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Introduction. In the production of sensor and measuring systems, small household appliances, cell phones, 

and wireless sensor systems, powerful energy sources are not needed to monitor and diagnose the technical condition of 

objects. In this case, the prerequisites are the mobility and volatility of the above devices. 

Piezoelectric materials directly convert electrical energy into mechanical energy and vice versa. This property 

allows them to be widely used in science and technology. These materials are used in ultrasonic emitters of elastic and 

acoustic waves, receivers of such waves, devices for suppressing vibrations of machine elements and structures, etc. 

Recently, another field of application of piezoelectrics has been rapidly developing — energy collection and storage 

devices. In this case, piezoelectric materials are part of piezoelectric energy generators (PEG). PEG are placed on 

elements of machines or structures that vibrate intensively, which are in the zone of elastic wave propagation or are 

exposed to variable pressure. The main types of these devices have a bimorph or stack multilayer structure and 

experience bending or longitudinal deformations, respectively. Low-power sources of electric current are created on the 

basis of PEG. They include autonomous power sources (e.g., for damage monitoring devices in hard-to-reach places of 

pipeline structures, etc.). An overview of such devices is available in [1–2]. One of the ways to design effective PEG is 

the use of piezoactive composites of various types of connectivity and heterogeneous materials based on piezoceramics, 

including porous one. 

PEG, in whose design there are additional electromagnetic elements or permanent magnets, can fix or use the 

energy of an alternating magnetic field. One of the ways to solve this problem is the use of piezomagnetic materials in 

combination with piezoelectric ones. In this case, the alternating magnetic field causes the deformation of the 

piezomagnetic and the coupled piezoelectric, as a result, the latter generates electrical energy. There is a class of 

materials with ferromagnetic properties. Piezomagnetism is a phenomenon observed in some antiferromagnetic and 

ferromagnetic crystals. It is characterized by a linear relationship between the magnetic polarization of the system and 

mechanical deformation. In a piezomagnetic material, a spontaneous magnetic moment can be induced through 

applying mechanical stress, or deformation by applying a magnetic field. In studies of piezomagnetic materials [3–5], 

CoFe2O4 is very often considered. In [6–8], a composite based on CoFe2O4 and BaTiO3 with piezoelectric and 

piezomagnetic properties is studied simultaneously.  

Solutions to the problems of electroelasticity and magnetoelasticity are given in [9–11]. In [12], applied 

theories of vibrations of multilayer piezoelectric plates were developed considering the specifics of the distribution of 

electric potential over the structure thickness. 

The problems on steady-state oscillations of an electro-magneto-elastic layer and a half-space under the action 

of harmonic loads are presented in [13, 14]. The prestressing is taken into account, as well as various electrical and 

magnetic conditions at the boundaries. The effect of these factors on the dispersion properties is investigated. 

Earlier [15, 16], an applied theory was developed that considers the inhomogeneous distribution of the electric 

potential in the longitudinal direction, and the quadratic dependence on thickness. In the same papers, the stress-strain 

and electrical state of a hinged and cantilevered bimorph is investigated. In both cases, the applied theory showed good 

convergence with the finite element modeling results. The authors also developed an applied theory of bimorph 
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vibrations [17] consisting of an electroelastic and magnetoelastic layer. This approach is in good agreement with the 

finite element analysis results. 

In this paper, the vibrations of the device are considered in the framework of a plane deformation. Based on the 

variational principle, an applied theory of bending vibrations of a two-layer piezoelectric bimorph is constructed. For 

steady-state vibrations, boundary conditions and a system of differential equations are obtained for four unknown 

functions (deflection, electric potential in the middle of the layer, magnetic potential in the middle of the layer and at 

the outer boundary), depending on the length of the bimorph. The influence of different percentage volume ratios of the 

bimorph composition on deflection, electric and magnetic potentials in certain positions, is investigated. The study 

results provide selecting the makeup of a composite piezomagnetoelectric material to achieve the most efficient 

operation of the device. 

Materials and Methods. A plate consisting of two identical piezoelectric layers is considered. It performs 

steady-state transverse vibrations within a plane deformation. Each layer is a 2–2 connectivity composite consisting of 

alternating piezoelectric and piezomagnetic layers (Fig. 1). 

 
Fig. 1. 2-2 composite structure  

Effective properties of such a composite were found in [8]. Large surfaces of the layers are electrodated, and 

the layers themselves are polarized in thickness. The bimorph is hinged at the edges, all surfaces are free from 

mechanical stresses. The upper and lower boundaries of the plate are affected by magnetic flux 0B , while at the 

boundary between the layers, the magnetic potential is considered to be zero. The electrical potential is zero at all 

electrodes. The side surfaces are considered to be insulated from magnetic and electric fields. 

The equations for describing the vibrations of a composite with effective properties, connectivity of 

mechanical, electric and magnetic fields, have the form [18]:  

σ ρ ρ , σ 0,f u D B       , 

σ : ε ,
: ε κ α ,
: ε α μ ,

T T

T

c e E h H
D e E H
B h E H

    
  



 

   

 

    ,1ε φ, ξ
2

T Eu u H       .  (1) 

Here, σ and ε  — mechanical stress and strain tensors, D  and E  — vectors of electric induction and electric field 

strength, B  and H  — vectors of magnetic induction and magnetic field strength, ρ  — material density, c  — elastic 

moduli tensor, e  — piezoelectric moduli tensor, h  — piezomagnetic moduli tensor, κ  — dielectric permittivity 

tensor, α  — magnetoelectric moduli tensor, μ  — magnetic permeability tensor, f  — mass force density vector, Ωσ  

— electric charge volume density, u  — displacement vector, φ  and ξ  — electrical and magnetic potentials.  

The boundary conditions are determined for the mechanical, electric and magnetic fields, respectively. 

For the first case, we note the absence of mechanical stresses at the bimorph boundary: 

σ 0, , 1.3ij j S
n i j   . 

The biomorph is hinged at the ends (Fig. 2): 

Piezoelectric layer 
 

Piezomagnetic layer 
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vibrations [17] consisting of an electroelastic and magnetoelastic layer. This approach is in good agreement with the

finite element analysis results.

In this paper, the vibrations of the device are considered in the framework of a plane deformation. Based on the

variational principle, an applied theory of bending vibrations of a two-layer piezoelectric bimorph is constructed. For

steady-state vibrations, boundary conditions and a system of differential equations are obtained for four unknown

functions (deflection, electric potential in the middle of the layer, magnetic potential in the middle of the layer and at 

the outer boundary), depending on the length of the bimorph. The influence of different percentage volume ratios of the 

bimorph composition on deflection, electric and magnetic potentials in certain positions, is investigated. The study

results provide selecting the makeup of a composite piezomagnetoelectric material to achieve the most efficient 

operation of the device.

Materials and Methods. A plate consisting of two identical piezoelectric layers is considered. It performs

steady-state transverse vibrations within a plane deformation. Each layer is a 2–2 connectivity composite consisting of

alternating piezoelectric and piezomagnetic layers (Fig. 1).

Fig. 1. 2-2 composite structure

Effective properties of such a composite were found in [8]. Large surfaces of the layers are electrodated, and

the layers themselves are polarized in thickness. The bimorph is hinged at the edges, all surfaces are free from

mechanical stresses. The upper and lower boundaries of the plate are affected by magnetic flux 0B , while at the

boundary between the layers, the magnetic potential is considered to be zero. The electrical potential is zero at all 

electrodes. The side surfaces are considered to be insulated from magnetic and electric fields.

The equations for describing the vibrations of a composite with effective properties, connectivity of

mechanical, electric and magnetic fields, have the form [18]: 
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Here, σ and ε — mechanical stress and strain tensors, D and E — vectors of electric induction and electric field

strength, B and H — vectors of magnetic induction and magnetic field strength, ρ — material density, c — elastic

moduli tensor, e — piezoelectric moduli tensor, h — piezomagnetic moduli tensor, κ — dielectric permittivity

tensor, α — magnetoelectric moduli tensor, μ — magnetic permeability tensor, f — mass force density vector, Ωσ

— electric charge volume density, u — displacement vector, φ and ξ — electrical and magnetic potentials.

The boundary conditions are determined for the mechanical, electric and magnetic fields, respectively.

For the first case, we note the absence of mechanical stresses at the bimorph boundary:

σ 0, , 1.3ij j S
n i j   .

The biomorph is hinged at the ends (Fig. 2):

Piezoelectric layer Piezomagnetic layer

Soloviev A. N., et al. Vibration analysis of a composite magnetoelectroelastic bimorph depending on the volume fractions of its components 

(0,0) ( ,0)
0, 1.3i i L

u u i   .

Fig. 2. Geometry and boundary conditions of bimorph with composite piezomagnetoelectric layers 

Next, we formulate the electrical boundary conditions. Electrical potential on the internal and external 
electrode, respectively: 

3 3
0 20

φ , φ
x x H

V V
 
  . 

We indicate the magnetic boundary conditions. Magnetic potential at the inner boundary: 

3
00

ξ
x

M

 . 

Magnetic flux 0B  affects the upper and lower boundaries of the plate:

3
0x H

H B


 .

We use the variational equation for steady-state vibrations [10]. It generalizes Hamilton's principle in the 

electroelasticity theory taking into account magnetic components. For the case of plane deformation in the absence of 

surface loads and in the presence of magnetic flux: 

 2
0 0– ρδ δ δ σ ξω δ 0φi

S S S
i i iHdS u u dS p u B dS      , (2) 

where δH̃ = σijδεij– DiδEi– BiδHi.
To construct an applied theory of vibrations, we will accept Kirchhoff's hypotheses. In accordance with them, 

the distribution of displacements along the thickness has the form: 

u1(x1, x3) =– x3w,1, u3(x1, x3) = w(x1)    (3)

In particular, the single normal hypothesis is accepted for a mechanical field. Next, we consider a problem in 

which the value of the electric potential on the electrodes can be zero, so its distribution is not described by a linear 

function. Taking into account the possible inhomogeneity in the length of the element associated with the influence of 

boundary conditions at the ends of the bimorph, its thickness distribution is assumed to be quadratic: 
2

3 3 3 3 3
1 3 0 1 1 1 2 12

2 4 2
φ( , ) ( ) 1 ( ) 1 ( ) 1

x x x x x
x x V x V x V x

H H H HH
             

    
.      (4) 

Here, x̃3 = x3– h/2. Functions V0, V1 and V2 are responsible for the value of the electric potential at the inner electrode, 

in the middle of the layer, and at the outer electrode, respectively. To satisfy the conditions of the problem, we take 

these functions in the following form (see Fig. 2): 

0 1 0( ) ,V x V const   1 1 1( ) ( ),V x x   2 1 2( ) .V x V const   

Here, function Φ(x1) is unknown. 

We represent a quadratic distribution of the magnetic potential over the thickness of each layer. The 

distribution along the length is heterogeneous, at the inner boundary of the layers, its value is assumed to be zero: 
2

3 3 3 3 3
1 3 0 1 1 1 12 2

2 4 2
ξ( , ) ( ) 1 ( ) 1 ( ) 1

x x x x x
x x M x M x M x

H H H HH
             

    
. (5)
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Here, x̃3 = x3– h/2. Functions M0, M1 and M2 are responsible for the value of the magnetic potential at the inner 

boundary, in the middle of the layer, and at the outer boundary, respectively, and are taken as follows (Fig. 2):  

0 1 0( ) ,M x M const   21 1 1( ) ( ),M x x  2 1 3 1( ) ( ).M x x  

Here, functions Ξ2(x1) and Ξ3(x1) are unknown. 

We substitute relations (3)–(5) into equation (2) and integrate it by the bimorph thickness, and then we 

equate the coefficients with independent variations δw, δΦ, δΞ2 and δΞ3 to zero. Thus, we obtain a system of four 

differential equations (6) from four unknown functions depending on х1 (then, we omit the subscript), and five 

boundary conditions (7).  

       

     

2
33 33 33 33 33 11

0 2 2 3 2

2 2 2
31 3311 11

2 3 02 2 2

16 16 32 32α 16α 16
3 3 3 3 3 15

4 16α16α 2α 0,
15 15 3 3

H dV V x x x x
H H H H H dx

e HH Hd d dx x w x M
Hdx dx dx

         

      
 

2
33 33 33 33 33 11

0 2 2 3 2

2 2 2
31 3311 11

2 3 02 2 2

16α 16α 32α 32μ 16μ 16α
( ) ( ) ( ) ( )

3 3 3 3 3 15
4 16μ16μ 2μ

( ) ( ) ( ) 0,
15 15 3 3

H dV V x x x x
H H H H H dx

h HH Hd d dx x w x M
Hdx dx dx

         

      

 

2
33 33 33 33 33 11

0 2 2 3 2

2 2 2
31 3311 11

2 3 0 02 2 2

2α 14α 16α 16μ 14μ 2α
( ) ( ) ( ) ( )

3 3 3 3 3 15
5 2μ2μ 4μ

( ) ( ) ( ) 2 0,
15 15 3 3

H dV V x x x x
H H H H H dx

h HH Hd d dx x w x B M
Hdx dx dx

          

       

 

 

2 2 2
31 31 31

2 3 32 2 2

32 3 2 4
2 11

2 4

4 4 5
( ) ( ) ( ) 2

3 3 3
22ρω ( ) 2ω ρ ( ) ( ) 0.

3 3

e H h H h Hd d dx x x p H
dx dx dx

H cH d dw x w x H w x
dx dx

      

   

              (6) 

     11 11 11
2 3

16 16α 2α
0,

15 15 15
H H Hd d dx x x

dx dx dx
       

11 11 11
2 3

16α 16μ 2μ
( ) ( ) ( ) 0,

15 15 15
H H Hd d dx x x

dx dx dx
       

11 11 11
2 3

2α 2μ 4μ
( ) ( ) ( ) 0,

15 15 15
H H Hd d dx x x

dx dx dx
       

3 2
31 31 31 31 31 3111

0 2 2 3 02

5 4 4 5 2
( ) ( ) ( ) ( ) 0,

3 3 3 3 3 3 3
e H e H e H h H h H h HH c dV V x x x w x M

dx
           

 
3 3 2 3

31 31 31 11
2 3 3

4 4 5 2 2ρω( ) ( ) ( ) ( ) ( ) 0.
3 3 3 3 3
e h H h H H cd d d d H dx x x w x w x

dx dx dx dxdx
                (7) 

Here, the following designations were introduced: 2
11 11 13 33 /c c c c  , ẽ31 = e31– c13e33/c33, h̃31 =

h31– c13h33/c33, α̃33 =– α33– e33h33/c33, ϵ̃33 =– ϵ33– e332/c33. They occurred after satisfying condition σ33 = 0 and 
exclusion of ε33.   

Research Results. The results of the bimorph calculation according to the proposed theory are compared to the 

finite element calculation in the low-frequency region for the volume ratio of the piezoelectric and piezomagnetic 

components 80 % BaTiO3 and 20 % CoFe2O4. The comparison has shown that the error in finding the characteristics of 

the mechanical and magnetic fields is less than 1%. When determining the electric field in the middle part of the plate, 

the difference was about 5%. Describing the situation in the vicinity of the support points, it should be noted that the 

size of the neighborhood along the longitudinal coordinate is approximately equal to the bimorph thickness. Here, when 

determining the electric field, a difference of 20% is recorded. 
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Here, the following designations were introduced: 2
11 11 13 33 /c c c c  , ẽ31 = e31– c13e33/c33, h̃31 =

h31– c13h33/c33, α̃33 =– α33– e33h33/c33, ϵ̃33 =– ϵ33– e332/c33. They occurred after satisfying condition σ33 = 0 and 
exclusion of ε33.   

Research Results. The results of the bimorph calculation according to the proposed theory are compared to the 

finite element calculation in the low-frequency region for the volume ratio of the piezoelectric and piezomagnetic 

components 80 % BaTiO3 and 20 % CoFe2O4. The comparison has shown that the error in finding the characteristics of 

the mechanical and magnetic fields is less than 1%. When determining the electric field in the middle part of the plate, 

the difference was about 5%. Describing the situation in the vicinity of the support points, it should be noted that the 

size of the neighborhood along the longitudinal coordinate is approximately equal to the bimorph thickness. Here, when 

determining the electric field, a difference of 20% is recorded. 
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The first step in studying the vibrations of a two-layer piezomagnetoelectric bimorph with a change in the 

volume ratio of BaTiO3 and CoFe2O4 in the composite is to determine its effective properties. Tables 1 and 2 present 

these properties found from the results of study [8].  

Table 1 
Material constants (elastic modules, dielectric and magnetic permittivity)  

for different BaTiO3 volume fraction 

Volume 
fraction 

BaTiO3 (%) 

Elastic modules Dielectric permittivity Magnetic permittivity 
GPa 10–9 f/m 10–4 N s2/C2 

11с  12с  13с  33с  44с  11к  33к  11μ  33μ  

0 286.0 173.0 170.0 269.5 45.30 0.080 0.093 5.900 1.570 
10 270.9 160.4 154.9 260.0 45.07 1.469 0.073 5.315 0.632 
20 256.6 148.5 142.6 250.2 44.84 2.815 0.098 4.730 0.396 
30 242.8 137.2 131.3 240.8 44.61 4.063 0.122 4.145 0.285 
40 229.9 126.8 120.9 231.9 44.38 5.287 0.147 3.560 0.223 
50 217.6 116.9 111.0 224.0 44.15 6.413 0.171 2.975 0.186 
60 206.7 108.1 102.1 215.6 43.92 7.490 0.220 2.390 0.155 
70 195.9 99.7 93.8 208.2 43.69 8.517 0.294 1.805 0.136 
80 186.0 92.3 85.9 201.3 43.46 9.448 0.441 1.220 0.120 
90 176.6 85.4 78.9 193.9 43.23 10.353 0.857 0.635 0.110 

100 166.0 77.0 78.0 162.0 43.00 11.200 12.600 0.050 0.100 
 

Table 2 
Material constants (piezoelectric, piezomagnetic and magnetoelectric modules) 

 for different BaTiO3 volume fraction 

Volume 
fraction 

BaTiO3 (%) 

Piezoelectric modules Piezomagnetic modules Magnetoelectric modules 
C/m2 N/A m 10-8 Ns/VC 10-11 Ns/VC 

31e  33e  15e  31h  33h  15h  11α  33α  

0 0 0 0 580.3 –699.7 550 0 0 
10 –0.006 0.029 1.16 223.6 –244.1 495 –1.33 1.97 
20 –0.013 0.059 2.32 130.0 –132.3 440 –2.35 2.36 
30 –0.019 0.088 3.48 86.7 –79.8 385 –3.07 2.48 
40 –0.025 0.132 4.64 61.6 –52.5 330 –3.48 2.50 
50 –0.031 0.176 5.80 43.3 –34.2 275 –3.62 2.47 
60 –0.038 0.220 6.96 29.7 –22.8 220 –3.45 2.43 
70 –0.040 0.352 8.12 20.5 –13.7 165 –3.00 2.36 
80 –0.060 0.571 9.28 13.7 –9.1 110 –2.27 2.29 
90 –0.263 1.187 10.44 4.6 –4.6 55 –1.28 2.16 

100 –4.400 18.600 11.60 0 0 0 0 0 
 
The bimorph vibrations were excited by a magnetic flux applied to the upper and lower faces (Fig. 2), which 

varied according to the harmonic law with an amplitude of 5
0 5 10B    Wb and a frequency of 10 kHz. 

Figure 3 shows the deflection in the middle of the layer depending on volume fraction of BaTiO3. It can be 

seen from the graph that the deflection in the position having coordinates 1 / 2x L , 3 / 2x H , is zero if the bimorph 

consists only of a piezoelectric BaTiO3. The deflection of the bimorph reaches the greatest value if it contains only 

piezoelectric magnet CoFe2O4. The deflection almost linearly depends on the volume ratio of the components of 

piezoactive materials.  
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Fig. 3. Deflection 1(x )w  in the middle of the layer for different BaTiO3 volume fraction 

Based on the data in Figure 4, it can be concluded that the electric potential in the middle of the layer varies 
nonlinearly with a change in the volume ratio of the composition of bimorph piezoactive materials. If the bimorph 
consists only of BaTiO3 or CoFe2O4, then the electric potential at the point ( / 2, / 2)L Н  is zero and reaches the highest 
value at 35 % BaTiO3 in the bimorph. 

Fig. 4. Electric potential 1(x )  for different BaTiO3 volume fraction

 The analysis of Figures 5 and 6 allows us to conclude that the magnetic potential in the middle of the layer 2 ( / 2)L

and at the outer boundary 3( / 2)L  increases almost linearly with an increase in the volume of BaTiO3 in the bimorph. 

 Fig. 5. Magnetic potential 2 ( / 2)L  for different BaTiO3 volume fraction
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Fig. 6. Magnetic potential 3 ( / 2)L  for different BaTiO3 volume fraction 

Discussion and Conclusions. An applied theory is proposed for calculating transverse vibrations of a bimorph 

made of two layers of a composite based on CoFe2O4 and BaTiO3 with both piezoelectric and piezomagnetic properties, 

in an alternating magnetic field. Such a design can serve as a model of a piezoelectric generator of a device for 

collecting and storing energy under the action of an external magnetic field. In the low-frequency region (below the 

natural frequency of the first bending mode), calculations of the stress-strain state of the bimorph, the distribution of 

electric and magnetic fields, are carried out. The dependence of the deflection, electric and magnetic potentials on the 

volume ratio of the bimorph composition is investigated. In further work, it is assumed to determine the output potential 

and power of an electric current excited by an alternating magnetic field. The purpose of these surveys will be to collect 

electrical energy. 
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