
ht
tp

://
ve

st
ni

k-
do

ns
tu

.ru

222

Advanced Engineering Research 2021. V. 21, no. 3. P. 222−230.  ISSN 2687−1653  

UDC 517.95, 519.6  https://doi.org/10.23947/2687-1653-2021-21-3-222-230 

Development of algorithms for constructing two-dimensional optimal boundary-adaptive 
grids and their software implementation 

А. Е. Chistyakov       1, V. V. Sidoryakina        2, S. V. Protsenko        1 

1 Don State Technical University (Rostov-on-Don, Russian Federation) 
2 Taganrog Institute Named after A.P. Chekhov, Rostov State University of Economics (RINH) branch, 
(Taganrog, Russian Federation) 
 cheese_05@mail.ru 

Introduction. It is noted that the use of adaptive grids in calculations makes it possible to improve the accuracy and 
efficiency of computational algorithms without increasing the number of nodes. This approach is especially efficient 
when calculating nonstationary problems. The objective of this study is the development, construction and software 
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Materials and Methods. The problem of automatic construction of an optimal boundary-adaptive grid in a simply 
connected region of arbitrary geometry, topologically equivalent to a rectangle, is considered. A solution is obtained for 
the minimum set of input information: the boundary of the region in the physical plane and the number of points on it 
are given. The creation of an algorithm and a mesh generation program is based on a model of particle dynamics. This 
provides determining the trajectories of individual particles and studying the dynamics of their pair interaction in the 
system under consideration. The interior and border nodes of the grid are separated through using the mask tool, and 
this makes it possible to determine the speed of movement of nodes, taking into account the specifics of the problem 
being solved. 
Results. The developed methods for constructing an optimal boundary-adaptive grid of a complex geometry region 
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computational domain of the test problem and the operation of the function for calculating the speed of movement of 
interior nodes are shown in the form of figures. Visualization confirms the advantage of this meshing method, which 
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Discussion and Conclusions. The theoretical and numerical studies results are important both for the investigation of 
the grids qualitative properties and for the computational grid methods that provide solving numerical modeling 
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Introduction. The grid construction was initially considered as a necessary auxiliary step in solving other 

problems [1–3]. In particular, when solving computational fluid dynamics problems, the construction of a 

computational grid is a considerably labor-intensive and lengthy process [4–6]. When studying the water areas of real 

reservoirs, we have to deal with the areas with an objectively predetermined boundary running along the coastline1. The 

border nodes of the rectangular grid of Cartesian coordinates covering the reservoir may not exactly fall on the contour 

of the coastline. Therefore, a uniform grid should be very dense, so that the errors it introduces for setting the coastline 

are acceptable. For example, for the Azov Sea, a two-dimensional grid, as a rule, contains more than half a million 

nodes [7–11]. Note also that when using rectangular grids, the boundary conditions are set at points offset from the real 

boundary, or (when truncating the boundary grid cells) inhomogeneities associated with uneven steps in spatial 

directions are concentrated near the boundary2. Taking into account the above, as well as the need to simplify data 

structures and algorithms for their processing, it is advisable to conduct numerical modeling of this type of problems on 

an optimal boundary-adaptive grid [12–14]. 

This paper presents an algorithm and a program developed for constructing quadrangular optimal boundary-

adaptive computational grids based on the particle dynamics method in a two-dimensional formulation. This powerful 

computational method provides the grid nodes as charged particles and simulates the dynamics of a system consisting of 

a huge number of particles (up to a million). Using the example of text problems, the efficiency of the algorithm for 

areas with a complex boundary is demonstrated. 

Materials and methods. Description of the method for constructing a 2D optimal boundary -

adaptive grid. In the Cartesian coordinate system Oxy , we introduce area D . In area D , grid 

  1 21 1i , j i , jω x ,y , i ,N , j ,N    is built according to the specified coordinates of the border nodes. The grid area 

divides area D  into elementary subdomains in the form of quadrilaterals. The grid nodes are redistributed along the 

coordinate lines. Then, in the needed zones where node thickening is required, variables x, y  are replaced with 

compressing variables ξ ,η  с using separated transformations: 

        ξ ,η x, y : x x ξ ,η , y y ξ ,η ,    (1) 

        x, y ξ ,η : ξ ξ x, y , η η x, y .    (2) 

Thus, grid   1 21 1i , j i , jω ξ ,η , i ,N , j ,N   , which is determined by the functions    x x ξ ,η , y y ξ ,η  , 

is constructed on the plane  ξ ,η . 

The construction of the computational grid ω  is based on the method of particle dynamics. This modeling 

technique is widely presented in the literature, so we will focus on it only briefly [15‒17]. 

We represent nodes of grid ω  as a collection of particles with charges ijq  and mass ijm , that move in the 

calculated area D  along and near its boundary. The particles interact with each other, and the interaction forces are of 

an electrical nature. 

                                                 
1Sukhinov AI, Sukhinov AA.  Reconstruction of 2001 ecological disaster in the Azov Sea on the basis of precise hydrophysics models. Parallel Com-
putational Fluid Dynamics 2004, Multidisciplinary Applications. Amsterdam: Elsevier; 2005. P. 231–238. https://doi.org/10.1016/B978-044452024-
1/50030-0   
2Sukhinov A, Chistyakov A, Sidoryakina V. Investigation of nonlinear 2D bottom transportation dynamics in coastal zone on optimal curvilinear 
boundary adaptive grids. In: Proc. XIII Int. Sci.-Tech. Conf. on Dynamic of Technical Systems. 2017;132:04003. 
https://doi.org/10.1051/matecconf/201713204003  
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According to Coulomb's law, repulsive force ijF  acts on a single i-th particle from the side of j-th particle. 

Absolute magnitude of force ijF  is determined by the distance between these particles, and its vector is directed 

opposite to the radius-vector ijr , connecting the i-th and j-th charges (Fig. 1). 

 
Fig. 1. Scheme of particle interaction 

The trajectories of the charged particles determine the location of the grid nodes. Let us denote the coordinates 

of the i-th particle  ij ijx , y , and j-th —  ij ijξ ,η .  The length of radius-vector ijr , that determines the movement of the 

node  ij ijx , y  to the node  ij ijξ ,η , is calculated from the formula: 

      2 2

ij ij ij ij ij ij ij ij ijr r x , y ,ξ ,η x ξ y η .      (3) 

Note the specificity of the transformation (1)‒(2). If the distance is 0r  , then the node  ij ijξ ,η  repels from 

each of the neighboring ones.  They, in turn, must either stand at the prescribed distance, or move away, being pulled to 

a neighboring node and freeing up space for the newly inserted one.   

The type of transformation (1)‒(2) that compresses coordinates ,x y  in zones of high gradients is determined 

by the solution to the problem. For this purpose, a model equation describing the potential is used in the direction of 

axes Ox, Oy : 

  
 ij ij ij ij α

ij ij ij ij

lF x , y ,ξ ,η ,
r x , y ,ξ ,η

  (4) 

where l — proportionality factor between potential and distance r  at a given node, α  — a certain parameter. 

Each node seeks to reduce potential energy, namely: 

   1 2 1 21 1 1 1ij ij nm nm
m,n

F x , y ,x , y min, i ,N , j ,N , n ,N , m ,N .      (5) 

Force  ij ijf x , y  is related to potential  ij ij ij ijF F x , y ,ξ ,η  through the following relation: 

    
  2ij ij α

m,n
ij ij nm nm

αlf x , y grad F r .
r x , y ,x , y

    (6) 

When modeling the process of interaction of mobile particles, we assume that the grid nodes that fall outside 

the calculated domain are forced to move to a point on the boundary of the domain, the distance to which is minimal. 

The scheme of interaction between a mobile particle and a particle at the boundary is shown in Fig. 2. 
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a)     b) 

Fig. 2. Scheme of particle interaction at the boundary of computational domain D :  
a) direction of movement of particles inside domain D; b) direction of movement of particles outside domain D 

The technology of numerical integration of the equations of motion is based on the algorithm presented in [17]. 

Description of the meshing software. The program consists of modules that implement five functions: a 

control one that calls the calculation functions a specified number of times, three calculation functions, and a 

visualization function. The calculation functions are the following: a function describing the speed at which nodes 

move; a function for moving nodes; a function for checking the exit of nodes beyond the boundary of the domain. 

The data structure of the program: A  — input array of sizes  ,N M ; C  — visualization array; ,x yB B  — 

arrays of sizes  ,n m , describing the location of nodes; mB  — array of sizes  ,n m , describing the masks of boundary 

conditions; ,u v  — components of the velocity vector of the nodes; ,i j  — counters; ,n m  — number of nodes in the 

directions ,Ox Oy , respectively; l  — proportionality coefficient between the potential and distance r  at a given node; 

α  — some parameter (degree at r ). The control function resets the arrays and sets the initial location of the nodes.   

Algorithm describing the node speed function. 

Input arrays: , ,x y mB B B  and parameter α  (i.e., α = 3). Output arrays: ,u v . 

1. Start of the loop on variables ,i j . The counter values are set equal to 0,..., 1, 0,..., 1.i n j m    .. 
2. Separation of border and interior points of the computational domain. If mask = 1 — point on the domain 

boundary, go to item 3, if mask = 2 — point is inside the domain, go to item 4.  

3. Algorithm describing the speed function of the border nodes 

3.1. Zeroing arrays ,u v . 

3.2. Start of the loop on variables 1, 1i j . The counter values are set equal to 

1 2,..., 2, 1 2,..., 2.i i i j j j       

3.3. Calculating the distance from one node to another: 

    2 2

1 1 1 1i , j i , j i , j i , jr Bx Bx By By .      

3.4. Checking the condition. If 0r  , then go to item 3.5, otherwise, go to item 3.6. 

3.5. Calculating ,u v  for α 3 : 

 

 

 

1 1

1 1

1 1

1 1

i , j i , j

i , j i , j i , j

i , j i , j

i , j i , j i , j

Bx Bx
u u Bm ,

r
By By

v v Bm .
r






 


 

  

3.6. Build up counters 1, 1i j  and go to item 3.3. 

3.7. Build up counters ,i j  and go to item 3.1. 
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4. Algorithm describing the speed function of the interior nodes   

4.1. Zeroing arrays ,u v . 

4.2. Start of the loop on variables 1, 1i j . The counter values are set equal to 

1 1,..., 1, 1 1,..., 1i i i j j j      . 

4.3. Checking the condition. If   1 1 0i i j j   , then go to item 4.4, otherwise, go to item 4.8. 

4.4. Calculating the distance from one node to another: 

    2 2

1 1 1 1i , j i , j i , j i , jr Bx Bx By By .      

4.5. Checking the condition. If 0r   is executed, then go to item 4.6, otherwise, go to item 4.7. 

4.6. Calculating ,u v  for 0.005k  : 

 
 
 

1 1

1 1

i , j i , j i , j i , j

i , j i , j i , j i , j

u u k Bx Bx ,

v v k By By .

  

  
  

4.7. Build up counters 1, 1i j  and go to item 4.4. 

4.8. Build up counters ,i j and go to item 4.1. 

Algorithm describing the function of calculating the movement of nodes 

Input arrays: , , ,x yB B u v  and parameter l  (i.e., 30l  ). Output arrays: ,x yB B . 

1. Start of the loop on variables ,i j . The counter values are set equal to 1,..., 2, 1,..., 2.i n j m     

2. Calculating arrays ,x yB B : 

 i , j i , j i , j

i , j i , j i , j

Bx Bx lu ,
By By lv .

 

 
  

3. Build up counters ,i j  and go to item 2. 

Algorithm describing the function of checking the exit of nodes beyond the domain boundary  

Input arrays: , ,x yB B A  and parameter d  (i.e., 3),d   that describes the size of the window in which the 

computational domain is presented in case node ,x yB B  goes beyond the boundary of the computational domain. 

Output arrays: ,x yB B . 

1. Start of the loop on variables ,i j . The counter values are set equal to 1,..., 2, 1,..., 2.i n j m     

2. Finding indexes A , in the array corresponding to node  , ,, :i j i jBx By  

 1 1i , j i , ji Bx , j By .    

3. The initial value of the distance to the boundary is set by the parameter value d : 

 2r d.   

4. Checking the condition for the exit of point  1, 1i j  beyond the computational domain boundary: if 

1, 1 0i jA   is executed; otherwise, go to item 12.  

5. Start of the loop on variables 2, 2i j . The counter values are set equal to 2 ,..., , 2 ,..., .i d d j d d     

6. Checking point  2 1, 2 1i i j j   for belonging to the calculated domain: if 2 1, 2 1 0i i j jA     is executed; 

otherwise, go to item 10.  

7. The distance from node  , ,,i j i jBx By  to point  2 1, 2 1i i j j   is found from the formula:  
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   2 2
1 2 1 2 1i , j i , jr Bx i i By j j .       

8. If 1r r  is executed, then item 9 is performed; otherwise, go to item 10. 

9. Remember the point of the computational domain closest to the node  , ,,i j i jBx By : 

 1 3 2 1 3 2 1r r , i i i , j j j .       

10. Build up counters by variables 2, 2i j  and go to item 6. 

11. Offset of the node  , ,,i j i jBx By  to the boundary of the computational domain: 

 3 3i , j i , jBx i , By j .    

12. Build up counters ,i j  and go to item 2. 

Algorithm describing the visualization function. 

Input arrays: , ,x yB B A . Output array — С. 

1. We put array A in the visualization array. 

2. Start of the loop on variables , ,i j k . The counter values are set equal to 1,..., 3, 1,..., 2i n j m    , 

, 1,... .i j i jk Bx Bx   

3. Draw vertical lines: 

 1

1

255i , j i , j
i , j i , j

i , j i , j

By By
C k, By k Bx .

Bx Bx




 
    

  
 

4. Build up counters , ,i j k  and go to item 3. 

5. Start of the loop on variables , ,i j k . The counter values are set equal to 1,..., 2, 1,..., 3i n j m    , 

, , 1... .i j i jk By By   

6. Draw horizontal lines: 

 1

1

255i , j i , j
i , j i , j

i , j i , j

By By
C k, By k Bx .

Bx Bx




 
    

  
 

7. Build up counters , ,i j k  and go to item 6. 

The source file is BMP. On it, the geometry of the domain on which the grid is being built is indicated in 

black. The rest of the domain is marked in white. The source BMP file is written to an array, with black being 0, and 

white — 255. The output information includes arrays ,x yB B , describing the location of the grid nodes, and array C , 

that stores the geometry of the source domain with the applied grid. 

Research Results. The results of the algorithm demonstrate the solution to the test problem. 

Input data: the source domain of the type shown in Fig. 3, as well as the calculated data 12, 14,n m 

1,...,10, 1,...,12,i j  30, 3, α 3.l d    

 
Fig. 3. Computational domain of the test problem 
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The initial location of the nodes is taken as the location of nodes of grid ω  without adaptation to the boundary 

of the source domain. Visualization of the work of the function of moving interior nodes is shown in Fig. 4.  

 
Fig. 4. Work of the function for calculating the speed of interior nodes 

The result of constructing quadrangular boundary-adaptive grid ω , covering the source domain, is obtained on 

the basis of the presented algorithm (Fig. 5 a). Fig. 5 b shows the work of the program algorithm for the case when the 

border and interior nodes were not separated. A clear advantage of the grid shown in Fig. 5 a, consists in the fact that its 

cells are convex quadrilaterals. This requirement is not met for the grid of type 5 b.   

 
a)    b) 

Fig. 5. Results of grid ω  construction algorithm: a) image of grid ω , constructed when separating the border and interior grid 

nodes; b) image of grid ω , constructed without separating the border and interior nodes of grid ω  

Discussion and Conclusions. A technology for constructing two-dimensional optimal boundary-adaptive grids 

based on the particle dynamics method is proposed. An algorithm for numerical calculation of quadrangular grids for 

complex configuration domains with preservation of the specified geometric features of the domain shape and boundary 

is developed and tested. Using the example of a test problem, the possibilities of the proposed algorithm were 

investigated. One of the advantages of this software implementation is the ability to automatically place nodes on the 

boundary of the computational domain and get convex cells. The presented approach has sufficient versatility and 

reliability and can be used for triangulation of the considered domains.  
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based on the particle dynamics method is proposed. An algorithm for numerical calculation of quadrangular grids for

complex configuration domains with preservation of the specified geometric features of the domain shape and boundary 

is developed and tested. Using the example of a test problem, the possibilities of the proposed algorithm were 

investigated. One of the advantages of this software implementation is the ability to automatically place nodes on the

boundary of the computational domain and get convex cells. The presented approach has sufficient versatility and

reliability and can be used for triangulation of the considered domains.
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