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Introduction. The generation of polynomial power laws of motion for the synthesis of cam mechanisms is complicated
by the need to determine the coefficients of power polynomials. The study objective is to discover a rational capability
of generatingpowerlawswitharbitrarytermsnumberunderthesynthesisofcammechanisms.

Materials and Methods. A unified formula for determining the values of coefficients of power polynomials with any
number of integers and/or non-integer exponents is derived through the so-called transfinite mathematical induction.
Results. A unified formula for determining the values of coefficients, which gives correct results for any number of even
and/or odd exponents, is presented. The correctness of the derived formula is validated by the results on the multiple
checks for different numbers, even and odd values of the exponents of quinquinomial and hexanomial power functions.
Discussion and Conclusions. A unified formula for determining the values of coefficients of power polynomials makes
it possible to rationally define the laws of motion without finite and infinite spikes in the synthesis of elastic cam-lever
systems. This provides a rational determination of the laws of motion without finite and infinite spikes in the synthesis
of elastic cam-lever systems, and simple verification of the accuracy of the results obtained. The functions are
particularly suitable for the synthesis of polydyne cams, as well as cams, since one polynomial can be used throughout
the entire geometric mechanism cycle.
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Beeoenue.I'eneparyisi MONMHOMUANBHBIX CTENEHHBIX 3aKOHOB IBIDKEHHUS JUISI CHHTE3a KyJadKOBBIX MEXaHH3MOB
YCIOXKHIETCS HEOOXOAWMOCTBIO ONpeneieHns Kod(p(HUIMEHTOB CTENEHHBIX MOIMHOMOB. llens wuccinenoBaHus
PAacKpBITh PALMOHAIBHYK) BO3MOYKHOCTb I'€HEpallMM CTEIEHHBIX 3aKOHOB C IIPOM3BOJIBHBIM YHCJIOM 4JIEHOB IpHU
CHHTE3€ KYJIaYKOBBIX MEXaHU3MOB.

Mamepuanvt u memoovi.MeTonoM TaK Ha3blBacMOW TpPAaHC(PUHATHOW MaTEeMAaTHYCCKOH WHIYKIUH IOJydeHa
yHUPHUIHpOBaHHAS (HOpMYIa s ONpeAeTICHHS 3HAYCHUH KO3 (QHUINECHTOB CTENICHHBIX IIOJIMHOMOB C JIFOOBIM YHCIIOM
LEJTBIX /MM HEIeNTBIX ITOKa3aTelei.

Pe3ynomamut uccnedosanusn.B 510l HccienoBaTeNbCKON paboTe MpeacTaBieHa YHHU(PHUIHPOBaHHAs (opmyna s
OTIpe/IeICHUs 3HAYCHNH KO3 PHUINEHTOB, KOTOpask JaeT MpaBIIIBHBIE PEe3yJIbTATHl UL JIFOOOTO YHCa YeTHBIX H/FIIH
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HEYeTHBIX MoOKa3aTrenaed. MHOTOUUCIEHHbIE MPOBEPKH, MPOBEAEHHbIE NPHU PA3HBIX YMCIAaX UYETHBIX M HEYETHBIX
3HAYEHMH ITOKA3aTeNIeH CTENCHNU IIATh U IECTh CTETIEHHBIX (DYHKIMH, MOATBEPAMIN IPaBIIHLHOCTS BEIBOAA (POPMYIIBL.
Obcyscoenue u  3axniouenuallpencraBneHa yHUQUOHpOBaHHAs (QopMmynra Ui ONpEACTeHHS  3HAYCHUH
K03(h(pUIMEHTOB, KOTOpas JaeT MPaBUIbHBIC PE3YNbTATHI IS JIIO00TO YHCIIAa YETHBIX W/MIIM HEYETHBIX MOKa3aTeleH.
3T0 maeT parroHaIbHYI0 BO3MOXKHOCTH OINPEAEICHUS 3aKOHOB JIBIKCHMSI 0€3 KOHEUHBIX M OECKOHEUHBIX IMHUKOB IPH
CHHTE3€ YNPYTHX KyJTadyKOBBIX CHCTEM M TPOCTYIO MPOBEPKY TOYHOCTH MONYYCHHBIX DPE3yIbTaToOB. OTH (YHKIMH
0COOCHHO TIOAXO/sIIee ISl CHHTE3a MOJMAMHAMHYHBIX KyJayKOB, a TaKXKe KYJIadKOB, ITOCKOJIbKY OJMH MHOTOYJICH
MOJKET UCIOJIb30BATHCS HA MPOTXKEHUN BCETO FEOMETPHUUECKOTO IIUKJIA MEXaHHU3Ma.

Knrwuesvie C/106a:KyJIAYKOBbIC MEXaHU3MbI, 3aKOHbI ABUKCHHNA, CTCTICHHLIC (byHKIlI/II/I

Jlna yumuposanua:B. Paleva-Kadiyska, R. Roussev, V. Galabov. Rational possibility of generating power laws in the
synthesis of cam mechanisms. Advanced Engineering Research. — 2021. — T.21, Ne2. — C.184-
190.https://doi.org/10.23947/2687-1653-2021-21-2-184-190

1. Introduction

One of the most important tasks in the design of cam mechanisms [1—4] and in theplanning of industrial robots
movements [5—7], is undoubtedly the selection of the law of motion, as the law affects the basic kinematic, force and
dynamic characteristics of the generated movements [8—11].

It is generally assumed that the units are rigid bodies connected without a gap clearance, whereby the
mechanism generates the desired basic law of motion. In fact, real laws of motion of the mechanisms differ significantly
from the basalones as the speed of the cam, the load, the deformations, and the clearances of the cam-lever systems are
greater.

The cams, synthesized according to polynomial laws of motion taking into account the dynamics and
deformations of the mechanical system driven by the cam, are called polydyne cams.The design of such cams is
required for the construction of high-speed and insufficiently rigid mechanical systems.

The development of methods for the synthesis of polydyne cams was started in 1948 by Dudley [12],
supplemented and developed by many other authors mainly in connection with dynamic studies of cam-lever systems
[13—18]. The main purpose of the methods is to exclude the acceleration breaks (jerks), resp. of the inertial load of
resiliently susceptible mechanical systems to achieve more precise target movements with minimum oscillations.

The design of polydyne cams is required not only for cam-lever valves of automobile engines [17—19], but also
for many other high-speed and insufficiently rigid mechanical systems of various technological machines [15], [19—22].

Power-polynomial laws of motion with four or more terms have great advantages in achieving the desired
boundary conditions at the beginning and at the end of the phases of movement of the output at the cam mechanisms
[15], [20, 21]. Such motion laws are suitable for the synthesis of mechanisms with polydyne cams [1-3], [5]. These
laws make providemodelingthe laws of motion without finite and infinite spikes with better dynamic characteristics of
high-speed, elastic cam-lever systems than the power trinomial and quadrinomial laws of motion. However, the
derivation of power laws of motion with four or more terms is difficult due to the need to solve systems with four and
more equations, respectively.

The aim of the study is to explorea rational possibility for generating basic power laws with arbitrary number
of terms when formulating design laws of motion for the synthesis of cam mechanisms.

2. Materials and Methods

Thebasal law of motion of polydynamic cam mechanisms is most significantly affected by the basal second
transfer function and its derivatives. This function, multiplied by the dynamic constant of the cam-driven mechanical
system, changes the output displacement, as the inertial load generated by the acceleration deforms the system
components elastically.In other words, the second derivative (the basal second transfer function) also participates in the
real displacement function.

Therefore, in order to avoid spikes in the first two real transfer functions, it is required to avoid spikesin the
next two basal transfer functions — the third and the fourth.This cannot be achieved for the limits of the phases of
movement of the output unit if a power trinomial or quadrinomial displacement function is selected. These spikes will
be avoided if the displacement function and its first four derivatives are continuous functions.

The displacement function of the output link of the cam mechanism may, in any law of motion, be written in
summary form B = B, +AB(¢) = BytH.u(), where B is the output coordinate formed by its initial value B, which
determines the initial position of the output link, to which the displacement function of the output link is added — a
product of the follower motion H = AB,,, and the normalized function u(¢). The velocity, acceleration and the
subsequent derivative (jerk) of the follower’s motion correspond to the transfer functions B'(¢), B"(p), B"(¢),which
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differ by only one factor H/®, , H/® and H/®’ (P, is the cam angle of the follower rise) respectively from the

"

derivatives u', u" and u" of the normalized function u(&) €[0; 1] in the argument &=¢/®, €[0; 1]:

AB=H . u(g);

B= glu'@;

B/I — Hz u”(a); (1)
Bm:é%ﬂm@)“

For a binomial power function with the exponents k and m, the coefficients a; and a,, are determined by the
relations:
m k
a=—" a,= .
(m—k) (k—m)
For a trinomial power function with the exponents k, m and p, the coefficients a, a,, and a,, are determined by

the relations:
a = mp . a = kp . a4 = km
(m—k)(p—k) (k —m)(p —m) (k= p)(m—p)
There are known formulas for determining the coefficients of normalized power functions up to four integers
and/or non-integer power exponents.

For a quadrinomial power function with the exponents k, m, p and ¢, the coefficients a;, a,, a,and a, are
determined by the relations:
4 = mpq 4 = kpq .
k > Ym s
(m=k)(p—k)(q—k) (k=m)(p—m)(q—m)

kmgq kmp

a, = ;a = .
" (k=p)Xm-p)Xg-p) " (k=q)m-q)(p-q)
Aformula for determining the coefficients of normalized power functions with an arbitrary number of integer

and non-integer exponents is derived.

According to the method of the so-called transfinite mathematical induction, it can be assumed that the
formulas for determining the values of the coefficients of the input normalized power functions are valid for any
plurality of integer and non-integer exponents. The known formulas for determining the values of the coefficients are
true for two, three and four even and odd exponents, from which the inductive assumptionfollows that for any number
of even and/or odd exponents, a formula for the values of the coefficients is inductively obtained

a - k.m.p..v
b k=D m=j)(p= )= )
in which j consistently takes » in the number of values &, m, p,..., v. The numerator of (2) excludes the exponent j (it
isassumed that j = 1), and in the denominators of any value of exponents (except j), the value of ;j is subtracted. In other
words, the value of each unknown coefficient a; of the normalized power function is determined by the relation (2) with
the numerators, which isthe product of the exponents, excluding j,and the denominator, which is the product of the
difference between the exponents (except j) and the exponent ;.

3. Results

To verify the results obtained, the sum of the values of the calculated coefficients must be equal to one:

k+m+p+..+v=1.

2

An inductive inference for (2) is reached if it is also proved that an arbitrary number nis odd and/or odd values
of exponents. The correctness of formula (2) is validated by the results on the multiple checks for different numbers of #,
even and odd values of the exponents of quinquinomial and hexanomial power functions. Two functions have been
selected from them.

Example 1. Let the power function be quinquinomial with integers and non-integers exponents. For example,
atk=5;,m=5.5;p=6;qg=06.5;s =7 from formula (2), it is obtained:

a,=1001; a,, = -3640; a, = 5005; a, = -3080; a, = 715.
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The results are true sincea; + a,, + a, + a;, + a,= 1.
Thus, for the normalized power function and its derivatives, we obtain:

u =10018° —36408* +5005£° —3080E°° + 71587,

u' =5005(E —4E" +65° —4E% 1+ £°),

u" =10010(28° —98* +158* — 118" +3¢%), 3)
u" = 15015(48" — 218> + 408> — 338> +108"),

u™ = 15015(85 —52.56" +12087 —115.56>° +408)

Indeed, for the interval boundaries & €[0, 1], the function u(¢) has values of 0 and 1, respectively, and all

derivatives functions of u(&) are zeroing.
Figurelpresents the power polynomial u(&) with the first three derivatives.

u" u" u u'
1504 15+ F1.5-3
1004 10 1.0 L2
504 54 FO.S 1

0

1 4

=507 =51
-100- -10-

Fig. 1. Graphs of the quinquinomial u(§) and the first three derivatives by equation (3)

Example 2. Let the power function be hexanomial with integer power, for example:
k=6;m=7p=8;,¢g=9;5=10;v=11. From formula (2),we obtaing, = 462; a,, = -1980; a, = 3465; a, = -
3080; a, = 1386; a,, = -252,and therefore:

u = 4626 —198057 +3465E" —3080€° +1386£"° —252¢",
u' =2772(8° —5&° +108" — 108" +58° —&"),

u" =13860(5" —6&° +14E° —168" + 98" —28"),

u" =27720(28" —15E* + 426" —56E° +3657 —9¢),

u™ =166320(&" — 108" + 358 —56&° +42&° —1287),

u"" = 3326405 — 1587 + 708’ —1408" +1265° —42¢°).

4)

Expectedly, for the boundaries of the interval & [0, 1], the function u(¢) has values of 0 and 1, respectively,

and all derivatives functions of u(¢) by the fifth line are zeroing. This means that the polynomial has one common point
and 5 infinitely close common points with the axis £ at £ =0 and £ =1 in the positive direction to the axis & and another
5 infinitely close common points with the axis £ at £= 0 and &= 1 in the opposite direction to the axis &. In practice, this
means 11 infinitely close common points of the polynomial with the ¢ axis or an oscillation (tangent) of 10 lines of the
polynomial with the ¢ axis. Although infinitely close, the common points generally lead to an approximate, but
sufficiently accurate, in some cases dwell of the output link. Figure 2 presents the power polynomial u(¢) with the first
three derivatives.
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le urr u ur
150+

100+

50+

-501 -

-100 -

-150- -15-
Fig. 2. Graphs of the hexanomial polynomial u(&) and the first three derivatives by equation (4)
For values of the exponents k=7; m =8; p =9; ¢ = 10; s = 11; v =12 from formulas (2), it is obtained: a; =

792; a,, = -3465; a, = 6160; a, = -5544; a, = 2520; a, = -462.
Then the normalized function and its derivatives are specified in the form:

u="T92E" —3465E" + 6160&° — 5544 + 25205 — 462E",

u' = 5544(E° — 55T +10E° —108° + 58 — &™),

u" = 5544(6%° —355° + 8057 — 90" + 508° —11£"),

u" = 55440(3E — 218" +56E° — 7287 +45E° —11°), (5)
U™ =166320(48° —358¢ +1128° —168E° +12087 —33¢%),

u"" = 665280(3E> — 358 +1408* — 252E° +210E° —665),

u"" = 665280(6% — 10587 +5608° —1260" +12608° —462¢°).

The check @, +a, + a, +a,+a, +a, =1, the normalized function u(¢), and its derivatives show the accuracy of

the results obtained, because of the interval’s boundaries e [0; 1], the function u(¢) has values of 0 and 1, respectively,
and all derivative functions are zeroing.

The graphs of u(¢), u'($), u" (&), and u'"’'(¢) are presented in Figure 3, which shows that at the beginning and at
the end of the cam angle ®; in the rise phase distance phase (rise phase, outstroke phase), the follower remains
practically stationary - an approximate dwell of the follower is realized. In the cam angle @5 in the return phase (reverse
move, return stroke) of the follower, the normalized power functions u(§) ,u'(§), u"(§) and u"(§) are retained by type

with a new argument §=1-&, where e [0, 1].

u" oy u u
150+

100

504

-504 -
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188 Fig. 3. Graphs of the hexanomial u(&) and the first three derivatives by equation (5)
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A detailed solution to the question of the laws of motion and synthesis of cam mechanisms was made by
Galabov, Roussev, and Paleva-Kadiyska in [4].

4. Discussion and Conclusions

The spikesin the first two transfer functions in high-speed, resilient (elastic) cam-lever systems are avoided if the
displacement function and its first four derivatives are continuous functions.This cannot be achieved for the limits of the
phases of movement of the output unit if a power trinomial or quadrinomial displacement function is selected. However,
the derivation of power laws of motion with four or more terms is complicated by the need to solve systems with four or
more equations, respectively. Therefore, by the method of the so-called transfinite mathematical induction, a unified
formula for determining the values of coefficients of power polynomials with any number of integers and/or non-integer
exponents is derived. It gives a rational possibility for defining the laws of motion without finite and infinite spikes in the
synthesis of elastic cam-lever systems and easy verification of the accuracy of the results obtained.

The functions (3), (4), (5) and other polynomial power polynomials are especially suitable for the synthesis of
polydyne cams, as well as cams, since one polynomial can be used throughout the geometric mechanism cycle.
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