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Introduction. In all types of digital communication, error control coding techniques are used. Many digital 
communication standards, such as Wi-Fi and 5G, use low density parity check (LDPC) codes. These codes are popular 
because they provide building encoders and decoders with low computational complexity. This work objective is to 
increase the error correcting capability of the well-known bit-flipping decoder (BF) of LDPC-codes.  For this purpose, a 
modification of the decoder is built, which enables to dynamically control one of its main parameters whose choice 
affects significantly the quality of decoding.
Materials and Methods. The well-known bit-flipping decoder of binary LDPC-codes is considered. This decoder has 
several parameters that are not rigidly bound with the code parameters. The dependence of the decoding quality on the 
selection of the output parameters of the bit-flipping decoder was investigated through simulation modeling. It is shown 
that the decoding results in this case are significantly affected by the input parameter of the decoder — threshold T. A 
modification of the BF-decoder of binary LDPC-codes has been developed, in which it is proposed to set the threshold 
dynamically during the execution of the algorithm depending on the error rate. A comparative analysis of the error-
correcting capability of decoders is carried out by the simulation modeling method.
Results. A lemma on the maximum value of the decoder threshold T is formulated and proved. Upper bounds for the 
number of operations are found for the original and modified decoders. A simulation model that implements a digital 
noise-immune communication channel has been built. In the model, the initial data is encoded with a given LDPC-code, 
then it is made noisy by additive uniformly distributed errors, and thereafter, it is decoded in turn by the bit-flipping 
algorithm with different threshold T parameters, as well as by a modified decoder. Based on the input and output data, 
the correction capacity of the decoders used is estimated. Experiments have shown that the error-correcting capability of 
the modified decoder in the range of the real error rate is higher than that of the original decoder, regardless of the 
selection of its parameters.
Discussion and Conclusions. The lemma, proved in the paper, sets the upper bound on the threshold value in the 
original decoder, which simplifies its adjustment. The developed modification of the decoder has a better error-
correcting capability compared to the original decoder. Nevertheless, the complexity of the modification is slightly 
increased compared to the original algorithm. It has been pointed out that the decoding quality of a modified decoder 
develops with a decrease in the number of cycles in the Tanner graph and an increase in the length of the code.
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Gurskiy S. S., et al. On the modification of bit-flipping decoder of LDPC-codes

Introduction. In 1963, in [1], R. Gallager first described a class of linear block codes whose check matrix 
contains a small number of nonzero elements. Such codes are commonly referred to as low-density parity check codes, 
or LDPC codes. For them, it is possible to build encoders and decoders with low computational complexity. Thus, when 
using LDPC codes, the data transfer rate is not significantly limited. Many modern studies are devoted to LDPC codes 
and their decoders [2-5]. LDPC codes are widely used in various digital communication standards, such as Wi-Fi, 5G, 
and optical communication [6, 7]. However, despite the popularity of these codes, some of the problems associated with 
them require research and solution. One of them is building new decoders and improving the existing ones.

This work objective is to increase the error-correcting capability of the well-known bit-flipping decoder of 
LDPC codes (hereinafter referred to as the BF decoder). To do this, a modification of the decoder is built, which 
enables to dynamically control one of its key parameters, whose selection affects significantly the quality of decoding. 

Materials and Methods. The key parameters of binary LDPC codes are length 𝑁𝑁, dimension 𝐾𝐾 and minimum 
code distance 𝑑𝑑. The information words [𝑁𝑁,𝐾𝐾,𝑑𝑑] of the 𝐶𝐶-code are vectors 𝑚𝑚� = (𝑚𝑚1,𝑚𝑚2, … ,𝑚𝑚𝐾𝐾) ∈ 𝐹𝐹2𝐾𝐾, where 𝐹𝐹2 is the 
Galois field of cardinality 2, and the codewords are vectors 𝑐𝑐̅ = (𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝑁𝑁) ∈ 𝐹𝐹2𝑁𝑁 [8]. It is convenient to set the 
LDPC codes with the check (𝑁𝑁 − 𝐾𝐾) × 𝑁𝑁 matrix 𝐻𝐻. Most of its elements are zero [1], so it is more convenient to store 
it not entirely, but storing only the positions of nonzero elements rowwise. 

There are regular [9] and irregular [10] LDPC codes. In regular codes, all rows and columns of the check 
matrices contain a fixed number of single elements (𝑘𝑘 and 𝑗𝑗, respectively), otherwise the code is called irregular. For 
convenience, check matrices of regular LDPC codes will be called regular matrices, and irregular LDPC codes —
irregular.

Regular LDPC codes have a number of advantages: easily evaluated code parameters, easy storage of matrices, 
low computational complexity of encoding and decoding algorithms, etc. In addition, regular code decoders correct 
errors evenly, unlike irregular ones, which correct errors in some parts of the codeword worse than in others. However, 
the problem of generating regular matrices with given properties is complex, and brute-force methods are often used to 
solve it. 

To discuss the properties of the matrix 𝐻𝐻 it is convenient to use the corresponding Tanner graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸),
where 𝐸𝐸 — a set of edges, and 𝑉𝑉 = 𝑆𝑆⋃𝑅𝑅 — a set of vertices, 𝑆𝑆 — a set of rows of the matrix 𝐻𝐻, and 𝑅𝑅 — a set of its 
columns [11]. Each nonzero element 𝐻𝐻, standing in the i-th row and the 𝑗𝑗-th column, defines an edge connecting the 𝑖𝑖-
th vertex of the set 𝑆𝑆 and the 𝑗𝑗-th vertex of the set 𝑅𝑅. Fig. 1 shows an example of a regular check matrix 3×6 with 
parameters 𝑘𝑘 = 4 and 𝑗𝑗 = 2, and the corresponding Tanner graph. 

Fig. 1. The cycle in Tanner graph and in the check matrix

The top row of the graph vertices corresponds to the columns of the matrix 𝐻𝐻, and the bottom row is connected 
to the rows of 𝐻𝐻. An important characteristic of the check matrix 𝐻𝐻 of the LDPC code is the presence and type of cycles 
in the corresponding Tanner graph. A cycle is a sequence of adjacent vertices of a graph in which the first and last 
vertices coincide. The length of this sequence is called the cycle length. The minimum cycle length in a graph is called 
the girth. If the graph contains no cycles, its girth is assumed to be infinite. An example of a cycle of length 4 is 
highlighted in bold lines in the graph (Fig. 1).
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The error-correcting capabilities depend not only on the key parameters of the LDPC codes, but also on the 
structure of the check matrix 𝐻𝐻. On the one hand, the presence of cycles of small lengths (such as 4 and 6) impairs 
noticeably the error-correcting capability of the decoder [12]. On the other hand, the code that corresponds to Tanner 
graph without cycles does not correct errors, since its minimum code distance is 2. Thus, the task of constructing check 
matrices of regular LDPC codes is multiparametric. When solving it, you need to monitor the key parameters of the 
code, as well as the cycles in Tanner graph corresponding to the check matrix.

Consider the well-known BF-decoder of the LDPC code 𝐶𝐶 in a convenient form [13].
Input: LDPC code 𝐶𝐶 with parameters [𝑁𝑁,𝐾𝐾,𝑑𝑑], given by the check matrix

𝐻𝐻 = �

ℎ11 ℎ12 … ℎ1𝑁𝑁
ℎ21 ℎ22 … ℎ2𝑁𝑁
… … ⋱ …

ℎ(𝑁𝑁−𝐾𝐾)1 ℎ(𝑁𝑁−𝐾𝐾)2 … ℎ(𝑁𝑁−𝐾𝐾)𝑁𝑁

�. (1)

Vector 𝑐𝑐̅′ = 𝑐𝑐̅ + �̅�𝑒, 𝑐𝑐̅ ∈ 𝐶𝐶(⊂ 𝐹𝐹2𝑁𝑁), 𝑒𝑒 �(∈ 𝐹𝐹2𝑁𝑁) — error vector; 𝑝𝑝 — the number of iterations of the algorithm; T —
threshold value.

Output: code vector 𝑐𝑐̅ ∈ 𝐶𝐶(⊂ 𝐹𝐹2𝑁𝑁).
Step 1. Let the counter 𝑟𝑟 be equal to zero.
Step 2. Calculate the syndrome �̅�𝑠 = 𝑐𝑐̅′𝐻𝐻𝑇𝑇 . If �̅�𝑠 = 0� or 𝑟𝑟 = 𝑝𝑝, then go to step 5. 

Step 3. Select the unit coordinates from the vector �̅�𝑠 = (𝑠𝑠1, 𝑠𝑠2, … , 𝑠𝑠𝑁𝑁−𝐾𝐾), i.e., 𝑠𝑠𝑖𝑖 = 1, 𝑖𝑖 = 1, (𝑁𝑁 − 𝐾𝐾)��������������. Compose 

the set 𝐿𝐿 = {𝑖𝑖|𝑠𝑠𝑖𝑖 = 1}. Calculate ℎ�′ = (ℎ1′ , ℎ2′ , … , ℎ𝑁𝑁′ ), where 
ℎ𝑙𝑙′ = ∑ ℎ𝑖𝑖𝑙𝑙𝑖𝑖∈𝐿𝐿 . (2)

The values ℎ𝑖𝑖𝑙𝑙 , 𝑙𝑙 = 1, … ,𝑁𝑁 should be assumed to be nonnegative integers. Thus, ℎ�′ ∈ ℕ0
𝑁𝑁, where ℕ0 = ℕ ∪ {0}.

Step 4. In the vector ℎ�′ = (ℎ1′ , ℎ2′ , … , ℎ𝑁𝑁′ ), we find all the elements ℎ𝑖𝑖′ > 𝑇𝑇. Among them, we select random ℎ𝑙𝑙′

and invert the bit 𝑐𝑐𝑙𝑙′ of the vector 𝑐𝑐̅. Add a unit to the counter 𝑟𝑟 and go to step 2.  
Step 5. 𝑐𝑐̅ ≔ 𝑐𝑐̅′.
The research carried out in this work allows us to make some observations on the BF-decoder. 
Observation 1. The input parameter 𝑝𝑝 sets the maximum number of iterations of the algorithm from the 2nd to 

the 4th steps, but the decoder can recover the codeword in fewer iterations.
Observation 2. When selecting the parameter 𝑇𝑇, the following considerations should be taken into account. If 

the parameter 𝑑𝑑 of the used [𝑁𝑁,𝐾𝐾,𝑑𝑑]-code 𝐶𝐶 is known, then it can be applied to calculate 𝑡𝑡 — the number of reliably 
recoverable errors, and then the number of decoder iterations is limited to this value:

𝑝𝑝 = 𝑡𝑡 = �𝑑𝑑−1
2
�. (3)

Here, ⌊𝑥𝑥⌋ — rounding the number 𝑥𝑥 to a smaller integer. If the parameter 𝑑𝑑 is unknown, then it can be estimated using 
the Singleton bound [5]

𝑑𝑑 ≤ 𝑁𝑁 − 𝐾𝐾 + 1
and, using (3), we obtain

𝑝𝑝 = �𝑁𝑁−𝐾𝐾
2
�.

Observation 3. The structure of the decoder is such that the recovery of the correct codeword is not guaranteed, 
even if in the noisy word 𝑐𝑐̅′ = 𝑐𝑐̅ + �̅�𝑒, no more than 𝑡𝑡 errors occurred (3).

Observation 4. In the literature, for regular check matrices in the BF decoder, it is recommended to select the 

threshold 𝑇𝑇 depending on the weight 𝑗𝑗 of the column of the matrix 𝐻𝐻, namely, 𝑇𝑇 = 𝑗𝑗
2
. For irregular matrices, such 

recommendations are not given in the literature. The error-correcting capability of the BF decoder can be worsened by 
an unsuccessful selection of threshold 𝑇𝑇.  If its value is large, at step 4 of the decoder, the vector ℎ�′ may not have a 
coordinate that exceeds the threshold 𝑇𝑇, therefore, the erroneous bits will not be corrected. If you select a small value of 

𝑇𝑇 in step 4 of the BF decoder, several coordinates, whose value exceeds the threshold, may appear in the vector ℎ�′.
Among them, there may be coordinates that do not contain an error. Thus, the selection of the parameter T can 
significantly affect the decoding quality.
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Gurskiy S. S., et al. On the modification of bit-flipping decoder of LDPC-codes

Research Results. We formulate and prove a lemma on the maximum possible value of the threshold 𝑇𝑇. Then 
we modify the BF decoder so that the threshold is set dynamically during the decoding process, and conduct a 
comparative analysis of the original and modified decoding algorithms.

Lemma. Let the binary [𝑁𝑁,𝐾𝐾,𝑑𝑑]-code 𝐶𝐶 be given by the check matrix 𝐻𝐻 having a fixed number of j unit 
elements in each column. Then the maximum threshold value 𝑇𝑇 for the BF decoder of such LDPC code 𝐶𝐶 cannot be 
greater than 

𝑇𝑇 = 𝑗𝑗 − 1. (4)
Proof. Let the vector 𝑐𝑐̅′ = 𝑐𝑐̅ + �̅�𝑒 be obtained from the transmission channel, where 𝑐𝑐̅ ∈ 𝐶𝐶 — is the correct 

codeword, 𝑒𝑒 � ∈ 𝐹𝐹2𝑁𝑁 — the error vector with the Hamming weight 𝑤𝑤(�̅�𝑒). If 𝑤𝑤(�̅�𝑒) = 0, then, in step 2, the vector-
syndrome �̅�𝑠 = 0�. Hence, the algorithm will go to step 5 and return 𝑐𝑐̅′ as the answer. In this case, the threshold value is 
not used. If 𝑤𝑤(�̅�𝑒) > 0, then the regularity of 𝐻𝐻 implies the validity of the inequality ℎ𝑙𝑙′ ≤ 𝑗𝑗, where ℎ𝑙𝑙′ — the elements of 

the vector ℎ�′. The inverting of the bit 𝑐𝑐𝑙𝑙 of the vector 𝑐𝑐̅′ occurs in the algorithm only if ℎ𝑙𝑙′ > 𝑇𝑇. Therefore, 
𝑇𝑇 < ℎ𝑙𝑙′ ≤ 𝑗𝑗.

Thus, the formula (4) is correct.
We will make changes to the BF decoder that will allow us to determine the threshold value dynamically, 

depending on the degree of damage to the code vector in the transmission channel.
Input: [𝑁𝑁,𝐾𝐾,𝑑𝑑]-code 𝐶𝐶 given by the above check matrix (1). Vector 𝑐𝑐̅′ = 𝑐𝑐̅ + �̅�𝑒, where 𝑐𝑐̅ ∈ 𝐶𝐶(⊂ 𝐹𝐹2𝑁𝑁), 𝑒𝑒 �(∈ 𝐹𝐹2𝑁𝑁)

— the error vector; 𝑝𝑝 — the number of iterations of the algorithm; 𝑇𝑇 — some threshold value selected in advance.
Output: code vector 𝑐𝑐̅ ∈ 𝐶𝐶(⊂ 𝐹𝐹2𝑁𝑁).
Step 1. Let the counter 𝑟𝑟 be equal to zero.
Step 2. Calculate the syndrome �̅�𝑠 = 𝑐𝑐̅′𝐻𝐻𝑇𝑇 . If �̅�𝑠 = (0, … ,0) or 𝑟𝑟 = 𝑝𝑝, then go to step 7.

Step 3. Select the unit coordinates from the vector �̅�𝑠 = (𝑠𝑠1, 𝑠𝑠2, … , 𝑠𝑠𝑁𝑁−𝐾𝐾), i.e., 𝑠𝑠𝑖𝑖 = 1, 𝑖𝑖 = 1, (𝑁𝑁 − 𝐾𝐾)��������������. Compose 

the set 𝐿𝐿 = {𝑖𝑖|𝑠𝑠𝑖𝑖 = 1}. Calculate ℎ�′ = (ℎ1′ , ℎ2′ , … , ℎ𝑁𝑁′ ), where ℎ𝑙𝑙′ is the same as in the original decoder (2). When 
summing the value ℎ𝑖𝑖𝑙𝑙 𝑙𝑙 = 1, … ,𝑁𝑁, we should assume nonnegative integers. Thus, ℎ�′ ∈ ℕ0

𝑁𝑁, где ℕ0 = ℕ ∪ {0}.
Step 4. Initialize the threshold value 𝑇𝑇 ≔ max(ℎ𝑙𝑙′)𝑙𝑙=1,…,𝑁𝑁 − 1.

Step 5. If 𝑇𝑇 ≥ 0
Select an arbitrary element ℎ𝑞𝑞′ 'of the vector ℎ�′ — such as ℎ𝑞𝑞′ > 𝑇𝑇.

Invert the bit 𝑐𝑐𝑞𝑞′ .

Step 6. Add a unit to the counter 𝑟𝑟 and go to step 2.
Step 7. 𝑐𝑐̅ ≔ 𝑐𝑐̅′.
Observation 5. The modified algorithm generally performs fewer iterations than the BF decoder since the 

threshold is selected dynamically in step 4. Therefore, the decoder does not perform useless iterations that do not 
change the bits of the vector 𝑐𝑐̅′. The threshold value in the modified decoder depends on the number of errors that 
damaged the codeword, and is immediately set so that the noisy codeword 𝑐𝑐̅′ is guaranteed to be changed. 

Let us estimate from above the number of addition, comparison and assignment operations in both decoders. In 
the original BF decoder of the [𝑁𝑁,𝐾𝐾,𝑑𝑑]-code 𝐶𝐶, 𝑝𝑝(𝑘𝑘𝐾𝐾 + (𝑁𝑁 − 𝐾𝐾)𝑁𝑁 + 1) addition operations, 𝑝𝑝(3𝑁𝑁 − 2𝐾𝐾 + 2)

comparison operations and 𝑝𝑝�(𝑁𝑁 − 𝐾𝐾)(𝑘𝑘 + 1) + 2𝑁𝑁 + 3� + 1 assignment operations are performed. In the BF decoder 

with dynamic threshold, 𝑝𝑝(𝑘𝑘𝐾𝐾 + (𝑁𝑁 − 𝐾𝐾)𝑁𝑁 + 3) addition operations, 𝑝𝑝(5𝑁𝑁 − 2𝐾𝐾 + 3) comparison operations and 

𝑝𝑝�(𝑁𝑁 − 𝐾𝐾)(𝑘𝑘 + 1) + 2𝑁𝑁 + 4� + 1 assignment operations are performed. Here, 𝑝𝑝 — the decoder parameter that sets the 

maximum number of operations, 𝑘𝑘 — weight of the code check matrix rows. Note that when implementing the 
algorithm, the multiplication and division operations are not actually used, as long as at the second step, it is convenient 
to use addition operations instead of multiplication to calculate the syndrome �̅�𝑠. Recall that the matrix 𝐻𝐻 has a sparse 
structure, and its rows are conveniently stored as a list of nonzero element numbers. Therefore, instead of multiplying 
the vector 𝑐𝑐̅′ by the matrix 𝐻𝐻, it is required to sum the coordinates of the vector 𝑐𝑐̅′, whose numbers coincide with the 
numbers of nonzero elements in the corresponding row of the matrix 𝐻𝐻.
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Compared to the original algorithm, the modified BF decoder performs more operations, but moderately: the 
number of comparison operations has increased by 𝑝𝑝(2𝑁𝑁 + 1), assignment operations — by 𝑝𝑝, addition operations —
by 2𝑝𝑝.

For a comparative study of the error-correcting capability of the original and modified decoding algorithms, a 
software tool has been created that implements a simulation model of a binary symmetric perfectly synchronized noise-
immune communication channel according to [14-16]. To provide noise immunity, the model uses LDPC codes and BF 
decoders (original and with dynamic threshold). Errors in the channel were modeled as independent and uniformly 
distributed.

The experiments used purposely found check matrices that specify LDPC codes. We describe the key 
parameters of these matrices using the standard notation of the key parameters of the code, as well as: 𝑗𝑗 and 𝑘𝑘 — the 
weight of each column and the weight of each row of the check matrix, respectively; ω4,ω6 — 4 and 6 cycles in Tanner 
graph corresponding to the check matrix.
Regular matrix 𝐻𝐻1: 𝑁𝑁 = 20, 𝐾𝐾 = 5, 𝑗𝑗 = 3, 𝑘𝑘 = 4, 𝑑𝑑 = 6, ω4 = 0, ω6 = 41.
Regular matrix 𝐻𝐻2: 𝑁𝑁 = 28, 𝐾𝐾 = 7, 𝑗𝑗 = 3, 𝑘𝑘 = 4, 𝑑𝑑 = 6, ω4 = 0, ω6 = 42.
Regular matrix 𝐻𝐻3: 𝑁𝑁 = 28, 𝐾𝐾 = 7, 𝑗𝑗 = 3, 𝑘𝑘 = 4, 𝑑𝑑 = 6, ω4 = 0, ω6 = 29.
Irregular matrix 𝐻𝐻4: 𝑁𝑁 = 32, 𝐾𝐾 = 5, 𝑗𝑗 = 3, 𝑑𝑑 = 12, ω4 = 0, ω6 = 0.

Using these matrices, LDPC codes were constructed and simulation experiments were conducted. Fig. 2–5
show graphs of the dependence of the error-correcting capability of the constructed LDPC codes on the error probability 
in the channel. For the rationale for selecting the threshold values 𝑇𝑇 = 1 and 𝑇𝑇 = 2 in the BF decoder, see Observations 
3, 4 and Lemma.

Fig. 2. Graph of the decoder error-correcting capability for LDPC codes given by the matrix 𝐻𝐻2

Decoder with dynamic threshold

BF decoder with threshold T = 1

BF decoder with threshold T = 2
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Compared to the original algorithm, the modified BF decoder performs more operations, but moderately: the 
number of comparison operations has increased by 𝑝𝑝(2𝑁𝑁 + 1), assignment operations — by 𝑝𝑝, addition operations —
by 2𝑝𝑝.

For a comparative study of the error-correcting capability of the original and modified decoding algorithms, a 
software tool has been created that implements a simulation model of a binary symmetric perfectly synchronized noise-
immune communication channel according to [14-16]. To provide noise immunity, the model uses LDPC codes and BF 
decoders (original and with dynamic threshold). Errors in the channel were modeled as independent and uniformly 
distributed.

The experiments used purposely found check matrices that specify LDPC codes. We describe the key 
parameters of these matrices using the standard notation of the key parameters of the code, as well as: 𝑗𝑗 and 𝑘𝑘 — the 
weight of each column and the weight of each row of the check matrix, respectively; ω4,ω6 — 4 and 6 cycles in Tanner 
graph corresponding to the check matrix.
Regular matrix 𝐻𝐻1: 𝑁𝑁 = 20, 𝐾𝐾 = 5, 𝑗𝑗 = 3, 𝑘𝑘 = 4, 𝑑𝑑 = 6, ω4 = 0, ω6 = 41.
Regular matrix 𝐻𝐻2: 𝑁𝑁 = 28, 𝐾𝐾 = 7, 𝑗𝑗 = 3, 𝑘𝑘 = 4, 𝑑𝑑 = 6, ω4 = 0, ω6 = 42.
Regular matrix 𝐻𝐻3: 𝑁𝑁 = 28, 𝐾𝐾 = 7, 𝑗𝑗 = 3, 𝑘𝑘 = 4, 𝑑𝑑 = 6, ω4 = 0, ω6 = 29.
Irregular matrix 𝐻𝐻4: 𝑁𝑁 = 32, 𝐾𝐾 = 5, 𝑗𝑗 = 3, 𝑑𝑑 = 12, ω4 = 0, ω6 = 0.

Using these matrices, LDPC codes were constructed and simulation experiments were conducted. Fig. 2–5
show graphs of the dependence of the error-correcting capability of the constructed LDPC codes on the error probability 
in the channel. For the rationale for selecting the threshold values 𝑇𝑇 = 1 and 𝑇𝑇 = 2 in the BF decoder, see Observations 
3, 4 and Lemma.

Fig. 2. Graph of the decoder error-correcting capability for LDPC codes given by the matrix 𝐻𝐻2

Decoder with dynamic threshold

BF decoder with threshold T = 1

BF decoder with threshold T = 2
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Fig. 3. Graph of the decoder error-correcting capability for LDPC codes given by the matrix 𝐻𝐻3

Fig. 4. Graph of the decoder error-correcting capability for LDPC codes given by the matrix 𝐻𝐻4
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Fig. 5. Graph of the decoder error-correcting capability for LDPC codes given by the matrix 𝐻𝐻1

In the range of the real error level [8, 13, 14] in Fig. 2–4, it can be observed that the BF decoder at the 
threshold value 𝑇𝑇 = 2 shows better results than at 𝑇𝑇 = 1, and the modified BF decoder has a better error-correcting 
capability compared to the original one.

The decoders show similar efficiency at small values of the code length, but when it is increased, the modified 
decoder shows better results. Specifically, if the error probability in the non-noise-immune channel is 0.05, the 
difference in the error probability in the noise-immune channel when using a BF decoder with the threshold 𝑇𝑇 = 2 and 
𝑇𝑇 = 1, is from 0.005 to 0.03 in favor of using a larger threshold value. If a BF decoder with the threshold 𝑇𝑇 = 2 and a 
modified decoder are used, this difference varies depending on the LDPC code in the range from 0.001 to 0.003. If the 
error probability in the non-noise-immune channel is 0.1, the error probability in the noise-immune channel when using 
a BF decoder with the threshold 𝑇𝑇 = 2 is less than with the threshold 𝑇𝑇 = 1 by the value from 0.001 to 0.02. When 
using a BF decoder with the threshold 𝑇𝑇 = 2 and a modified decoder, this difference varies in the range from 0.002 to 
0.01depending on the LDPC code. 

Both decoders are sensitive to the number of cycles in Tanner graph corresponding to the LDPC code check 
matrix. The greater the ratio of the number of cycles to the total number of elements in the matrix, the worse any BF 
decoder corrects errors. During the experiments, it was interesting to find out whether it is possible to increase the 
number of cycles in the matrix so that the modified decoder will show worse results compared to the BF decoder. 
Experimentally, the matrix 𝐻𝐻1 containing 41 cycles of length 6 was found. The results of the study on the error-
correcting capability of decoders for this matrix are shown in Fig. 5. Note, however, that the matrix 𝐻𝐻2 contains even 
more cycles of length 6, namely, 42. The fundamental difference between the matrices 𝐻𝐻1 and 𝐻𝐻2 is in the density of 
units:
— in 𝐻𝐻1 — 60 unit elements per 300 matrix elements,
— in 𝐻𝐻2 — 84 units per 588 matrix elements.

Recall that the feature of LDPC codes is the sparse structure of the check matrix, so 𝐻𝐻2 is more typical for 
LDPC codes. 

Discussion and Conclusions. The paper considers a bit-flipping decoder for binary LDPC codes. 
Recommendations on the selection of such input parameters of the decoder as the threshold and the number of iterations 
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Fig. 5. Graph of the decoder error-correcting capability for LDPC codes given by the matrix 𝐻𝐻1

In the range of the real error level [8, 13, 14] in Fig. 2–4, it can be observed that the BF decoder at the 
threshold value 𝑇𝑇 = 2 shows better results than at 𝑇𝑇 = 1, and the modified BF decoder has a better error-correcting
capability compared to the original one.

The decoders show similar efficiency at small values of the code length, but when it is increased, the modified
decoder shows better results. Specifically, if the error probability in the non-noise-immune channel is 0.05, the
difference in the error probability in the noise-immune channel when using a BF decoder with the threshold 𝑇𝑇 = 2 and
𝑇𝑇 = 1, is from 0.005 to 0.03 in favor of using a larger threshold value. If a BF decoder with the threshold 𝑇𝑇 = 2 and a 
modified decoder are used, this difference varies depending on the LDPC code in the range from 0.001 to 0.003. If the
error probability in the non-noise-immune channel is 0.1, the error probability in the noise-immune channel when using 
a BF decoder with the threshold 𝑇𝑇 = 2 is less than with the threshold 𝑇𝑇 = 1 by the value from 0.001 to 0.02. When 
using a BF decoder with the threshold 𝑇𝑇 = 2 and a modified decoder, this difference varies in the range from 0.002 to
0.01depending on the LDPC code.

Both decoders are sensitive to the number of cycles in Tanner graph corresponding to the LDPC code check
matrix. The greater the ratio of the number of cycles to the total number of elements in the matrix, the worse any BF
decoder corrects errors. During the experiments, it was interesting to find out whether it is possible to increase the 
number of cycles in the matrix so that the modified decoder will show worse results compared to the BF decoder.
Experimentally, the matrix 𝐻𝐻1 containing 41 cycles of length 6 was found. The results of the study on the error-
correcting capability of decoders for this matrix are shown in Fig. 5. Note, however, that the matrix 𝐻𝐻2 contains even
more cycles of length 6, namely, 42. The fundamental difference between the matrices 𝐻𝐻1 and 𝐻𝐻2 is in the density of
units:
— in 𝐻𝐻1 — 60 unit elements per 300 matrix elements,
— in 𝐻𝐻2 — 84 units per 588 matrix elements.

Recall that the feature of LDPC codes is the sparse structure of the check matrix, so 𝐻𝐻2 is more typical for
LDPC codes.

Discussion and Conclusions. The paper considers a bit-flipping decoder for binary LDPC codes.
Recommendations on the selection of such input parameters of the decoder as the threshold and the number of iterations
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of the algorithm are given. A lemma on the maximum value of the decoder threshold is formulated and proved. A 
modification of the BF decoder of binary LDPC codes has been developed, in which it is proposed to set the threshold 
dynamically during the execution of the algorithm depending on the resulting syndrome. For the original and modified 
decoders, upper estimates of the number of operations are found. These estimates show that the modification 
complicates the decoder only slightly. The conducted simulation experiments demonstrate better error-correcting 
capability of the modified decoder in relation to the original one. The experiments also showed the dependence of the 
decoding quality on the degree of matrix sparsity and the number of cycles of length 6 in the Tanner graph 
corresponding to the check matrix of the LDPC code. Thus, the problem of constructing check matrices with a small 
number of short cycles arises, which is the subject of further research.
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