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Introduction. A method for solving the problem on the action of a normal force moving on an infinite plate according 

to an arbitrary law is considered. This method and the results obtained can be used to study the effect of a moving load 

on various structures. 

Materials and Methods. An original method for solving problems of the action of a normal force moving arbitrarily 

along a freeform open curve on an infinite plate resting on an elastic base, is developed. For this purpose, a fundamental 

solution to the differential equation of the dynamics of a plate resting on an elastic base is used. It is assumed that the 

movement of force begins at a sufficiently distant moment in time. Therefore, there are no initial conditions in this 

formulation of the problem. When determining the fundamental solution, the Fourier transform is performed in time. 

When the Fourier transform is inverted, the image is expanded in terms of the transformation parameter into a series in 

Hermite polynomials. 

Results. The solution to the problem on an infinite plate resting on an elastic base, along which a concentrated force 

moves at a variable speed, is presented. A smooth open curve, consisting of straight lines and arcs of circles, was 

considered as a trajectory. The behavior of the components of the displacement vector and the stress tensor at the 

location of the moving force is studied, as well as the process of wave energy propagation, for which the change in the 

Umov-Poynting energy flux density vector is considered. The effect of the speed and acceleration of the force 

movement on the displacements, stresses and propagation of elastic waves is investigated. The influence of the force 

trajectory shape on the stress-strain state of the plate and on the nature of the propagation of elastic waves is studied. 

The results indicate that the method is quite stable within a wide range of changes in the speed of force movement. 

Discussion and Conclusions. The calculations have shown that the most significant factor affecting the stress-strain 

states of the plate and the propagation of elastic wave energy near the concentrated force is the speed of its movement. 

These results will be useful under studying dynamic processes generated by a moving load. 
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Introduction. The regularities of dynamic processes in solid media caused by the action of a moving load are 

of considerable interest, and solutions to such problems find numerous applications and involve the use of various 

methods. In a number of works, to exclude time from the number of independent variables, a mobile coordinate system 

was introduced [1−2] or a quasistatic formulation of the problem was considered [3−6]. The finite element method [7], 

variational methods [8−10], as well as direct methods [11−13] proved to be quite effective in solving these problems. In 

[14−15], the method of boundary integral equations was used, and in [16] — a method based on the application of 

fundamental solutions to the corresponding differential equations. In this paper, the given method is used to solve the 

problem of the action of a normal force moving along a freeform open curve on an infinite plate resting on an elastic 

base. 

Problem statement. Following [17, 18], this problem is reduced to solving the equation: 

 2 2 2
t

PU c U kU
D

     ,  (1) 

where U — the plate deflection; 𝐷𝐷 = 𝐸𝐸𝐻𝐻3

12(1−µ2); Е — the Young's modulus; µ — the Poisson's ratio; H — the plate 

thickness; с−2 = ρ𝐻𝐻
𝐷𝐷 ;  — the density of the plate material; okk

D
 ; ko — the stiffness coefficient of the elastic base.  

The solution to this equation corresponds to the energy flow directed from the excitation sources to infinity. 

We will assume: 

𝑃𝑃 = δ(𝑥𝑥 − 𝑥𝑥𝑜𝑜(𝑡𝑡))δ(𝑦𝑦 − 𝑦𝑦𝑜𝑜(𝑡𝑡)). 

This force moves along an open trajectory γ, whose beginning and end go to infinity. The parametric setting of the 

trajectory has the form:  
 
 

x x t
y y t  

 
 

, where t — time. It is assumed that the force starts to move at the beginning of the 

trajectory, located at a sufficient distance from the place where its effect on the plate is being studied at the moment of 

time t   . Therefore, there are no initial conditions in such a statement. 

Materials and Methods. Consider the fundamental solution to equation (1), which can be obtained from the 

equation: 

 Δ2𝑊𝑊 + 𝑐𝑐−2𝜕𝜕𝑡𝑡
2𝑊𝑊 + 𝑘𝑘𝑘𝑘 = 1

𝐷𝐷 δ(𝑥𝑥 − 𝑥𝑥𝑜𝑜)δ(𝑦𝑦 − 𝑦𝑦𝑜𝑜)δ(𝑡𝑡 − 𝜏𝜏).    (2) 

It is known that the solution to equation (1) can be presented as: 

𝑈𝑈(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) = ∫ ∬ 𝑊𝑊(𝑥𝑥, 𝑥𝑥𝑜𝑜, 𝑦𝑦, 𝑦𝑦𝑜𝑜, 𝑡𝑡 − τ)𝑃𝑃(𝑥𝑥𝑜𝑜, 𝑦𝑦𝑜𝑜, τ)𝑑𝑑𝑥𝑥𝑜𝑜𝑑𝑑𝑦𝑦𝑜𝑜𝑑𝑑τ𝑅𝑅2
∞

−∞ . 

In our case, taking into account a specific type of moving force, we have: 

𝑈𝑈(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) = ∫ 𝑊𝑊(𝑥𝑥, 𝑥𝑥𝑜𝑜(τ), 𝑦𝑦, 𝑦𝑦𝑜𝑜(τ), 𝑡𝑡 − τ)𝑑𝑑τ∞
−∞ . 

Applying the Fourier transform in time to equation (2), we obtain the differential equation: 

 Δ2𝑊𝑊𝑜𝑜 − ω2𝑐𝑐−2𝑊𝑊𝑜𝑜 + 𝑘𝑘𝑊𝑊𝑜𝑜 = 1
𝐷𝐷 δ(𝑥𝑥 − 𝑥𝑥𝑜𝑜)δ(𝑦𝑦 − 𝑦𝑦𝑜𝑜)𝑒𝑒𝑖𝑖ωτ.  (3) 

Using the limiting absorption principle and the Fourier transform with respect to variables x and y, and under 

the condition 𝑘𝑘 > 𝜔𝜔2

𝑐𝑐2  we can obtain a solution to the equation (3): 

𝑊𝑊0 (𝑥𝑥, 𝑥𝑥0𝑦𝑦, 𝑦𝑦0, ω2

𝑐𝑐2 ) = 𝑖𝑖
4πχ2𝐷𝐷

[𝐾𝐾0(α1𝑅𝑅) − 𝐾𝐾0(α2𝑅𝑅)], 

where    
1

2 2 2

0 0R x x y y      ; χ = √𝑘𝑘 − 𝜔𝜔2
𝑐𝑐2⁄4

; α1 = χ𝑒𝑒𝑖𝑖π 4⁄ ; α2 = χ𝑒𝑒−𝑖𝑖π 4⁄ ;  0K z  — the Macdonald function. 

Under the condition 𝑘𝑘 ≤ ω2

𝑐𝑐2  the solution to equation (3) looks like this: 

𝑊𝑊0(𝑥𝑥, 𝑥𝑥0, 𝑦𝑦, 𝑦𝑦0, ω2/𝑐𝑐2) = 𝑖𝑖
4πχ2𝐷𝐷 [π𝑖𝑖

2 𝐻𝐻0
(1)(χ𝑅𝑅) − 𝐾𝐾0(χ𝑅𝑅)], 
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where χ = √ω2

𝑐𝑐2 − 𝑘𝑘4
;  1

0
( )H z  — the Hankel function. 

To reverse the Fourier transform, the solution 𝑊𝑊0(𝑥𝑥, 𝑥𝑥0, 𝑦𝑦, 𝑦𝑦0, ω2/𝑐𝑐2) is expanded by variable ω
𝑐𝑐  into series 

according to the system of orthogonal functions {𝑒𝑒−ω2
𝑐𝑐2⁄ 𝐻𝐻𝑘𝑘 (ω

𝑐𝑐 )}, where )(zHk  — Hermit polynomials.  

Given that function 𝑊𝑊0 (𝑥𝑥, 𝑥𝑥0, 𝑦𝑦, 𝑦𝑦0, ω2

𝑐𝑐2 ) is even in ω
𝑐𝑐 , only even terms will be present in the expansion. Then: 

𝑊𝑊0(𝑥𝑥, 𝑥𝑥0, 𝑦𝑦, 𝑦𝑦0, ω2/𝑐𝑐2) = ∑ 𝑤𝑤2𝑘𝑘(𝑥𝑥, 𝑥𝑥𝑜𝑜, 𝑦𝑦, 𝑦𝑦𝑜𝑜)𝑒𝑒−ω2
2𝑐𝑐2⁄ 𝐻𝐻2𝑘𝑘 (ω

𝑐𝑐 )∞
𝑘𝑘=0 , где 

𝑤𝑤2𝑘𝑘(𝑥𝑥, 𝑥𝑥𝑜𝑜, 𝑦𝑦, 𝑦𝑦𝑜𝑜) = 1
(2𝑘𝑘)!22𝑘𝑘√π ∫ 𝑊𝑊0(𝑥𝑥, 𝑥𝑥0, 𝑦𝑦, 𝑦𝑦0, 𝑧𝑧2)∞

−∞ 𝑒𝑒−𝑧𝑧2
2⁄ 𝐻𝐻2𝑘𝑘(𝑧𝑧)𝑑𝑑𝑑𝑑. 

Given the ratio: 

∫ 𝑒𝑒−ω2
2𝑐𝑐2⁄ 𝐻𝐻2𝑘𝑘 (ω

𝑐𝑐 ) 𝑒𝑒−𝑖𝑖ω𝑡𝑡𝑑𝑑ω = 2𝑐𝑐√π
2 (−1)𝑘𝑘𝑒𝑒−𝑐𝑐2𝑡𝑡2

2⁄∞

−∞
𝐻𝐻2𝑘𝑘(𝑐𝑐𝑐𝑐), 

we get: 

𝑊𝑊0(𝑥𝑥, 𝑥𝑥0, 𝑦𝑦, 𝑦𝑦0, 𝑡𝑡) = 2с√π
2 ∑ (−1)𝑘𝑘𝑤𝑤2𝑘𝑘(𝑥𝑥, 𝑥𝑥𝑜𝑜, 𝑦𝑦, 𝑦𝑦𝑜𝑜)𝑒𝑒−𝑐𝑐2𝑡𝑡2

2⁄ 𝐻𝐻2𝑘𝑘(𝑐𝑐𝑐𝑐)
∞

𝑘𝑘=0
. 

In this case, the solution to the original differential equation will have the form: 

𝑈𝑈(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) = 2𝑐𝑐√π
2 2 ∫ ∑ (−1)𝑘𝑘𝑤𝑤2𝑘𝑘(𝑥𝑥, 𝑥𝑥𝑜𝑜(τ), 𝑦𝑦, 𝑦𝑦𝑜𝑜(τ))𝑒𝑒−𝑐𝑐2(𝑡𝑡−τ)2

2⁄ 𝐻𝐻2𝑘𝑘(𝑐𝑐(𝑡𝑡 − τ)∞
𝑘𝑘=0

∞
−∞ 𝑑𝑑τ. 

Through replacing the integration variable, we get: 

2 22
0 0 0 2 22

0

2 2 2 2 12 2 2
2 2

k
( s )

k kk
k

s s ( )U( x, y,t ) W ( x,x ( t ), y, y ( t ), ) e H ( s )H ( )dsd
c c ( k )!

 
 

  


        . 

This type of solution allows us to use the Gauss-Hermite quadrature formula to calculate the integral. 

To improve the convergence of the series, the Kummer method was used. Following this method, it is required 

to select a series whose sum is known, and the difference between the original series and the selected series should 

represent a rapidly converging series. As such a series, you can take:  

𝑈𝑈∗(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) = ∑ ∫ ∫ 𝑊𝑊0(𝑥𝑥, 𝑥𝑥0(𝑡𝑡 − 𝑠𝑠√2 𝑐𝑐⁄ ),∞
−∞

∞
−∞

∞
𝑘𝑘=0 𝑦𝑦, 𝑦𝑦0(𝑡𝑡 − 𝑠𝑠√2 𝑐𝑐⁄ ), 𝑞𝑞) 2√2(−1)𝑘𝑘

(2𝑘𝑘)!22𝑘𝑘 𝑒𝑒−(𝑠𝑠2+τ2)𝐻𝐻2𝑘𝑘(𝑠𝑠√2)𝐻𝐻2𝑘𝑘(τ√2)𝑑𝑑𝑑𝑑𝑑𝑑τ, 

where q — some nonnegative value. 

Through integrating on variable τ and summing, we get: 

𝑈𝑈∗(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) = πс√2𝑊𝑊0(𝑥𝑥, 𝑥𝑥𝑜𝑜(𝑡𝑡), 𝑦𝑦, 𝑦𝑦𝑜𝑜(𝑡𝑡), 𝑞𝑞). 

Finally, to solve equation (1), we obtain the following expression: 

𝑈𝑈(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) = 𝑈𝑈∗(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) +

+ ∑ ∫ ∫(𝑊𝑊0(𝑥𝑥, 𝑥𝑥0(𝑡𝑡 − 𝑠𝑠√2 𝑐𝑐⁄ ), 𝑦𝑦,
∞

−∞

∞

−∞

∞

𝑘𝑘=0
𝑦𝑦0(𝑡𝑡 − 𝑠𝑠√2 𝑐𝑐⁄ ),2τ2) − 𝑊𝑊0(𝑥𝑥, 𝑥𝑥0(𝑡𝑡 − 𝑠𝑠√2 𝑐𝑐⁄ ), 𝑦𝑦, 𝑦𝑦0(𝑡𝑡 − 𝑠𝑠√2 𝑐𝑐⁄ ), 𝑞𝑞)) ×

× 2√2(−1)𝑘𝑘

(2𝑘𝑘)! 22𝑘𝑘 𝑒𝑒−(𝑠𝑠2+τ2)𝐻𝐻2𝑘𝑘(𝑠𝑠√2)𝐻𝐻2𝑘𝑘(τ√2)𝑑𝑑𝑑𝑑𝑑𝑑τ.

 

To sum the series, the arithmetic mean method was used. At the same time, the following was supposed: q = 0. 

Having determined the plate deflections, it is possible to calculate the remaining components of the 

displacement vector and the stress tensor at any point of it using known formulas. To analyze the energy displacement 

of elastic waves in the plate, the Umov-Poynting energy flux density vector was calculated: 

𝐸̅𝐸 = −(σ𝑥𝑥𝑢̇𝑢 + σ𝑥𝑥𝑥𝑥𝑣̇𝑣)𝑖𝑖 − (σ𝑥𝑥𝑥𝑥𝑢̇𝑢 + σ𝑦𝑦𝑣̇𝑣)𝑗𝑗. 
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Research Results. Calculations are carried out for the case when the force moves along a trajectory consisting 

of straight lines and arcs of circles (Fig. 1). The following parameter values were taken: H = 0.25 m; с = 221 m/s; 

E = 232469 N/m2; µ = 0.36; K = 1.864 m-4.  

The parameters of the law of motion of the force along the trajectory were selected in such a way that at the 

time under consideration, the force was always at the same point of the trajectory marked with an asterisk, having 

different values of speed v and acceleration a, as well as at different values of the radius of trajectory R2. To study the 

stress-strain state of the plate, displacements and stresses near the point of application of force were calculated. 

 
Fig. 1. Trajectory of the concentrated force 

 

Figures 2 and 3 show the change in displacements and stresses during the movement of a concentrated force 

along a given trajectory at v = 25 m/s, а = 0 m/s2, R2 = 5 m. The change of these values along the Y-axis does not 

practically differ from their change along the X-axis.  

 

 
Fig. 2. Change in displacements: W — vertical; U — along the X axis; V — along the Y axis 
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Galaburdin A. V. An infinite plate loaded with a normal force moving along a complex open trajectory  

 

 
Fig. 3. Change in voltages: W — vertical; U — along the X axis; V — along the Y axis 

Figure 4 shows the movement of the energy of elastic waves near the concentrated force, whose position on the 

trajectory is marked with a red dot. The vectors determine the amount and direction of energy transfer at a given point. 

 

 
Fig. 4. Energy flux density vector at v = 25 m/s, а = 0 m/s2, R2 = 5 m 

The calculations have shown that with an increase in the speed of the force movement, there is no qualitative 

change in displacements and stresses, but only their quantitative growth occurs. A slight change in the qualitative 

behavior of displacements and stresses is observed only at sufficiently high speeds, when the condition v > c is met. 

This follows from Fig. 5, 6 (а = 0 m/sc2, R2 = 5 m). 
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Fig. 5. Changing vertical movements at v = 275 m/s 

 
Fig. 6. Changing vertical movements at v = 75 m/s 

Figures 7 and 8 show the change in the maximum vertical displacements W and stresses Sx , Sy depending on the 
speed of the force movement at а = 0 m/s2, R2 = 5 m. The remaining components of displacements and stresses assumed 
sufficiently low values and therefore were not of constructive interest when analyzing the stress-strain state of the plate. 

Calculations performed at different values of acceleration and radius R2, have shown that these factors have little 
effect on the stress-strain state of the plate. The qualitative picture of wave energy propagation near the concentrated force 
also weakly depends on these factors. 

 

 
Fig. 7. Dependence of maximum vertical displacements on concentrated force movement speed  
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Fig. 5. Changing vertical movements at v = 275 m/s

Fig. 6. Changing vertical movements at v = 75 m/s

Figures 7 and 8 show the change in the maximum vertical displacements W and stresses Sx , Sy depending on the
speed of the force movement at а = 0 m/s2, R2 = 5 m. The remaining components of displacements and stresses assumed
sufficiently low values and therefore were not of constructive interest when analyzing the stress-strain state of the plate.

Calculations performed at different values of acceleration and radius R2, have shown that these factors have little
effect on the stress-strain state of the plate. The qualitative picture of wave energy propagation near the concentrated force
also weakly depends on these factors.

Fig. 7. Dependence of maximum vertical displacements on concentrated force movement speed
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Galaburdin A. V. An infinite plate loaded with a normal force moving along a complex open trajectory 

 
Fig. 8. Dependence of maximum voltages on concentrated force movement speed 

Discussion and Conclusions. The most significant effect on the stress-strain state of the plate and the 
propagation of elastic wave energy near the concentrated force is exerted by the speed of its movement. The radius of 
curvature of the trajectory and the acceleration of the force movement do not significantly affect.  

The calculation results indicate that the method of solving problems on the action of a moving load is quite 
stable within a wide range of changes in the speed of its movement. The method is economical and simple, because it 
uses already known fundamental solutions.  
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