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Introduction. The development of machine learning methods has given a new impulse to solving inverse problems in 
mechanics. Many studies show that along with well-behaved techniques of ultrasonic, magnetic, and thermal 
nondestructive testing, the latest methods are used, including those based on neural network models. In this paper, we 
demonstrate the potential application of machine learning methods in the problem of two-dimensional ultrasound 
imaging. 
Materials and Methods. We have developed an experimental model of acoustic ultrasonic non-destructive testing, in 
which the probing of the object under study takes place, followed by the recording of the response signals. The 
propagation of an ultrasonic wave is modeled by the finite difference method in the time domain. An ultrasonic signal 
received at the internal points of the control object is applied to the input of the convolutional neural network. At the 
output, an image that visualizes the internal defect is generated. 
Results. In the course of the performed complex of numerical experiments, a data set was generated for training a 
convolutional neural network. A convolutional neural network model, which is developed to solve the problem of 
visualizing internal defects based on methods of ultrasonic nondestructive testing, is presented. This model has a small 
size, which is 3.8 million parameters. Its simplicity and versatility provide high-speed learning and a wide range of 
applications in the class of related problems. The presented results show a high degree of information content of the 
ultrasonic response and its correspondence to the real form of an internal defect located inside the test object. The effect 
of geometric parameters of defects on the accuracy of the neural network model is investigated. 
Discussion and Conclusion. The results obtained have established that the proposed model shows a high operating 
accuracy (F1 > 0.95) in cases when the wavelength of the probe pulse is tens of times less than the size of the defect. 
We believe that the combination of the proposed methods in this approach can serve as a good starting point for future 
research in solving flaw defection problems and inverse problems in general. 
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Introduction. In the paper, the authors investigate the possibilities of using neural network technology in 

solving inverse problems of mechanics, in particular, in the problem of two-dimensional visualization of internal 

defects. These methods are widely used in medicine, civil engineering, nondestructive testing and other fields. 

Thus, in [1], a system was developed for detecting cracks in steel structures and assessing their depth based on 

two-dimensional images. The work objective is to develop an affordable and user-friendly control system instead of 

expensive measuring devices. A training strategy and several neural network structures were proposed. In process of 

training, the average intensity of the profiles of two-dimensional steel cracks was fed into the neural network along with 

the maximum depth of steel cracks measured using a laser microscope. The average error of the neural network is 18 % 

in the test sample, which is better in comparison to the previous studies of the authors. Improving the quality of 

determining the depth of defects is achieved through the use of a new training strategy and a tool for assessing the crack 

depth.  

In [2], some deep learning methods were proposed for detecting defects in the images obtained through 

nondestructive testing. To apply such approaches, labeled data of images with defects is needed. The authors propose a 

deep-transfer learning model for extracting signs of internal defects on X-ray images of composite materials of the 

aviation industry. The method of automatic detection of inclusion defects on X-ray images was investigated using the 

proposed model. The experimental results show that the model can achieve a classification accuracy of 96 % 

(F1 metric) with satisfactory detection results.  

In [3], a method for reconstructing and visualizing internal defects in the form of a three-dimensional image 

using an economical and fast pulse thermography technology is proposed. A new method of rapid assessment of the 

depth and thickness of the defect simultaneously based on a single one-sided check is presented. The feasibility and 

effectiveness of the proposed solution is demonstrated through examining composite and steel samples with semi-

enclosed air gaps. For a composite sample, this method can provide a relatively low, within 10%, average relative error 

of the estimated total volume of 3D defects. 

Paper [4] considers the main causes of failure of engines of solid-fuel rockets. Peeling at the propellant /sleeve 

/insulation interface is a critical moment for the integrity of the engines. Modern solutions are usually limited to 

methods of assessing the integrity of the design of rocket engines and visual inspection of their components. 

This paper presents an improved algorithm for detecting sleeve surface defects that can disrupt the bond 

between solid rocket fuel and insulation. The use of local binary patterns (LBP) provides a structural and statistical 

approach to analyzing the texture of engine image samples. The neural network analyzes the engine image samples and 

classifies each pixel into one of three classes: serviceable, foreign object and defect. Several tests were conducted with 

varying different parameters to find the optimal configuration of the neural network. As a result, the best classification 

accuracy was obtained for the corresponding classes: 99.08 %, 90.66% and 99.48 %. 

Paper [5] provides a brief overview of artificial intelligence algorithms applicable to nondestructive testing. It 

focuses on two methods: artificial neural networks and fuzzy logic. Selected examples of the application of these 

methods in digital radiography and the eddy current method are given. 

In [6], the author explores the potential of deep learning methods for electromagnetic inversion. This approach 

does not require calculating the gradient and gives results immediately after training the network. Deep neural networks 

based on a fully convolutional architecture are trained on large sets of synthetic data obtained through full three-

dimensional modeling. The method effectiveness is demonstrated on models of great practical importance, representing 

the scenario of monitoring the electromagnetic field of carbon dioxide accumulation underground with a controlled 

source on the surface. 

Previously, the authors investigated some problems that combine modern methods of deep machine learning 

and well-proven classical approaches to identifying defects [7−9]. 
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In this paper, a neural network model is considered as a pilot study, on the basis of which a two-dimensional 

acoustic visualization of internal defects is carried out. A trial model of nondestructive ultrasonic testing is constructed, 

on the basis of which a complex of numerical experiments is carried out. The results of these experiments serve as the 

basis for training a neural network and its validation. 

Materials and Methods. A method for identifying and visualizing internal defects based on ultrasonic 

nondestructive testing and a generative neural network model is proposed. An ultrasonic signal received at the internal 

points of the control object is fed to the input of the convolutional neural network. At the output, an image is generated 

that visualizes an internal defect. The inner part of the steel plate was chosen as an object to demonstrate the possibility 

and prospects for the development of this research method. There may be a defect inside the strip, indicated by the lack 

of material. The shape, size and orientation of the defect may vary. The approach involves conducting a series of 

numerical experiments, on the basis of which it is possible to train a deep neural network model. A training set is 

created for each case through varying the geometric parameters of the defect and modeling the propagation of an 

acoustic ultrasonic wave. It is possible to build an optimal structure of a neural network model and train it on the basis 

of the collected data. 

Finite difference-time domain method. This method was proposed by Kane Yee [10] and belongs to the class 

of grid methods for solving differential equations. At the moment, this method is widely used — from tasks of 

geophysics to solving problems in the optical range, as well as in a number of problems of modeling media with both 

dispersed and nonlinear properties. The finite difference-time domain method in the acoustic formulation is used to 

simulate the propagation of sound in fluid media, such as air or liquids. However, in some cases, to simplify the 

solution of problems, this method can also be used in elastic media. Within the framework of this method, the velocity 

and acoustic pressure of the particles of the simulated object are arranged alternately in the grid nodes. Then their 

values are calculated sequentially, which provides calculating the propagation of the sound field over time. 

The basic equation of this acoustic model in a flat formulation is the following: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = −𝑘𝑘 (𝜕𝜕𝑣𝑣𝑥𝑥

𝜕𝜕𝜕𝜕 +
𝜕𝜕𝑣𝑣𝑦𝑦
𝜕𝜕𝜕𝜕 ) 𝜕𝜕𝑣𝑣𝑥𝑥

𝜕𝜕𝜕𝜕 = − 1
𝜌𝜌

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 ,

𝜕𝜕𝑣𝑣𝑦𝑦
𝜕𝜕𝜕𝜕 = − 1

𝜌𝜌
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕, 

where 𝜕𝜕 — pressure, 𝑣𝑣 — velocity, 𝑘𝑘 — volume modulus of elasticity, 𝜌𝜌 — density of the medium.  

The values of the spatial ∆𝜕𝜕 and timing ∆𝜕𝜕 resolutions affect how accurately and steadily the acoustic field 

will be calculated. These values cannot be set independently and must be selected taking into account each other.  

First of all, you need to set value ∆𝜕𝜕 based on accuracy considerations. At the same time, accuracy and 

stability are independent of each other. The simulation can be stable, but with low accuracy in the case of a coarse grid. 

The accuracy of the solution by this method depends on many factors. In this case, values ∆𝜕𝜕 and ∆𝜕𝜕 can be set as:   

∆𝜕𝜕 = 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚
10 ~ 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚

20 , ∆𝜕𝜕 ≤ 1
√𝑑𝑑

∆𝜕𝜕
𝑐𝑐𝑚𝑚𝑚𝑚𝑥𝑥

, 

where 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 — the wavelength that propagates in the simulated space, 𝑐𝑐𝑚𝑚𝑚𝑚𝑥𝑥  — the largest value of the speed of sound in 

the simulated environment, 𝑑𝑑 — the dimension value, for a flat problem 𝑑𝑑 = 2.  

A reference model of acoustic ultrasonic wave propagation is constructed in the COMSOL package. 

Accordingly, the solution is carried out by the finite element method and the finite difference method. Figure 1 below 

shows the normalized acoustic pressure values read at the model point. The model is a square area made of steel with a 

hole inside. Small differences in the signal shape are due to the way the source of ultrasonic vibrations is set. In the case 

of FEM — points are on the circle, in the case of FDTD — a point is in the grid node. 
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Comparison of ultrasonic wave propagation 
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Fig. 1. Shape of the direct and reflected ultrasonic signal. The dashed line shows the values calculated using the FDTD method,  
the solid line shows the values calculated using the FEM 

Since the grid has a limited size, it is not possible to simulate the propagation of acoustic waves outside this 
area, so special boundary conditions are applied. Moore’s Absorbing Layers or Perfect Matched Layers (PML) are 
used [11]. These conditions reduce significantly the reflectivity of the boundaries of the area in which the simulation 
takes place and create the effect of waves passing beyond the boundaries of this area. 

Nondestructive testing model. The inner part of the steel plate containing the defect was chosen as a trial 
model of nondestructive testing. The study area size is 20×20мм. Defects are presented in the form of geometric shapes: 
ellipse, triangle, square, rectangle. Physical parameters of the defects vary relative to the simulated area within the 
following limits: the location of the defect — from 0.3 to 0.7; the size of the defect — from 0.1 to 0.35; the angle of 
defect inclination — from 0° to 360°. The input signal consists of a fixed number of discrete values specified by the 
experiment time. The time of the experiment was chosen in such a way that the probing pulse, having reflected from the 
defect, could cover the distance and return to the point of the initiating signal. The probing pulse frequency is 10 MHz. 

Figure 2 shows the scheme of the numerical experiment. The defect is located in the center of the probed area 
with a given offset. The source of the ultrasonic signal is shown with red mark. The signal reading points are shown 
with green marks. The broken line shows the boundaries of the defect. 

 

Fig. 2. Scheme of one of the conducted numerical experiments 
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The model provides evaluation of the possibility of using the proposed method and the further prospects for its 

application. The ultrasonic signal is set at the internal point of the control object. The points that simulate sensors that 
read the transmitted and reflected signals are located on different sides of the supposed location of the defect. Such a 
virtual model enables to evaluate the effect of some experimental parameters on the neural network quality. Based on 
the implemented approach, it is possible to build models that reflect real technical tasks. Figure 3 shows the propagation 
and reflection of an ultrasonic wave from a defect inside the study area.  

   

   

Fig. 3. Propagation of an ultrasonic wave and its reflection from various defects 

Neural network model. Convolutional neural networks (CNN) are a special neural network tool for 
processing data with a grid structure (two-dimensional images, one-dimensional signals) [12]. At the moment, it is one 
of the most rapidly developing and promising deep learning tools [13−15]. 

They have also proved extremely successful in other practical applications, including video analysis and time-
series data processing (the latter can be considered as a one-dimensional grid that processes samples at fixed time 
intervals). CNN is a key example of the successful application of ideas obtained under studying the brain (to some 
extent inspired by the structure of the mammalian visual system). As the name suggests, the convolutional network uses 
the convolution operation, i.e., filtering using a feature map or kernel, instead of the general matrix multiplication in 
fully connected networks (in fact, convolution corresponds to the product of a sparse matrix). 

To solve the problem of defect visualization, the authors suggest using a convolutional neural network model. 
An ultrasonic signal received at the internal points of the control object is applied to the input of the model. The output 
generates an image with the expected shape, location and orientation of the defect. The input signal passes through 
layers of one-dimensional convolution (Conv1D) and subsampling (MaxPooling). After that, the data falls on a fully 
connected layer. This convolutional part of the network is used to extract features from the signal, on whose basis the 
defect will be visualized. The second part of the network generates images corresponding to the shape, location and 
orientation of the defect. Data from a fully connected layer is transformed and displayed on a two-dimensional layer. 
From this layer, after passing through a number of trained unfolding layers (Conv2D Transpose), the final image is 
obtained, which visualizes the internal defect. The model of the convolutional neural network used in this work is 
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shown in Fig. 4. Under each layer, the size of the input data and the number of convolution kernels are shown. For 
example, 504×32 means that 504 values are fed to this layer and 32 different convolutional filters are applied to them. 

 

Fig. 4. Architecture diagram of a convolutional neural network 

Model training and validation. Within the framework of a complex of numerical experiments, 17,000 

problems with various geometric parameters of the defect were solved. 14,000 samples were used for training, 2,000 — 

for testing and 1,000 — for validation. 

In training, the success rate is the training error. When checking the operation of a neural network model on 

test data that was previously unavailable to the network, its ability to generalize is determined. During the testing 

process, the testing error is calculated. Thus, the model performance can be judged by two key factors. The first is to 

achieve the smallest learning error. The second is to reduce the difference between the training and testing error. 

There are several regularization techniques in the machine learning. When training neural networks, one of the 

problems is overtraining. It is expressed in the loss of the ability to generalize in the learning process. One of the most 

popular methods of preventing it is the use of Tikhonov regularization (ridge regression or L2), also called weight decay 

in machine learning. 

One of the important stages of training a neural network model is the initialization of weights. One of the 

currently popular initialization methods is the Xavier method [16]. This method simplifies the signal transmission in 

case of forward and backward propagation of an error through the network layers. The method is suitable for both linear 

and sigmoid activation functions (its unsaturated section has a linear character). 

The batch-normalization method was proposed by Ioffe and Szegedy [17]. During the propagation of the signal 

through the network layers, its distortion can occur both in terms of mathematical expectation and variance (this effect 

is known as an internal covariance shift). This may cause some discrepancy between the gradients at different network 

levels. 

General regularization approaches are used when training a neural network model. The simplest of them are 

early stopping and the use of the dropout technique. These methods provide more stable training of the model. Due to 

the sufficient size of the training sample and the complexity of data augmentation, the latter is not performed. 

As part of this work, the data set is not balanced. Below, in Fig. 5, you can see the distribution of defects 

depending on their size. 
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Fig. 5. Number of defects depending on their size in the training data set 

Training a neural network is the equivalent of solving an optimization problem in which the minimum of the 
loss function is searched for. This function shows how well the model performs its task. The correct selection of the loss 
function has a great impact on the learning outcome. In this problem, the optimal choice is to use the Jaccard similarity 
coefficient (Intersection over Union). This factor is often used in computer vision problems and is defined as: 

𝐼𝐼𝐼𝐼𝐼𝐼 =
|𝐴𝐴 ∩ 𝐵𝐵|
|𝐴𝐴 ∪ 𝐵𝐵| =

|𝐴𝐴 ∩ 𝐵𝐵|
|𝐴𝐴| + |𝐵𝐵| − |𝐴𝐴 ∩ 𝐵𝐵| 

Accordingly, the loss function is defined as 1 − 𝐼𝐼𝐼𝐼𝐼𝐼 and reflects the difference between the two samples. It is 

also known as the Jaccard distance. Also, to assess the quality of the neural network model, metric 𝐹𝐹1 = 2 × 𝐼𝐼𝐼𝐼𝐼𝐼
𝐼𝐼𝐼𝐼𝐼𝐼+1  is used, 

which reflects the harmonic mean between completeness and accuracy.  
One of the most popular Adam algorithms [18] is used for training. The authors used the open TensorFlow 

library and the Keras framework. These software solutions include the majority of modern algorithms and models. It 
took 200 training epochs to achieve an acceptable level of the model performance. 

Research Results. The use of a neural network approach to solving inverse problems has long proven itself [8, 
19−20]. With the development of machine learning and the emergence of new techniques, new methods of data 
interpretation become available, and new opportunities for solving classical problems of mechanics and flaw detection 
appear. 

The authors have presented a convolutional neural network model developed to solve the problem of 
visualization of internal defects based on methods of ultrasonic nondestructive testing. This model has a small size, 
which is 3.8 million parameters. Its simplicity and versatility provide high-speed learning and a wide range of 
applications in the class of related problems. The authors use the FDTD method for simulating the propagation of 
ultrasonic waves and compare its results with the results of the finite element method. The selection of this method 
made it possible to significantly increase the speed of calculating models, compared to the tasks solved earlier [21]. 
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Fig. 6. Number of identified defects with a certain accuracy 

After training the neural network model, its operation is validated on the corresponding data set. Metric F1, 
described above, is used to evaluate the overall performance of the model. In general, the accuracy of the proposed 
method is at a high level. The average value of F1 factor for the entire validation sample is 91 %. Figure 6 shows that 
some of the defects were not identified by the neural network model. 

In Fig. 7, you can see how accurately the neural network model performs visualization of defects of various 
sizes. Visualization was performed on a validation data set. 

 
The effect of the defect size on the visualization accuracy 
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Fig. 7. Dependence of the visualization accuracy on the defect size 

Figure 8 below shows the results of the neural network model operation. The images show the location, 
boundaries and shape of the alleged defect. 
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Fig. 6. Number of identified defects with a certain accuracy

After training the neural network model, its operation is validated on the corresponding data set. Metric F1,
described above, is used to evaluate the overall performance of the model. In general, the accuracy of the proposed
method is at a high level. The average value of F1 factor for the entire validation sample is 91 %. Figure 6 shows that
some of the defects were not identified by the neural network model.

In Fig. 7, you can see how accurately the neural network model performs visualization of defects of various
sizes. Visualization was performed on a validation data set.

The effect of the defect size on the visualization accuracy
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Fig. 7. Dependence of the visualization accuracy on the defect size

Figure 8 below shows the results of the neural network model operation. The images show the location,
boundaries and shape of the alleged defect.
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а) b) c) 

Fig. 8. The result of visualizing the defect with a neural network: a) original defect, b) defect visualization based on the ultrasonic 
response, c) difference between the original and restored samples 

Discussion and Conclusions. In this paper, the potential of using machine learning methods in the problem of 
ultrasound imaging is shown. The authors have built a test model of nondestructive testing. Based on this model, a data 
set is prepared for training a neural network. A convolutional neural network model is proposed that provides predicting 
the shape, location and orientation of defects inside a solid body. The results obtained show a high degree of 
informativeness of the ultrasonic response and its correspondence to the real form of the internal defect. 

Based on the results obtained, it is revealed that the proposed model shows high accuracy of work (𝐹𝐹1 >
 0.95) in cases when the wavelength of the probing pulse is ten times smaller than the size of the defect. 

The authors believe that the combination of the proposed methods in this approach can serve as a good starting 
point for future research under solving problems of flaw detection and inverse problems in general. 
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