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Introduction. The concept of estimating the dynamic parameters of the “base — weakened layer — block” system is 
proposed, taking into account the physical nonlinearity of the material and the kinematic method of excitation of vibrations. 
In accordance with this approach, the physical nonlinearity of the base and block material is considered using the Drucker-
Prager model. The weakened layer is modeled by 3D spring finite elements. The verification procedure of the proposed 
methodology is carried out on the example of the dynamic calculation of the “base — weakened layer — slope” system.  
Materials and Methods. The computational experiments were performed using the ANSYS Mechanical software package 
in combination with a nonlinear solver based on the Newton-Raphson procedure. SOLID45 volumetric finite elements were 
used to discretize the computational domains. Combined elastic-viscous elements COMBIN14 were used to simulate the 
displacement of the block relative to the fixed base. 
Results. An engineering technique for the dynamic analysis of the stress-strain state of the “base — weakened layer — 
block” spatial system with kinematic method of excitation of vibrations is developed. The accuracy and convergence of the 
proposed method is investigated using specific numerical examples. 
Discussion and Conclusion. Based on the mathematic simulation performed, it is shown that the developed technique 
provides assessing the risks of the occurrence of real landslide processes caused by external non-stationary impacts. 
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Introduction. In the 70s of the last century, the finite element method (FEM) began to be extensively used in the 
analysis of the static stability of slopes and flanks [1–3]. According to the practice of geotechnical calculations, FEM, in 
contrast to simplified methods, provided taking into account such important factors as the real geometry and layered 
structure of the objects under study, as well as the presence of anti-landslide structures and the physical nonlinearity of the 
material with a previously unknown area of plasticity [4]. Currently, many researchers start using FEM to analyze the 
dynamic stability of actual slopes, as well as forecasting the risks of rock falls in the underground workings and from 
slopes located along highways and railways. Also, one of the topical areas of mountain dynamics is finite element modeling 
of earthquake consequences, taking into account the kinematic instability of conglomerations [5]. Today, there are the 
following methods of dynamic calculations in the field of geotechnics: 

1. SRM (strength reduction method) is a method of reducing strength [6, 7]. It is designed to calculate the safety
margin of a mountain range in a physically nonlinear formulation. In SRM, the actual strength parameters of the soil are 
iteratively reduced through dividing by some factor greater than 1: 
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Introduction. In the 70s of the last century, the finite element method (FEM) began to be extensively used in the 
analysis of the static stability of slopes and flanks [1–3]. According to the practice of geotechnical calculations, FEM, in 
contrast to simplified methods, provided taking into account such important factors as the real geometry and layered 
structure of the objects under study, as well as the presence of anti-landslide structures and the physical nonlinearity of the 
material with a previously unknown area of plasticity [4]. Currently, many researchers start using FEM to analyze the 
dynamic stability of actual slopes, as well as forecasting the risks of rock falls in the underground workings and from 
slopes located along highways and railways. Also, one of the topical areas of mountain dynamics is finite element modeling 
of earthquake consequences, taking into account the kinematic instability of conglomerations [5]. Today, there are the 
following methods of dynamic calculations in the field of geotechnics: 

1.  SRM (strength reduction method) is a method of reducing strength [6, 7]. It is designed to calculate the safety 
margin of a mountain range in a physically nonlinear formulation. In SRM, the actual strength parameters of the soil are 
iteratively reduced through dividing by some factor greater than 1: 
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where c ,   — actual values of the adhesion and the angle of internal friction of the soil, respectively; c ,   — the 

adhesion and the angle of internal friction of the soil, respectively, after their reduction relative to the actual values; SRMk  

— the shear strength reduction factor. Value SRMk , corresponding to the limiting state of the system, determines the lower 

limit of the strength parameters of the material.  
2. LEM (limit equilibrium method) is a method of limiting kinetics based on D'Alembert's principle [8, 9]. It is 

focused on the analysis of dynamic stability of articulated rock massifs. 
3. TLEM (thin layer element method of FEM) is a thin-layer finite element method [10] in which elastic-plastic 

elements of a thin layer are used to model the behavior of kinematically unstable structures. 

Analysis of the results obtained using the SRM, LEM and TLEM methods showed that there is currently no unified 
vision of mathematical modeling of the behavior of structurally unstable geotechnical systems under nonstationary external 
influence. This determines the topicality of developing a methodology for dynamic analysis of systems of the “base — 
weakened layer — block” type in a finite element formulation through a new approach to simulating sliding planes.
 Materials and Methods. The equation of motion of a mechanical system in a finite element formulation can be 
given as follows [11]: 
 0[ ]{ ( )} [ ]{ ( )} [ ]{ ( )} { } { ( )}M W t C W t K W t F F t     ,    (1) 

where [ ]M , [ ]C , [ ]K  — matrices of masses, damping and stiffness of the ensemble of finite elements, respectively; 

{ ( )}W t , { ( )}W t , { ( )}W t  — vectors-columns, respectively, of nodal accelerations, velocities, displacements; 0{ }F , 

{ ( )}F t  — vectors-columns of specified static and dynamic loads, respectively, at a time t . In the future, we assume that 

the matrices [ ]M  and [ ]K  are consistent.  

 For the numerical integration of equation (1), we use Newmark method [12]. Here, we assign the integration step 
along the time axis t  so that the contributions of physically significant proper pairs are considered with sufficient 

accuracy. In the future, we will consider the kinematic methods of excitation of vibrations, set using either model 

seismogram { ( )}W t , or model accelerogram { ( )}W t . With this method of setting the dynamic effect, the second term of 

the right side of equation (1) will be zero: { ( )} 0.F t    

 Consider the method of excitation of mechanical vibrations from a model seismogram. Function ( )W t  can be 

written as [13]: 

   ( ) sin ( )tW t At e t  ,     (2) 

where A  — initial amplitude;   — attenuation coefficient;   — angular frequency of external influence. Figure 1 shows 

a graph of function ( )W t  for the values: A  = 0.01553 m;   = 0.7143;   = 5 s – 1.   

 
Fig. 1. Graph of the model seismogram 

 Research Results. As the first model example, consider the problem on forced vibrations of the slope located on 

the base (Fig. 2). The boundary conditions of the problem are shown in Figure 3, where letter S denotes the point under 

study. 
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Fig. 2. Slope geometry 

 
Fig. 3. Design scheme of the slope 

 

 Relationships between the geometric parameters of the slope and the base (Fig. 2) are presented in Table 1.  

Table 1 

Slope – Base Geometrics Relationship 

H l1 l2 l2 L 

3.5 sH  sH  (1.0 2.0) sH  sH  5 sH  

Mechanical characteristics of the slope and base material are ae follows: deformation modulus Е = 21 MPa; 
Poisson's ratio   = 0.3; specific gravity   = 1702 kg/m3; adhesion с = 45 kPa; internal friction angle   = 15°.   
 To model the slope and the base, we use SOLID45 volumetric finite elements of the ANSYS Mechanical software 
package. The finite element model for the variant with the parameters: sl  = 2 sH , sH  = 10 m, assigned to the global 

Cartesian coordinate system, is shown in Figure 4.   
 The finite element grid is constructed so that on the contact surface, adjacent nodes of the base and slope have the 
same coordinates, but different numbers. This is done in order to arrange a weakened layer in this place. The kinematic 
effect in the form of a model seismogram (2) is set at each integration step it  in the form of nodal displacements ( )x iW t  on 

the end surfaces of the model with parameters: 0X   and 1 2SX l l l   .   
 Modeling of the weakened layer (Fig. 4) is performed using elastic-viscous combined finite elements 
COMBIN14 [14]. The two-node element COMBIN14, consisting of a spring with stiffness k  and a liquid friction damper 
with a damping coefficient vс , is shown in Figure 5. In the case under consideration, this element works only for tension-

compression.  

 
Fig. 4. Finite element model 
of the “base – slope” system 

 
Fig. 5. Combined finite 
element COMBIN14 

 
 In each node of the contact surface (Fig. 4), along the global X, Y, Z axes, we introduce elements of COMBIN14. 
Parameters of combined elements are:    

xk  = 30 kN/m; yk  = zk  = 9.44∙10 7 kN/m; vс  = 0.5. 
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Fig. 2. Slope geometry Fig. 3. Design scheme of the slope

Relationships between the geometric parameters of the slope and the base (Fig. 2) are presented in Table 1.

Table 1

Slope – Base Geometrics Relationship

H l1 l2 l2 L

3.5 sH sH (1.0 2.0) sH sH 5 sH

Mechanical characteristics of the slope and base material are ae follows: deformation modulus Е = 21 MPa;
Poisson's ratio  = 0.3; specific gravity  = 1702 kg/m3; adhesion с = 45 kPa; internal friction angle  = 15°.  

To model the slope and the base, we use SOLID45 volumetric finite elements of the ANSYS Mechanical software
package. The finite element model for the variant with the parameters: sl = 2 sH , sH = 10 m, assigned to the global 

Cartesian coordinate system, is shown in Figure 4.  
The finite element grid is constructed so that on the contact surface, adjacent nodes of the base and slope have the

same coordinates, but different numbers. This is done in order to arrange a weakened layer in this place. The kinematic
effect in the form of a model seismogram (2) is set at each integration step it in the form of nodal displacements ( )x iW t on 

the end surfaces of the model with parameters: 0X  and 1 2SX l l l   . 

Modeling of the weakened layer (Fig. 4) is performed using elastic-viscous combined finite elements
COMBIN14 [14]. The two-node element COMBIN14, consisting of a spring with stiffness k and a liquid friction damper
with a damping coefficient vс , is shown in Figure 5. In the case under consideration, this element works only for tension-

compression.

Fig. 4. Finite element model
of the “base – slope” system

Fig. 5. Combined finite
element COMBIN14

In each node of the contact surface (Fig. 4), along the global X, Y, Z axes, we introduce elements of COMBIN14.
Parameters of combined elements are: 

xk = 30 kN/m; yk = zk = 9.44∙10 7 kN/m; vс = 0.5.
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In this example, we further introduce the assumption of the natural undeformed state of the “base — weakened 
layer — slope” system. For calculations, we use the nonlinear solver of the ANSYS Mechanical complex.  

The finite element modeling results in the form of visualization of the deformed state of the “base — slope” 
system with the account of the maximum horizontal displacement and the distribution of amplitude horizontal 
displacements ( )xW t  are shown in Figures 6 and 7. The integration step of equation (1) t  = 0.01 s. As can be seen, the 

introduction of 3D elastic-viscous elements makes it possible to simulate the effect of kinematic instability of the “base — 
weakened layer — slope” mechanical system with the kinematic method of excitation of vibrations.  

Fig. 6. Visualization 
of slope displacement 

regarding the base 

( )xW t , m 

Fig. 7. Displacement distribution ( )xW t

The amplitude value of the displacement at point S was maxSxW  = 1.7 cm. For the slope option sl = sH  (Fig. 2), maxSxW

= 1.1 cm. The graphs of base and slope vibrations at the studied point S (Fig. 3) in the direction of X-axis are shown in 
Figure 8.  

    
Fig. 8. Graphs of vibrations at point S of base ( )

SxW t  and slope ( )
SxW t  

under kinematic excitation using a model seismogram 

Based on the above graphs, it can be seen that starting from the moment of time t > 1.5 s, there is a mismatch of 
base and slope vibrations.    

Let us consider the behavior of the “base — weakened layer — slope” system (Fig. 3) when vibrations are excited 
using a model accelerogram ( )W t . To this end, we differentiate expression (2) twice. As a result, we get: 

2 2( ) [ sin ( ) 2 cos( ) sin ( )tW t Ae t t t t t t                 (3) 

2 sin ( ) 2cos( ) ]t t     .  
Figure 9 shows the graph of function (3) for parameters: A  = 0.01553 m;   = 0.7143;   = 5 s –1. 
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Fig. 9. Graph of the model accelerogram 

The kinematic effect in the form of model accelerogram (3) , by analogy with seismogram (2), is set at each 
integration step  it  in the form of nodal accelerations ( )x iW t  on the end surfaces of the model with parameters: 0X   and 

1 2SX l l l   . Figure 10 shows the graphs of vibrations at the studied point S (Fig. 3) under kinematic action in the form 

of a model accelerogram. Comparing the vibration graphs shown in Figures 8 and 10, we establish that they almost 
coincide. This indicates the correctness of the developed finite element model, which allows describing the behavior of the 
“base — weakened layer — slope” system with various methods of unsteady kinematic action.  

 
Fig. 10. Vibration graphs at point S of base ( )

SxW t  and slope ( )
SxW t   

under kinematic excitation of vibrations using a model accelerogram 

As a second model example, let us consider the problem on forced slope vibrations with a kinematically unstable 
wedge-shaped inclusion (Fig. 11). Due to the symmetry of the configuration, only 1/2 part of the slope and inclusions are 
taken into account in the computational scheme. The boundary conditions for the accepted design scheme are shown in 
Figure 12. Here, letter S denotes the point under study, which belongs simultaneously to the slope base and the wedge-
shaped inclusion. 

 
 
 
 

Fig. 11. Slope diagram with wedge 
-shaped inclusion 

 
Fig. 12. Computational scheme for the “slope — wedge-

shaped inclusion” problem 
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Fig. 9. Graph of the model accelerogram

The kinematic effect in the form of model accelerogram (3) , by analogy with seismogram (2), is set at each
integration step it in the form of nodal accelerations ( )x iW t on the end surfaces of the model with parameters: 0X  and

1 2SX l l l   . Figure 10 shows the graphs of vibrations at the studied point S (Fig. 3) under kinematic action in the form

of a model accelerogram. Comparing the vibration graphs shown in Figures 8 and 10, we establish that they almost
coincide. This indicates the correctness of the developed finite element model, which allows describing the behavior of the
“base — weakened layer — slope” system with various methods of unsteady kinematic action.

Fig. 10. Vibration graphs at point S of base ( )
SxW t and slope ( )

SxW t

under kinematic excitation of vibrations using a model accelerogram

As a second model example, let us consider the problem on forced slope vibrations with a kinematically unstable
wedge-shaped inclusion (Fig. 11). Due to the symmetry of the configuration, only 1/2 part of the slope and inclusions are 
taken into account in the computational scheme. The boundary conditions for the accepted design scheme are shown in
Figure 12. Here, letter S denotes the point under study, which belongs simultaneously to the slope base and the wedge-
shaped inclusion.
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The finite element model of slope and wedge-shaped inclusion is shown in Figure 13. As in the previous example, 
in this case, we use SOLID45 and COMBIN14 elements with the same material characteristics.  

а) b) c) 
Fig. 13. Finite element model: a) slope; b) wedge-shaped inclusion; 

c) slope with wedge-shaped inclusion

The function describing the model accelerogram has the form: 

( ) cosxW t A t  , 

where A  — acceleration amplitude;   — frequency of external influence. Figure 14 shows graph ( )xW t  at A  = 2.5 m/s2, 

 = 2 Hz. The values of acceleration ( )x iW t  at the   i-th step of integrating the equation of motion (1) are applied to the 

nodes of the model surface with coordinate X = 0 (Fig. 12). 

 
Fig. 14. Graph of the model accelerogram ( )xW t  

The simulation result in the form of a distribution of the amplitude values of displacements ( )xW t  is shown in 

Figure 15. Integration step t  = 0.01 s. Vibration graphs of the slope base and wedge-shaped inclusion at the studied 
point S (Fig. 12) in the direction of X-axis are shown in Figure 16.  

As can be seen from Figure 15, with a given kinematic effect, the continuity of the slope array breaks along the 
weakened layer, and the wedge-shaped inclusion shifts relative to the slope base along X-axis. 
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Fig. 15. Distributions ( )xW t  in 1/2 part of the slope with wedge-shaped inclusion 
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Fig. 16. Vibration graphs at point S of the slope base ( )
SxW t  

and wedge-shaped inclusion ( )
SxW t  under kinematic excitation of vibrations using a model accelerogram 

“Drift” ( )
SxW t  in Figure 16 is due to the fact that this finite element model has no connections that prevent 

displacements along X-axis. As shown in [11], it is possible to solve the “drift” problem by subtracting the displacement of 
the slope base, which represents the displacement “as a rigid whole”, from the displacement values ( )

SxW t  and ( )
SxW t . It 

should be noted that the obtained amplitude values of the displacements provide evaluating the dynamic parameters of the 
“slope — weakened layer — wedge-shaped inclusion” system. 

Conclusion. A finite element model has been developed and validated to study the dynamic behavior of 
kinematically unstable slopes in a three-dimensional formulation, taking into account the physical nonlinearity of the 
material. 
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Fig. 16. Vibration graphs at point S of the slope base ( )
SxW t

and wedge-shaped inclusion ( )
SxW t under kinematic excitation of vibrations using a model accelerogram

“Drift” ( )
SxW t in Figure 16 is due to the fact that this finite element model has no connections that prevent

displacements along X-axis. As shown in [11], it is possible to solve the “drift” problem by subtracting the displacement of
the slope base, which represents the displacement “as a rigid whole”, from the displacement values ( )

SxW t and ( )
SxW t . It 

should be noted that the obtained amplitude values of the displacements provide evaluating the dynamic parameters of the
“slope — weakened layer — wedge-shaped inclusion” system.

Conclusion. A finite element model has been developed and validated to study the dynamic behavior of
kinematically unstable slopes in a three-dimensional formulation, taking into account the physical nonlinearity of the 
material.
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