, when the inequality 2    is satisfied, the sphere region 2c b    goes into a plastic 

state at the boundary b  . 
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The values 1C , 2C , included in the formulas (19), are determined from the boundary condition | 0a    and 

the condition for the absence of plastic deformations at the elastic-plastic boundary 1с  : 
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As a result of substituting (20) in (19), we get: 
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From the solution to the elastic problem, it follows: if 0T  , then 1 1   ; if 0T  , then 1 1   . 
Accounting for plastic compressibility. Consider the case when the plasticity function is linear with respect 

to the components of the stress tensor: 
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Taking into account the introduced notation, to determine the stresses in the plastic region, we obtain the 
problem: 
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The solution to the problem (22) has the form: 
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where the notation is introduced: , , ,b

a T ab TM T N M M N N
b a b a  

 
      

 
. 

To get the correct result from (20), when, for example, 0  , it is required to perform a limit transition 
when solving (22). It is easier to obtain the correct result directly in (23), while taking into account that the condition 

0  is met. In this case 0  , so we get:   

02 1 1(1 ) ln a

k M N p
a a  

  
          

, 

0 1 2(1 )(1 ln ) a

k M N p
a a  

  
           

. 

During the loading process, the plastic zone originates at the boundary a  , when the following condition is 
met: 

0 0 2 2

(2 )( 2 )(1 ) /
2(1 )( )b

a b bET k T k
a ab b

     
       

. 

 Research Results. Fig. 2 shows stress graphs and stress vector hodographs, when the sphere region 
corresponding to the condition 1a c   , is in a plastic state, and the sphere region corresponding to the condition 

1c b   , is in an elastic state. 
 

  
                                       a)                                              b) 

Fig. 2. Stress graphs (a) and stress vector hodographs (b) 
for parameter values:: 11; 0.3; 0.5; 1; 170; 0.57k a b T с         

 Fig. 3 shows stress graphs and stress vector hodographs, when the sphere regions corresponding to the 
conditions 1a c    and 2c b   , are in a plastic state, and the sphere region corresponding to the condition 

1 2c c   , is in an elastic state. 
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                                              a)                                              b) 

Fig. 3. Stress graphs (a) and stress vector hodographs (b) for parameter values:  

1 20.3; 0.5; 270; 0.62; 0.88a T с с        

Fig. 4 shows stress graphs and stress vector hodographs, when the sphere region corresponding to the condition 

1a c   , is in a plastic state, and the sphere region corresponding to the condition 1c b   , is in an elastic state.   

 

  
                                             a)                                              b) 

Fig. 4. Stress graphs (a) and stress vector hodographs (b) for parameter values:  
10.3; 0.5; 215; 0.58a T с       

 Fig. 5 shows stress graphs and stress vector hodographs, when the sphere regions corresponding to the 

conditions 1a c    and 2c b   , are in a plastic state, and the sphere region corresponding to the condition 

1 2c c   , is in an elastic state. 
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                                              a)                                              b) 

Fig. 3. Stress graphs (a) and stress vector hodographs (b) for parameter values:  

1 20.3; 0.5; 270; 0.62; 0.88a T с с        

Fig. 4 shows stress graphs and stress vector hodographs, when the sphere region corresponding to the condition 

1a c   , is in a plastic state, and the sphere region corresponding to the condition 1c b   , is in an elastic state.   

 

  
                                             a)                                              b) 

Fig. 4. Stress graphs (a) and stress vector hodographs (b) for parameter values:  
10.3; 0.5; 215; 0.58a T с       

 Fig. 5 shows stress graphs and stress vector hodographs, when the sphere regions corresponding to the 

conditions 1a c    and 2c b   , are in a plastic state, and the sphere region corresponding to the condition 

1 2c c   , is in an elastic state. 
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                                     a)                                   b) 

Fig. 5. Stress graphs (a) and stress vector hodographs (b) for parameter values:  
1 20.3; 0.5; 270; 0.61; 0.86a T с с        

Fig. 6 shows stress graphs and stress vector hodographs when the sphere regions corresponding to the 

conditions 1a c    and 2c b   , are in a plastic state, and the sphere region corresponding to the condition 

1 2c c   , is in an elastic state. 

  

                                     a)                                    b) 
Fig. 6. Stress graphs (a) and stress vector hodographs (b) for parameter values:  

0.3; 0.5; 79; 0.1; 0.1; 0.012; 0.0017a T E             

Discussion and Conclusions. The calculation results show that in this formulation of the problem, when there 
is only thermal action, the hollow sphere does not completely go into the plastic state (Fig. 2-6). Hardening causes an 
increase in the equivalent stress in the plastic region and a decrease in the radius of the elastoplastic boundary (Fig. 4, 5). 
The elastic region cannot completely disappear under loading. Plastic compressibility and the dependence of the plastic 
limit on temperature have a significant effect on the stress state of the hollow sphere (Fig. 6). 
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