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Introduction. This paper studies the capability of different types of artificial neural networks (ANN) to predict the modulus 
of elasticity of pavement layers for flexible asphalt pavement under operating conditions. The falling weight deflectometer 
(FWD) was selected to simulate the dynamic traffic loads and measure the flexural bowls on the road surface to obtain the 
database of ANN models. 
Materials and Methods. Artificial networks types (the feedforward backpropagation, layer-recurrent, cascade back-
propagation, and Elman backpropagation) are developed to define the optimal ANN model using Matlab software. To 
appreciate the efficiency of every model, we used the constructed ANN models for predicting the elastic modulus values for 
25 new pavement sections that were not used in the process of training, validation, or testing to ensure its suitability. The 
efficiency measures such as mean absolute error (MAE), the coefficient of multiple determinations R2, Root Mean Square 
Error (RMSE), Mean Absolute Percent Error (MAPE) values were obtained for all models results. 
Results. Based on the performance parameters, it was concluded that among these algorithms, the feed-forward model has a 
better performance compared to the other three ANN types. The results of the best four models were compared to each other 
and to the actual data obtained to determine the best method. 
Discussion and Conclusions. The differences between the results of the four best models for the four types of algorithms 
used were very small, as they showed the closeness between them and the actual values. The research results confirm the 
possibility of ANN-based models to evaluate the elastic modulus of pavement layers speedily and reliably for using it in the 
structural assessment of (NDT) flexible pavement data at the appropriate time.  
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Introduction. All pavement roads will deteriorate over time, regardless of how well designed or constructed [1]. 

Deterioration of the pavement is affected by traffic volume, climate condition, building quality, layers thickness and the 
efficiency of earlier rehabilitation and treatment plan. Usually, the pavement condition stays good in the first 50−75 % of 
service life and the processes of deterioration progress slowly. The degradation processes make rapid progress once the 
pavement status is decreased [2, 3]. Proper maintenance or repair activities may slow down or reset degradation processes if 
utilized at a suitable time. 

The structural condition of pavements can be evaluated using non-destructive surface deflection testing; impulse 
load devices such as Falling Weight Deflectometer (FWD) and Heavy Weight Deflectometer (HWD). It is the most 
frequently used measuring instrument for this objective. Based on the measured pavement responses in deflection tests, 
material layer modules can be estimated using back-calculation [4, 5]. 

The FWD load tests simulate traffic characteristics such as type, volume, and time of vehicle loading correctly. 
These devices apply an impulse load (P) through a mass in free fall on a circular plate with a cylindrical rubber buffer 
mounted under the falling weight system [6, 7]. The device records the vertical pavement deformation using different 
sensors located at various distances from the centre of the loading circle [8, 9], as shown in Figure 1. The maximum 
displacement is known as the peak deflection, which occurs under the loading point. Traditional methods use the highest 
values of FWD deflections to back-calculate linear elastic modulus for each layer of pavement [10]. 

 

Fig. 1. Pavement deflection according to FWD testing 

During the past few years, it has been observed that the pavement administrations use new and different methods of 
collecting and processing data for road maintenance [11]. Due to the rapid development of information technology and 
artificial intelligence, there have been multiple opportunities for implementation in developing pavements management 
systems.  

More effective ways to address the problem of specifying (complex, non-linear, multivariate) parameters should be 
considered. ANN is one of the artificial intelligence techniques that provide solutions to classification and regression 
problems. It is known as one of the best techniques for data mining tasks. It has a framework for different machine learning 
algorithms to perform together with data inputs. ANN learns how to predict the output from a set of attributes. The 
algorithm learns to forecast during the training process, which must include data with a large domain, to avoid a problem of 
falling the expected data outside that range, which affects the validity of the results [12]. In addition, the frequency of 
sampling should be sufficient to learn correctly. It has been observed from a lot of research that ANN provided good 
accuracy in pavement performance prediction. The goal of ANN is to find solutions to problems in a similar manner that a 
human brain does [13].  

In 2004, the authors submitted a formulation for the reverse calculation of the pavement layer modules using 
artificial neural networks (ANN). The research has shown that the proposed ANN method needs considerably less time 
computed than other methods such as layered elastic theory, equivalent layer thickness (ELT), and finite-element methods, 
respectively. The ANN is used in simulation at a high rate because it can learn complex nonlinear relationships [14]. 

Halil Ceylanet and the contributing authors (2008) developed back-calculation models based on artificial neural 
networks (ANNs) for predicting the elastic modulus of the Portland cement concrete (PCC) layer and the coefficient of 
subgrade reaction for the pavement foundation. ANN-based models have been trained to estimate the layer modules with 
deflective basin data (FWD) and the pavement structure thickness. The research indicates that the ANN models can predict 
the rigid module of paving layers with high precision [15]. 

More studies were conducted on the development of more accurate and effective models with algorithms of 
optimization and hybrid systems [16–19]. 
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G. Beltrán and the contributing authors (2014) collected data from field tests to recalculate layer models by 

artificial neural network models. The results proved the efficiency of the ANN models in calculating the pavements 
parameters [20]. 

Maoyun Li and Hao Wang built a model for calculating the elasticity modulus for flexible pavement layers using 
both the genetic algorithm and the artificial neural network system based on the falling weight deflectometer data. The 
results of the ANN-GA model showed reasonable accuracy with the data registered in the LTPP test database, where there 
were no big differences between the predicted values of the elastic modulus for the asphalt surface layer and the registered 
in the LTPP data [21]. 

In this investigation, several analyses were performed to define the best possible architecture along with learning 
rules and the type of the ANN model to increase the forecasting capabilities of ANNs. The used database includes wide 
ranges of deflection values obtained from impact load tests conducted on existing three-layer pavement systems on the 
roads network by the State Company Russian Highways from 2014 to 2018. It was utilized as an experimental basis for 
training artificial neural network models. 

Materials and Methods 
The properties of the used sections. 
In Table 1, the acceptable limits of the pavement layer parameters used in building models are mentioned for 

calculating the elasticity modulus for the pavement layers (surface, base, and subgrade). 

Table 1 
Limits of geometries and properties of materials for pavement sections 

Material type Layer thickness (mm) Poisson’s Ratio Layer elastic modulus (MPa) 
Asphalt Concrete T(AC)= 190 : 220 V = 0.35 E1= 900 : 4500 
Base-layer T(B)= 350 : 460 V = 0.35 E2= 80 : 500 
Subgrade-layer T(S)= ∞ V = 0.35 E3= 40 : 150 

Back-calculation models based on ANNs approach.  
In this work, we used the back-propagation algorithm function to solve the problem of the nonlinear function 

mapping, where it has high efficiency between ANN algorithms [22–25]. Furthermore, ANN networks of this type are 
defined as the neural networks of multilayer feed-forward. The traditional architecture of artificial neural networks is 
preserved in this algorithm. The structure of this algorithm consists of inputs and outputs represented by neurons, and 
between them, there are connections used to transfer the weights given to each cell according to its effect. The back-
propagating algorithm is characterized by its ability to change the neuron weights to reduce the differences between the 
goals and the output values of the algorithm using the error reduction technique [26]. The final set of node biases and 
connection weights is known when the error rate is reduced to permissible limits [27].  

The network is trained by different algorithms with the training dataset. 
— Feed-Forward Model 
The feed-forward network involves at least three layers (the input layer, the hidden layer, and the output layer), and 

it may increase to have more than one hidden layer according to the network needs. As it is clear from the name of the 
network, the information has one direction from the input to the hidden layer and then to the output layer, as in Figure 2. 

— Layer Recurrent Model 
The structures of the recurrent neural network and the feed-forward network are similar, but the recurrent neural 

network is unique in that there is a specific feedback loop to each layer in the network except for the last layer, as shown in 
Figure 3. This feedback loop permits the network to have an unlimited dynamic reaction to incoming time series data. 

— Cascade Forward Network Model 
The Cascade forward network is similar to a feed-forward network, with the only difference being that it includes a 

link from the input to each layer and from each layer to the following layers. As shown in Figure 4, the Cascade forward 
model produces links from the first to the second Layer, from Layer 2 to Layer 3, and from the first to the third Layer. 
These networks also provide input connections for all layers, where additional links can quickly improve the learning 
process of the network model. 

— Elman Neural Network 
The Elman neural network structure overrides the feed-forward network by having a layer called the context layer 

in addition to the input, output and hidden layers. The function of the context layer is to store the output of the hidden layer 
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G. Beltrán and the contributing authors (2014) collected data from field tests to recalculate layer models by 

artificial neural network models. The results proved the efficiency of the ANN models in calculating the pavements 
parameters [20]. 

Maoyun Li and Hao Wang built a model for calculating the elasticity modulus for flexible pavement layers using 
both the genetic algorithm and the artificial neural network system based on the falling weight deflectometer data. The 
results of the ANN-GA model showed reasonable accuracy with the data registered in the LTPP test database, where there 
were no big differences between the predicted values of the elastic modulus for the asphalt surface layer and the registered 
in the LTPP data [21]. 

In this investigation, several analyses were performed to define the best possible architecture along with learning 
rules and the type of the ANN model to increase the forecasting capabilities of ANNs. The used database includes wide 
ranges of deflection values obtained from impact load tests conducted on existing three-layer pavement systems on the 
roads network by the State Company Russian Highways from 2014 to 2018. It was utilized as an experimental basis for 
training artificial neural network models. 

Materials and Methods 
The properties of the used sections. 
In Table 1, the acceptable limits of the pavement layer parameters used in building models are mentioned for 

calculating the elasticity modulus for the pavement layers (surface, base, and subgrade). 

Table 1 
Limits of geometries and properties of materials for pavement sections 

Material type Layer thickness (mm) Poisson’s Ratio Layer elastic modulus (MPa) 
Asphalt Concrete T(AC)= 190 : 220 V = 0.35 E1= 900 : 4500 
Base-layer T(B)= 350 : 460 V = 0.35 E2= 80 : 500 
Subgrade-layer T(S)= ∞ V = 0.35 E3= 40 : 150 

Back-calculation models based on ANNs approach.  
In this work, we used the back-propagation algorithm function to solve the problem of the nonlinear function 

mapping, where it has high efficiency between ANN algorithms [22–25]. Furthermore, ANN networks of this type are 
defined as the neural networks of multilayer feed-forward. The traditional architecture of artificial neural networks is 
preserved in this algorithm. The structure of this algorithm consists of inputs and outputs represented by neurons, and 
between them, there are connections used to transfer the weights given to each cell according to its effect. The back-
propagating algorithm is characterized by its ability to change the neuron weights to reduce the differences between the 
goals and the output values of the algorithm using the error reduction technique [26]. The final set of node biases and 
connection weights is known when the error rate is reduced to permissible limits [27].  

The network is trained by different algorithms with the training dataset. 
— Feed-Forward Model 
The feed-forward network involves at least three layers (the input layer, the hidden layer, and the output layer), and 

it may increase to have more than one hidden layer according to the network needs. As it is clear from the name of the 
network, the information has one direction from the input to the hidden layer and then to the output layer, as in Figure 2. 

— Layer Recurrent Model 
The structures of the recurrent neural network and the feed-forward network are similar, but the recurrent neural 

network is unique in that there is a specific feedback loop to each layer in the network except for the last layer, as shown in 
Figure 3. This feedback loop permits the network to have an unlimited dynamic reaction to incoming time series data. 

— Cascade Forward Network Model 
The Cascade forward network is similar to a feed-forward network, with the only difference being that it includes a 

link from the input to each layer and from each layer to the following layers. As shown in Figure 4, the Cascade forward 
model produces links from the first to the second Layer, from Layer 2 to Layer 3, and from the first to the third Layer. 
These networks also provide input connections for all layers, where additional links can quickly improve the learning 
process of the network model. 

— Elman Neural Network 
The Elman neural network structure overrides the feed-forward network by having a layer called the context layer 

in addition to the input, output and hidden layers. The function of the context layer is to store the output of the hidden layer 
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in each finished cycle and reuse it as input to the hidden layer in the next iteration to ensure that patterns are generated over 
time, as shown in Figure 5. Elman networks also reduce the error rate in the outputs to the permissible limits by using the 
back-propagation feature, as is the case in the forward propagation network. 

  
Fig. 2. Structure of feed-forward network Fig. 3. Structure of layer recurrent network 

  

Fig. 4. Structure of cascade network Fig. 5. Structure of Elman back-propagation network 

Through the command of “nntool” in the Matlab program, we implemented the created ANN models. The data that 
was used in building the models belong to a group of asphalt sections of the M-4 highway of the Russian road network. The 
set of training data used in this study included the results of calculating the elastic moduli of the structural layers of non-
rigid road pavements, carried out in a specialized software package supplied with an FWD Primax shock loading unit on 
555 pavement sections, managed by the State Company Russian Highways. We used four types of artificial neural 
networks, which were (feed-forward, layer recurrent, cascade, and Elman) back-propagation to get the best results. Several 
cells were selected in the hidden layer for each type of model to study its effect on the training process. The program 
divided the data at random with 70 % for the training process, 15 % for verification, and 15 % for the testing process. Figure 
6 shows the architecture of the artificial neural network model. 

We carried out three steps to obtain the optimal number of neurons and hidden layers in ANN models: we trained 
the model with different hidden layers (first step), estimated the results of the performance model (second step), and 
compared the predicted values of the tested data to the target values (third step).  

 
Fig. 6. Neural network architecture to determine the elastic moduli of the structural layers of the flexible pavements 

D1, D2, D3 .... D10 are the results of the measured deflection values under the sensors — geophones; tº is the 
surface temperature of the pavement; P is the pressure on the pavement; T1 and T2 are the thickness of the layers of asphalt 
concrete and the thickness of the base layer of the pavement; E1, E2, and E3 – the elastic moduli of asphalt concrete layers, 
the base, and the subgrade, respectively. 

hidden layers 

output data 

input data 
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The Models Evaluation.   
The correctness of the values of the prediction results for every model is calculated using the mean absolute error 

(MAE), the multiple determinations coefficient R2, the mean root square error (RMSE), and the mean absolute percentage 
error (MAPE), which are determined from the following formulas (1, 2 and 3):  
 MAE= 1

n
 ∑ |At- Et|n

t=1    (1) 

 RMSE= √∑ (At- Et)
2n

t=1
n

   (2) 

 MARE= 1
n

 ∑ |At- Et
At

|n
t=1 *100  (3) 

Where At is the actual value in period t; Et is the expected value in period t; and n is the number of the total period. 
With respect to the statistical indices, MAE, RMSE and MAPE, smaller values usually indicate higher accuracy results. In 
this analysis, the MAE, R2, RMSE and MAPE values for every model are obtained through comparing the predicted results 
against the actual values. 

Results. Four types of NNA were developed with four different neuron numbers in the hidden layers to see which 
one is more suitable to use in the forecasting process. The total number of ANN models generated was sixteen. All models 
were trained under various conditions, including 10, 15, 17, and 20 neurons in the hidden layers. The values of the 
following MAE, R2, RMSE and MAPE indices for all models were calculated as shown in Table 2 to assess the model 
performance. 

Table 2 
Evaluation models performance 

 Prediction  E(AS) of 
feed-forward models 

Prediction  E(AS) of 
cascade models 

Prediction  E(AS) of 
Elman models 

Prediction  E(AS) of 
layer-recurrent  models 

 
10n 15n 17n 20n 10 n 15n 17n 20n 10n 15n 17n 20n 10n 15n 17n 20n 

MA
E 

2.58 3.24 5.61 4.9 41.2 2.48 5.61 31.8 1.46 1.81 1.39 6.45 4.11 7.66 4.85 9.27 

R2 1.00 1.00 1.00 1.0 0.91 1.00 1.00 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
RM
SE 

3.38 10.3 10.7 11 202 7.78 10.7 149. 2.05 6.48 3.20 26.1 7.15 16.9 10.5 25.7 

MA
RE 

0.11 0.15 0.24 0.26 1.73 0.12 0.24 1.34 0.08 0.08 0.06 0.27 0.16 0.34 0.22 0.47 

 
Prediction  E(base) of 
feed-forward models 

Prediction  E(base) of 
cascade models 

Prediction  E(base) of 
Elman models 

Prediction  E(base) of 
layer-recurrent  models 

 
10n 15n 17n 20n 10n 15n 17n 20n 10n 15n 17n 20n 10n 15n 17n 20n 

MA
E 

1.11 0.61 1.39 1.15 0.55 0.77 1.39 1.74 0.89 0.86 1.02 1.65 1.37 1.43 0.87 1.17 

R2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 
RM
SE 

2.10 2.16 3.58 2.8 0.82 2.70 3.58 6.01 2.14 3.51 3.34 6.19 1.80 2.62 1.19 3.24 

MA
RE 

0.42 0.19 0.48 0.4 0.23 0.24 0.48 0.52 0.30 0.25 0.33 0.51 0.58 0.55 0.36 0.38 

 Prediction  E(sub-grade) 
of feed-forward  models 

Prediction  E(sub-grade) 
of cascade models 

Prediction  E(sub-grade) 
of Elman models 

Prediction  E(sub-grade) of 
layer-recurrent  models 

 10n 15n 17n 20n 10n 15n 17n 20n 10n 15n 17n 20n 10n 15n 17n 20n 
MA

E 
1.82 0.38 1.81 4.5 1.51 2.90 1.81 2.22 3.34 0.92 2.90 4.37 1.74 1.63 1.89 2.12 

R2 0.99 1.00 0.99 0.87 0.99 0.96 0.99 0.95 0.87 0.99 0.93 0.86 0.98 0.99 1.00 0.97 
RM
SE 

4.48 0.73 3.91 13.3 2.81 10.6 3.91 5.85 10.5 2.48 7.19 17.4 4.16 2.78 4.07 4.84 

MA
RE 

1.84 0.46 1.94 4.6 1.92 2.32 1.94 2.15 3.22 0.86 2.85 3.85 2.16 2.13 1.96 2.53 
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The Models Evaluation.   
The correctness of the values of the prediction results for every model is calculated using the mean absolute error 

(MAE), the multiple determinations coefficient R2, the mean root square error (RMSE), and the mean absolute percentage 
error (MAPE), which are determined from the following formulas (1, 2 and 3):  
 MAE= 1

n
 ∑ |At- Et|n

t=1    (1) 

 RMSE= √∑ (At- Et)
2n

t=1
n

   (2) 

 MARE= 1
n

 ∑ |At- Et
At

|n
t=1 *100  (3) 

Where At is the actual value in period t; Et is the expected value in period t; and n is the number of the total period. 
With respect to the statistical indices, MAE, RMSE and MAPE, smaller values usually indicate higher accuracy results. In 
this analysis, the MAE, R2, RMSE and MAPE values for every model are obtained through comparing the predicted results 
against the actual values. 

Results. Four types of NNA were developed with four different neuron numbers in the hidden layers to see which 
one is more suitable to use in the forecasting process. The total number of ANN models generated was sixteen. All models 
were trained under various conditions, including 10, 15, 17, and 20 neurons in the hidden layers. The values of the 
following MAE, R2, RMSE and MAPE indices for all models were calculated as shown in Table 2 to assess the model 
performance. 

Table 2 
Evaluation models performance 

 Prediction  E(AS) of 
feed-forward models 

Prediction  E(AS) of 
cascade models 

Prediction  E(AS) of 
Elman models 

Prediction  E(AS) of 
layer-recurrent  models 

 
10n 15n 17n 20n 10 n 15n 17n 20n 10n 15n 17n 20n 10n 15n 17n 20n 

MA
E 

2.58 3.24 5.61 4.9 41.2 2.48 5.61 31.8 1.46 1.81 1.39 6.45 4.11 7.66 4.85 9.27 

R2 1.00 1.00 1.00 1.0 0.91 1.00 1.00 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
RM
SE 

3.38 10.3 10.7 11 202 7.78 10.7 149. 2.05 6.48 3.20 26.1 7.15 16.9 10.5 25.7 

MA
RE 

0.11 0.15 0.24 0.26 1.73 0.12 0.24 1.34 0.08 0.08 0.06 0.27 0.16 0.34 0.22 0.47 

 
Prediction  E(base) of 
feed-forward models 

Prediction  E(base) of 
cascade models 

Prediction  E(base) of 
Elman models 

Prediction  E(base) of 
layer-recurrent  models 

 
10n 15n 17n 20n 10n 15n 17n 20n 10n 15n 17n 20n 10n 15n 17n 20n 

MA
E 

1.11 0.61 1.39 1.15 0.55 0.77 1.39 1.74 0.89 0.86 1.02 1.65 1.37 1.43 0.87 1.17 

R2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 
RM
SE 

2.10 2.16 3.58 2.8 0.82 2.70 3.58 6.01 2.14 3.51 3.34 6.19 1.80 2.62 1.19 3.24 

MA
RE 

0.42 0.19 0.48 0.4 0.23 0.24 0.48 0.52 0.30 0.25 0.33 0.51 0.58 0.55 0.36 0.38 

 Prediction  E(sub-grade) 
of feed-forward  models 

Prediction  E(sub-grade) 
of cascade models 

Prediction  E(sub-grade) 
of Elman models 

Prediction  E(sub-grade) of 
layer-recurrent  models 

 10n 15n 17n 20n 10n 15n 17n 20n 10n 15n 17n 20n 10n 15n 17n 20n 
MA

E 
1.82 0.38 1.81 4.5 1.51 2.90 1.81 2.22 3.34 0.92 2.90 4.37 1.74 1.63 1.89 2.12 

R2 0.99 1.00 0.99 0.87 0.99 0.96 0.99 0.95 0.87 0.99 0.93 0.86 0.98 0.99 1.00 0.97 
RM
SE 

4.48 0.73 3.91 13.3 2.81 10.6 3.91 5.85 10.5 2.48 7.19 17.4 4.16 2.78 4.07 4.84 

MA
RE 

1.84 0.46 1.94 4.6 1.92 2.32 1.94 2.15 3.22 0.86 2.85 3.85 2.16 2.13 1.96 2.53 
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The best four models that express the four types of artificial neural networks were selected based on the values of 

the analytical parameters mentioned in the previous table for the results of the models to compare them and know the extent 
of their impact. Whereas, the best results were due to the models with two hidden layers and 14-15-3 structure for all 
developed types. All models took the maximum number of repetitions to complete the training process, which were 1000 
repetitions. But they differed in the periods taken for training, as training of the models ended after (54, 157, 67, and 173) 
seconds for the four models, respectively, as shown in Figures (7−10). Being aware of that, the training process stops if the 
maximum number of repetitions or the time rate is exceeded. 

  
Fig. 7. Training window of feed-forward model Fig. 8. Training window of layer recurrent model 

  
Fig. 9. Training window of cascade model Fig. 10. Training window of Elman backpropagation 

The weights and biases of all parameters were modified to decrease the error between target values and network 
output throughout the training phase. Each neuron weight is adjusted based on its impact on the network result. These 
weights and biases were evaluated during training as the weights of the inputs to the hidden layer. 

Figures (11–14) illustrate the mean squared error values vs the number of iterations for the training process of the 
compared models, respectively. When using the feed-forward back-propagation model, the best validation performance was 
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16.68 at epoch 1000. Otherwise, the best validation performance for the layer recurrent, cascade and Elman back-
propagation models were (11.52, 119,888 and 28,067) at epoch zero, respectively. In all of the curves, we observe the 
convergence of the test curves with the validation curves, which revealed that the test and validation curves are very similar. 

 
 

Fig. 11. Performance of feed-forward model  Fig. 12. Performance of layer recurrent model  

  
Fig. 13. Performance of cascade model performance Fig. 14. Performance of Elman model  

 
According to Figures (15 and 16), artificial neural networks are evaluated using a correlation function (R) between 

network result values against target data in feed-forward and cascading back-propagation models. Looking at the R-value of 
the models during the training, validation and testing phases, we notice a good agreement between the target values and the 
network results. Where we find that the slope of the line that represents the relationship between data and results is 
approximately equal to 1 in all stages of training, and this indicates the robustness of the models and the possibility of using 
them during the prediction process. 

 

Fig. 15. Feed-forward model regression charts Fig. 16. Cascade backpropagation regression charts 

Best Validation Performance is 11.5246 at epoch 0 

Best Validation Performance is 28.0672 at epoch 0 Best Validation Performance is 119.8888 at epoch 0 

Best Validation Performance is 16.6883 at epoch 1000 
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16.68 at epoch 1000. Otherwise, the best validation performance for the layer recurrent, cascade and Elman back-
propagation models were (11.52, 119,888 and 28,067) at epoch zero, respectively. In all of the curves, we observe the 
convergence of the test curves with the validation curves, which revealed that the test and validation curves are very similar. 
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network result values against target data in feed-forward and cascading back-propagation models. Looking at the R-value of 
the models during the training, validation and testing phases, we notice a good agreement between the target values and the 
network results. Where we find that the slope of the line that represents the relationship between data and results is 
approximately equal to 1 in all stages of training, and this indicates the robustness of the models and the possibility of using 
them during the prediction process. 
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At the beginning of network learning, all learning stages of training, validation, and testing, run in an open loop. 

Once the training phase is over, the network performance turns into a closed loop during the multi-stages of prediction. 
The models that correctly represent the available data are selected during the stages of education, verification, and 

testing, based on the statistical parameters, as mentioned previously. It was required to determine if the models could 
forecast the elastic modulus for 25 segments that had not been utilized during model training and compare them to target 
values, along with knowing how much the network type affected its performance in terms of elastic modulus 
assessment. Table 3 shows the comparison of the elastic modulus target values for all layers (asphalt concrete, base, and 
subgrade) of 25 sections and the forecasting results values of the four ANN types (feed-forward, layer recurrent, cascade, 
and Elman) back-propagation models.  

Table 3 
The comparison of the predictions of the proposed models 

Actual modulus of 
elasticity, MPa 

Predicted values of 
feed-forward model, 

Mpa (15n) 

Predicted values of layer 
recurrent model, Mpa 

(15n) 

Predicted values of 
cascade backprop 
model, Mpa (15n) 

Predicted values of 
Elman backprop 
model, Mpa (15n) 

Asphalt Base 
Sub-
grade 

Asphalt Base 
Sub- 
grade 

Asphalt Base 
Sub- 
grade 

Asphalt Base 
Sub- 
grade 

Asphalt Base 
Sub- 
grade 

1017.0 208.1 63.1 1013.6 209.0 64.5 1024.6 208.0 67.3 1016.7 207.1 63.3 1017.7 209.3 64.5 

1559.1 255.2 155.8 1565.1 254.9 157.8 1575.9 250.1 144.6 1565.1 255.8 151.1 1569.1 255.6 166.9 

1226.2 200.7 88.9 1226.4 200.3 87.1 1227.7 201.6 88.1 1226.9 200.2 92.6 1222.9 201.0 93.9 

2380.9 389.8 139.0 2431.7 400.5 137.2 2305.9 400.3 143.7 2349.2 407.3 149.8 2418.0 403.2 190.7 

3309.2 329.5 61.9 3312.3 329.4 61.8 3302.4 332.5 62.4 3310.4 329.6 61.9 3309.9 329.8 62.2 

1883.9 187.6 51.1 1881.0 187.1 51.0 1878.3 189.8 48.5 1885.4 187.7 51.4 1883.3 187.9 51.2 

2104.6 209.6 45.3 2103.2 209.6 45.9 2099.3 209.3 45.1 2104.4 209.6 44.9 2104.7 210.0 44.9 

2763.7 275.2 57.3 2761.9 275.1 57.0 2763.8 274.6 58.1 2763.4 275.3 57.3 2763.8 275.2 57.1 

3124.2 311.1 61.2 3124.0 310.9 61.2 3120.2 312.3 60.9 3124.5 311.1 61.2 3124.0 311.2 61.5 

2810.1 279.8 58.2 2809.8 279.8 58.2 2810.7 279.9 57.9 2810.0 279.8 58.2 2809.9 279.8 58.2 

2733.7 272.2 60.1 2733.6 272.2 60.1 2733.3 271.9 59.1 2733.7 272.2 60.1 2733.7 272.1 60.2 

2718.9 270.8 60.5 2718.7 270.5 60.6 2719.9 270.8 59.6 2718.8 270.6 60.5 2718.8 270.5 60.7 

3266.2 325.3 73.0 3270.4 325.6 73.1 3254.1 324.4 71.9 3265.4 325.1 72.8 3265.8 325.4 73.1 

2430.0 242.0 55.3 2430.4 242.0 55.3 2428.2 242.3 55.8 2429.9 242.1 55.1 2430.1 241.9 55.2 

3671.5 365.6 69.3 3668.3 365.7 69.0 3700.0 365.8 70.5 3671.3 365.6 68.9 3666.3 365.0 69.7 

2395.2 238.5 58.1 2395.2 238.6 58.0 2394.0 238.3 56.9 2395.1 238.5 58.1 2395.3 238.3 57.9 

2328.7 231.9 63.2 2329.0 232.3 63.1 2327.0 232.5 62.8 2328.7 232.4 63.6 2328.2 232.0 63.3 

2810.1 279.8 64.8 2809.8 279.8 64.7 2810.8 280.3 64.1 2809.8 279.8 64.7 2810.3 279.8 64.8 

2350.5 234.1 60.2 2350.8 234.2 60.1 2346.3 233.2 59.1 2350.6 234.2 60.5 2350.4 234.1 60.3 

2406.7 239.7 59.1 2406.8 239.7 59.0 2403.0 238.7 58.1 2406.8 239.7 59.1 2406.8 239.6 59.2 

1927.2 191.9 54.8 1927.9 192.1 54.7 1929.3 193.7 56.1 1927.4 191.9 54.8 1927.2 192.1 54.8 

1746.5 173.9 56.0 1746.0 173.7 55.8 1745.2 177.2 58.5 1746.5 173.9 56.4 1747.8 173.8 55.9 

2149.6 214.1 55.6 2149.3 214.0 55.6 2146.1 213.3 55.7 2149.7 214.1 55.5 2149.6 214.3 55.6 

1927.2 191.9 48.3 1927.1 191.8 48.5 1932.6 192.7 50.1 1927.8 191.8 47.8 1926.5 192.3 48.0 

2095.8 208.7 50.5 2095.9 208.9 50.4 2095.6 208.6 51.3 2095.9 208.8 50.2 2095.7 209.1 50.2 
 

A high degree of convergence can be shown between the four models when they are compared to each other and 
to actual data, as shown in Figure 17 (a, b, c). It is also understood from the results that the models can reduce the error 
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during the process of predicting the elastic modulus, where the lowest value of the coefficient of multiple determination 
was “R2 = 0.95” for the cascade back-propagation model. However, the best performance in the prediction process, as 
shown in Table 2, was for the feed-forward model with a 14-15-3 structure, which had the lowest values for the statistical 
parameters MAE, RMSE, and MAPE, and the largest value for the coefficient of multiple determination (R2) for the three 
pavement layers (asphalt, base, and substrate). 

  
a) b) 

 
c) 

Fig. 17 (a, b, c): Illustration of the comparison between the values of the target elasticity modulus against the expected values of the 
developed ANN models and each other for all pavement layers 

Discussion and Conclusion. The authors constructed sixteen models in the study. Every four models follow four 
different artificial neural network types (feed-forward, layer recurrent, cascade, and Elman back-propagation) to calculate 
the elastic modulus of the pavement layers subjected to dynamic load. The FWD test was selected to represent the dynamic 
load generated by the road traffic and to measure the reaction of the pavement. Matlab software was used to create ANN 
models utilizing deflection data from the (M4) highway in the Russian Federation Road network. 

The differences between the results of the four best models for the four types of used algorithms were very small, 
as they showed closeness between them and the target values. The best results were for the feed-forward model with 15 
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during the process of predicting the elastic modulus, where the lowest value of the coefficient of multiple determination 
was “R2 = 0.95” for the cascade back-propagation model. However, the best performance in the prediction process, as 
shown in Table 2, was for the feed-forward model with a 14-15-3 structure, which had the lowest values for the statistical 
parameters MAE, RMSE, and MAPE, and the largest value for the coefficient of multiple determination (R2) for the three 
pavement layers (asphalt, base, and substrate). 
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neurons in the two-hidden layers to form the structure of the model 14-15-3, which produced the best values for the 
statistical coefficients. 

There is no correlation between an increase or a decrease of neurons in the hidden layers and an improvement in 
models’ performance. Instead, the decision is dependent on trial and error. 

From the results, we find the capability of ANN models to predict the elastic modulus of flexible pavement 
correctly and use it in managing the pavement deteriorations. 
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