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Introduction. The generation of polynomial power laws of motion for the synthesis of cam mechanisms is complicated
by the need to determine the coefficients of power polynomials. The study objective is to discover a rational capability
of generatingpowerlawswitharbitrarytermsnumberunderthesynthesisofcammechanisms.

Materials and Methods. A unified formula for determining the values of coefficients of power polynomials with any
number of integers and/or non-integer exponents is derived through the so-called transfinite mathematical induction.
Results. A unified formula for determining the values of coefficients, which gives correct results for any number of even
and/or odd exponents, is presented. The correctness of the derived formula is validated by the results on the multiple
checks for different numbers, even and odd values of the exponents of quinquinomial and hexanomial power functions.
Discussion and Conclusions. A unified formula for determining the values of coefficients of power polynomials makes
it possible to rationally define the laws of motion without finite and infinite spikes in the synthesis of elastic cam-lever
systems. This provides a rational determination of the laws of motion without finite and infinite spikes in the synthesis
of elastic cam-lever systems, and simple verification of the accuracy of the results obtained. The functions are
particularly suitable for the synthesis of polydyne cams, as well as cams, since one polynomial can be used throughout

the entire geometric mechanism cycle.
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One of the most important tasks in the design of cam mechanisms [1—4] and in theplanning of industrial robots

1. Introduction

movements [5—7], is undoubtedly the selection of the law of motion, as the law affects the basic kinematic, force and
dynamic characteristics of the generated movements [8—11].

It is generally assumed that the units are rigid bodies connected without a gap clearance, whereby the
mechanism generates the desired basic law of motion. In fact, real laws of motion of the mechanisms differ significantly
from the basalones as the speed of the cam, the load, the deformations, and the clearances of the cam-lever systems are
greater.

The cams, synthesized according to polynomial laws of motion taking into account the dynamics and
deformations of the mechanical system driven by the cam, are called polydyne cams.The design of such cams is
required for the construction of high-speed and insufficiently rigid mechanical systems.
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The development of methods for the synthesis of polydyne cams was started in 1948 by Dudley [12],
supplemented and developed by many other authors mainly in connection with dynamic studies of cam-lever systems
[13—18]. The main purpose of the methods is to exclude the acceleration breaks (jerks), resp. of the inertial load of
resiliently susceptible mechanical systems to achieve more precise target movements with minimum oscillations.

The design of polydyne cams is required not only for cam-lever valves of automobile engines [17—19], but also
for many other high-speed and insufficiently rigid mechanical systems of various technological machines [15], [19-22].

Power-polynomial laws of motion with four or more terms have great advantages in achieving the desired
boundary conditions at the beginning and at the end of the phases of movement of the output at the cam mechanisms
[15], [20, 21]. Such motion laws are suitable for the synthesis of mechanisms with polydyne cams [1-3], [5]. These
laws make providemodelingthe laws of motion without finite and infinite spikes with better dynamic characteristics of
high-speed, elastic cam-lever systems than the power trinomial and quadrinomial laws of motion. However, the
derivation of power laws of motion with four or more terms is difficult due to the need to solve systems with four and
more equations, respectively.

The aim of the study is to explorea rational possibility for generating basic power laws with arbitrary number
of terms when formulating design laws of motion for the synthesis of cam mechanisms.

2. Materials and Methods

Thebasal law of motion of polydynamic cam mechanisms is most significantly affected by the basal second
transfer function and its derivatives. This function, multiplied by the dynamic constant of the cam-driven mechanical
system, changes the output displacement, as the inertial load generated by the acceleration deforms the system
components elastically.In other words, the second derivative (the basal second transfer function) also participates in the
real displacement function.

Therefore, in order to avoid spikes in the first two real transfer functions, it is required to avoid spikesin the
next two basal transfer functions — the third and the fourth.This cannot be achieved for the limits of the phases of
movement of the output unit if a power trinomial or quadrinomial displacement function is selected. These spikes will
be avoided if the displacement function and its first four derivatives are continuous functions.

The displacement function of the output link of the cam mechanism may, in any law of motion, be written in
summary form B = B, +AB(¢) = By+H.u(), where B is the output coordinate formed by its initial value By, which
determines the initial position of the output link, to which the displacement function of the output link is added — a
product of the follower motion H = AB,,, and the normalized function u(¢). The velocity, acceleration and the

subsequent derivative (jerk) of the follower’s motion correspond to the transfer functions B'(¢), B"(p), B"(¢),which
differ by only one factor H/®, , H/®> and H/®’ (®, is the cam angle of the follower rise) respectively from the

derivatives u', u" and u" of the normalized function u(&) €[0; 1]in the argument &=¢/®, €[0; 1]:

AB = H . u(®)
B- glu'@);

Be ey @
B"= ()%u"'(g)...

For a binomial power function with the exponents k and m, the coefficients a; and a,, are determined by the
relations:
m k
Q=" a,= :
(m—k) (k—m)

For a trinomial power function with the exponents &, m and p, the coefficients ay, a,, and g, are determined by
the relations:
a, = P > a, = kp > a4, = K
(m—k)(p—k) (k—m)(p—m) (k—p)(m—p)
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There are known formulas for determining the coefficients of normalized power functions up to four integers
and/or non-integer power exponents.
For a quadrinomial power function with the exponents k, m, p and ¢, the coefficients a;, a,, a,and a, are
determined by the relations:
4 - mpq La = kpaq :
(m=k)(p—k)(g—k) (k=m)(p—m)(q—m)

4 - kmgq 4 = k mp
" (k=pXm-p)g-p) " (k—q)m-q)Xp-q)

Aformula for determining the coefficients of normalized power functions with an arbitrary number of integer

and non-integer exponents is derived.

According to the method of the so-called transfinite mathematical induction, it can be assumed that the
formulas for determining the values of the coefficients of the input normalized power functions are valid for any
plurality of integer and non-integer exponents. The known formulas for determining the values of the coefficients are
true for two, three and four even and odd exponents, from which the inductive assumptionfollows that for any number
of even and/or odd exponents, a formula for the values of the coefficients is inductively obtained

a, = . k.n?.p....v . 2)
(k= D(m=)(p=)-(v=J)
in which j consistently takes » in the number of values k, m, p,..., v. The numerator of (2) excludes the exponent ; (it
isassumed that j = 1), and in the denominators of any value of exponents (except /), the value of j is subtracted. In other
words, the value of each unknown coefficient a; of the normalized power function is determined by the relation (2) with

the numerators, which isthe product of the exponents, excluding j,and the denominator, which is the product of the

difference between the exponents (except j) and the exponent ;.
3. Results
To verify the results obtained, the sum of the values of the calculated coefficients must be equal to one:

k+m+p+..+v=1.

An inductive inference for (2) is reached if it is also proved that an arbitrary number nis odd and/or odd values
of exponents. The correctness of formula (2) is validated by the results on the multiple checks for different numbers of n,
even and odd values of the exponents of quinquinomial and hexanomial power functions. Two functions have been
selected from them.

Example 1. Let the power function be quinquinomial with integers and non-integers exponents. For example,
atk=5,m=55;p=6;,q=06.5;, s =7 from formula (2), it is obtained:

a=1001; a,, = -3640; a, = 5005; a, = -3080; a, = 715.

The results are true sincea; + a,, + a, + a, + a,= 1.

Thus, for the normalized power function and its derivatives, we obtain:
u =1001&’ —3640&™ + 5005&° —3080&"° + 715¢7,
u' =5005(&" —4E™ + 6% —4E™ +£°),
u"=10010(28> = 9> +15E* 11" +3E°), 3)
u” =15015(48% —21E*° +408° 338> +10&*),
u™ =15015(85 —52.56"° +120&* —115.56™ +408”)

Indeed, for the interval boundaries £ [0, 1], the function u($) has values of 0 and 1, respectively, and all

derivatives functions of u(¢) are zeroing.
Figurelpresents the power polynomial u(&) with the first three derivatives.
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Fig. 1. Graphs of the quinquinomial u(§) and the first three derivatives by equation (3)

Example 2. Let the power

function be hexanomial with integer power, for example:

k=6;m=7,p=28;,¢g=9;s=10; v=11. From formula (2),we obtaina; = 462; a,, = -1980; a, = 3465; a, = -
3080; a, = 1386; a, = -252,and therefore:

"
u

u"
u "

m
u

u =462 —19808" +3465" —3080%° +1386£"° — 2528,
' =2772(E° —5E° +1087 —108° + 567 —£"),

= 13860(E" —6E° +14E° —1687 + 96" =287,

= 27720(28° —15E* + 426" —56E° +3657 —9¢"),

' =166320(8 —108° +355" —56E° +426° —12¢7),

" = 3326405 — 156> + T0E° —1408* +1268° —42€°).

“4)

Expectedly, for the boundaries of the interval & [0, 1], the function u(¢) has values of 0 and 1, respectively,

and all derivatives functions of u(¢) by the fifth line are zeroing. This means that the polynomial has one common point

and 5 infinitely close common points with the axis & at ¢ =0 and ¢ = 1 in the positive direction to the axis ¢ and another

5 infinitely close common points with the axis & at =0 and £ = 1 in the opposite direction to the axis &. In practice, this

means 11 infinitely close common

points of the polynomial with the & axis or an oscillation (tangent) of 10 lines of the

polynomial with the ¢ axis. Although infinitely close, the common points generally lead to an approximate, but

sufficiently accurate, in some cases dwell of the output link. Figure 2 presents the power polynomial u(¢) with the first

three derivatives.

1504

100

504

-504 -

-100 -

-150-

" "

-15-

Fig. 2. Graphs of the hexanomial polynomial u(&) and the first three derivatives by equation (4)
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For values of the exponents k=7, m =8; p=9; ¢ =10; s = 11; v =12 from formulas (2), it is obtained: a; =
792; a,, = -3465; a, = 6160; a, = -5544; a, = 2520; a, = -462.

Then the normalized function and its derivatives are specified in the form:
u="792E7 —3465E" +6160E” —5544E"° +2520E" — 462E"7,
u' =5544(&° — 587 +10E° =108’ +5E'° —&'),
u" =5544(68" —35&° +80&" —90E* + 508" —11E'),
u" =55440(38" —21&° + 56E° — 7287 +45E° —11E%), (5)
u" =166320(48° —358" +1128° —168E° +1208" —33E"),
u™" = 665280(38% —35E +140&* —252E" +210E° —66E7),
u"" = 665280(6E —105E* +560E° —1260&* +1260&° —462E°).

The check a, +a, + a,+a, +a, +a,=1, the normalized function u(¢), and its derivatives show the accuracy of

the results obtained, because of the interval’s boundaries &€ [0; 1], the function u(&) has values of 0 and 1, respectively,
and all derivative functions are zeroing.

The graphs of u(¢), u'($), u" (&), and u'"’'(¢) are presented in Figure 3, which shows that at the beginning and at
the end of the cam angle @, in the rise phase distance phase (rise phase, outstroke phase), the follower remains
practically stationary — an approximate dwell of the follower is realized. In the cam angle ®; in the return phase

(reverse move, return stroke) of the follower, the normalized power functions wu(§),u'(§), u"(§)and u"(§) are

retained by type with a new argument £ =1-&, where &e [0, 1].

"
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Fig. 3. Graphs of the hexanomial u(&) and the first three derivatives by equation (5)

A detailed solution to the question of the laws of motion and synthesis of cam mechanisms was made by
Galabov, Roussev, and Paleva-Kadiyska in [4].

4. Discussion and Conclusions

The spikesin the first two transfer functions in high-speed, resilient (elastic) cam-lever systems are avoided if the
displacement function and its first four derivatives are continuous functions.This cannot be achieved for the limits of the
phases of movement of the output unit if a power trinomial or quadrinomial displacement function is selected. However,
the derivation of power laws of motion with four or more terms is complicated by the need to solve systems with four or
more equations, respectively. Therefore, by the method of the so-called transfinite mathematical induction, a unified

formula for determining the values of coefficients of power polynomials with any number of integers and/or non-integer
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exponents is derived. It gives a rational possibility for defining the laws of motion without finite and infinite spikes in the
synthesis of elastic cam-lever systems and easy verification of the accuracy of the results obtained.

The functions (3), (4), (5) and other polynomial power polynomials are especially suitable for the synthesis of
188

polydyne cams, as well as cams, since one polynomial can be used throughout the geometric mechanism cycle.
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