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Introduction. The paper considers an axisymmetric problem of elasticity theory for a radially inhomogeneous
transversally isotopic nonclosed sphere containing none of the 0 and 7 poles. It is believed that the elastic moduli are
linear functions of the radius of the sphere. It is assumed that the side surface of the sphere is fixed, and arbitrary
stresses are given on the conic sections, leaving the sphere in equilibrium. The work objective is an asymptotic analysis
of the problem of elasticity theory for a radially inhomogeneous transversally isotropic sphere of small thickness, and a
study of a three-dimensional stress-strain state based on this analysis.

Materials and Methods. The three-dimensional stress-strain state is investigated on the basis of the equations of
elasticity theory by the method of homogeneous solutions and asymptotic analysis.

Research Results. After the homogeneous boundary conditions set on the side surfaces of the sphere are met, a
characteristic equation is obtained, and its roots are classified with respect to a small parameter characterizing the
thickness of the sphere. The corresponding asymptotic solutions depending on the roots of the characteristic equation
are constructed. It is shown that the solutions corresponding to a countable set of roots have the character of a boundary
layer localized in conic slices. The branching of the roots generates new solutions that are characteristic only for a
transversally isotropic radially inhomogeneous sphere. A weakly damping boundary layer solution appears, which can
penetrate deep away from the conical sections and change the picture of the stress-strain state.

Discussion and Conclusions. Based on the solutions constructed, it is possible to determine the applicability areas of
existing applied theories and propose a new more refined applied theory for a radially inhomogeneous transversally
isotropic spherical shell.
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Introduction. One of the properties of materials affecting the stress-strain state of elastic bodies is their
heterogeneity. Investigating the stress-strain state of inhomogeneous bodies based on three-dimensional equations of
elasticity theory is associated with significant mathematical difficulties.

A number of studies are devoted to the investigation of three-dimensional problems of elasticity theory for the
sphere.

In [1], based on the equations of elasticity theory for the sphere, a general solution satisfying the boundary
conditions on the contour in the sense of Saint-Venant was obtained, the stress-strain state of the sphere was analyzed.
In [2], based on the equations of elasticity theory for a thick isotropic sphere, homogeneous solutions depending on the
roots of the transcendental equation are constructed. In [3], on the basis of solving three-dimensional problems of
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elasticity theory for a sphere of small thickness, the accuracy of existing applied theories is studied, and a method for
constructing refined applied theories is given. A three-dimensional asymptotic theory of a transversally isotropic
spherical shell of small thickness is presented in [4]. An analysis of the three-dimensional stress-strain state of a three-
layer sphere with a soft filler is described in [5]. In [6], the torsion problem is studied by the method of homogeneous
solutions for a radially inhomogeneous transversally isotropic sphere of small thickness, when the elastic characteristics
are changed by linear, quadratic and inversely quadratic laws along the radius. In [7], the torsion problem for a radially
layered sphere with an arbitrary number of alternating hard and soft layers is studied. The existence of weakly damping
boundary-layer solutions and a possible violation of the Saint-Venant principle in its classical formulation are shown.
An applied theory of torsion of a radially layered sphere is constructed, which adequately takes into account the
emerging features. In [8], the problem of elasticity theory for a radially inhomogeneous hollow ball is investigated using
the finite element method and spline collocation. In [8], using the finite element method and spline collocation, the
problem of elasticity theory for a radially inhomogeneous hollow ball is studied. The results obtained by finite element
methods and spline collocation are compared. The axisymmetric problem of the theory of elasticity for a radially
inhomogeneous transversally isotropic sphere of small thickness is studied by the method of asymptotic integration of
the equations of the theory of elasticity in [9]. Inhomogeneous and homogeneous solutions are constructed. The nature
of the stress-strain state is established. In [10], an axisymmetric problem of elasticity theory for a sphere of small
thickness with variable elasticity moduli is considered by the method of homogeneous solutions. Asymptotic formulas
for displacements and stresses are obtained, which provides calculating the three-dimensional stress-strain state of a
radially inhomogeneous sphere.

Materials and Methods. Deformation is considered within the framework of the linear theory of elasticity of a
nonclosed sphere, whose material is transversely isotropic and inhomogeneous along the radial coordinate. The
thickness of the hollow sphere is assumed to be small compared to the radius and size along the arc coordinate.
Boundary conditions are considered that provide solving the problem in an axisymmetric formulation. We assume that
the sphere does not contain any of the poles 0 and 7. In the spherical coordinate system, the area occupied by the
sphere will be denoted by I'= {r eln;nl, 0€[6;06,], ¢<[0; 27[]}.

The linear dependence of the elastic properties of the material along the radius is considered:

4, :al(?)r’ 4, :a](g)r’ Ay :agg)ra A5 :aég)r’ Ay :az(t?t)r’ (1)
where af?),al(g),aég),ag),aﬁ) — some constants.

The system of equilibrium equations in the absence of body forces in a spherical coordinate system 7,60,¢ has
the form [11]:
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0,450 45,049 — stress tensor components, which are expressed in terms of displacement vector components

v, =v,(r,0), v, =v,(r,0) as follows [4]:
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Substituting (5)—(8) into (2)—(3), taking into account (1), we obtain the equations of equilibrium in
displacements.
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Here, p= lln(ij — new dimensionless variable; & = l1n[r—2j— a small parameter characterizing the thickness of
0 1

a'r,

) v, ; . . .
the sphere; 7, = .frl ry pel-L1l u, ==L, uy=—", b;o) = ’TO— dimensionless quantities; G, — some parameter
Ty Ty 0
having the dimension of the elasticity modulus.
We assume that the lateral part of the sphere boundary is fixed, i.e.,

=0, (11)
uy|, ., =0. (12)
We assume that at the ends of the sphere (on the conical sections), the stresses are specified
Tulys, = 1P T, , = Sou(P). (13)
Here, f,.(p), f,,(p) (s =1;2) — sufficiently smooth functions that satisfy the equilibrium conditions.
Solutions (9), (10) are sought in the form [3, 4]:
u,(p,0)=a(p)m(0); u,(p,0)=d(p)m'(0), (14)
Where function m(0) satisfies the Legendre equation:
m”(t9)+ctg6’-m’(6’)+(z2 —i}m(@) =0. (15)
After substituting (14) into (9), (10), (11), (12), taking into account (15), we obtain:
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The system of linear algebraic equations with respect to C,,C,,C,,C,, is obtained through satisfying the

homogeneous boundary conditions (18), (19). The zero equality of the determinant of this system is a condition for the

existence of nonzero solutions and leads to a characteristic equation with respect to spectral parameter
A(Z;g) = (quz — P14, )(tlp2 —5Lp )Shz (5(51 +5, )) + 23)
+(p1t2 — P»4, )(pl% =Dyt )Sh2 (5(52 =5 )) =0.

Equation (23) has countable set of roots z, . The general solution to the problem is obtained by summing over

the roots of equation (23)
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The set of roots of equation (23) at &€ — 0 consists of countable sets of roots

Zp = % +0(¢g). 26)
£
For 6, , we have:
1% At b >0, b’ —b,>0:
(5, =) (B2 05,3, )sin (s, +5,)8) £ (s, +5,) (B2 +8s,s, )sin((s, —s,)8) =0, (27)
where
S =\/b1+\/ﬁ; S, =\/bl_\/ﬁ;
b= (2624) (26989 + 0 ~HPBY ) by =B
2% At b >0, blz -b, <0:
plat0er ~(40 (o - )~ Jsh (20)
(28)
ia[%{f’) B+ (b0 (o = )~ b )]sin(Zéﬂ) =0,
where

5, = 1be +«/bf —b, =+(a+ip);
s, =+/h, —afbf —b, =+(a—if).
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3°. At b >0, bl =b,:
(B)s* = b )sin(255) £2(bs* + b ) s =0, (29)
where s = \/b_l
4°. At b <0, b —b, >0:

(s, —s, )(bﬁ) —bs;s, )sh ((s1 +5, )5) £(s, +s, )(bjg) +bs,s, )sh ((51 =S5, )5) =0, (30)

where
K :1f|b,|—«fb]2 -b,; s, :~“b1|+«fb]2 —b,.
5% At b, <0, b} —b, <0:
ﬁ[zbf;”az (00 (a* = ) - )Jsin(Zé‘a)i

(31)
ta [21;;;” B+ (b (= B*) LY )]sh (258) =0,
where
s, = “b1|_ fblz -b, =H(a—-if);, s,= Qﬂb1|+~(b12 -b, =X(a+ip).
6". At b <0, B =b,:
(Bs” =B ) sh(255) +2(bs* +b) ) 55 = 0, (32)

where s = \ﬁ

Equation (27)—(32) has a countable set of solutions.
Let us present an asymptotic construction of solutions corresponding to different groups of roots of the
characteristic equation (23). Substituting (26) into (24), (25) and expanding the resulting expressions in powers &, we

have:
1 0

a) u,(p;0)= iE,ﬁ”df {(bﬁ) +bY) )[(bﬁ) +bVs2 )s1 cos(8,s, )sin(5,s,0) -

k=1

—(bﬁ) +bst )s2 cos (3, )sin(&kszp)] + 0(6‘)} m, (6), (33)

uy (p;0) = ;EA(I)@? {(bg:) +b0s? )(bg? +b0s? )[cos(é‘ks2 )cos(8,s,) —cos(J,s, ) cos(8,s,p) |+ 0(5)} m, (6),(34)

where &, are the solutions to equation

(s, —s, )(bg:) —bVs;s, )sin((sl +5, )5) +(s,+s, )(bg:) +b)s,s, )Sin((sl -5, )5) =0 (35)

0) u, (p;0)= iE,({z)é'kS {(big) +bf§))[(bﬂ) +bl(;”s22)s1 sin(8,s, )cos(5,s,0)—
k=1
—(bﬁ) +b0s] )s2 sin(8,.s, )cos(&kszp)] + 0(5)} m, (6), (36)

u, (p:0)= iEkma; {(b;? +bs? ) (B + B3 ) sin (S5, )sin(8,5,0) —sin(8,s, )sin(8,5,0) |+ O(&) m] (6), (37)
k=1
where ¢,, are the solutions to equation

(s5,—s, )(bﬁ) —bl(]o)slsz)sin((s1 +5, )5)—(s, +5, )(bg:) +bVs;s, )sin((s1 —32)5) =0. (38)
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a)u
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[ 208} cos(6,8)sh(5,2) + (b)) (& = ) - b )sin (5, 8) ch(5,a) | -

~[sin(3, 5} sh(ovap) + feos(3, ) ch(diap) )

200 sin (6, 8)ch(5,0)~ (b)) (= ) ~b4) ) cos (6, ) sh(5,) | + O(g)}mk ©),

xcos(&kﬁp)sh(5kap)][2aﬁb(?) cos (5, B)sh(S.0)+ (b(o)(a —ﬁ2)—bﬁ))sin(é‘kﬁ)ch(dka)]—
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x [Zaﬂbff) sin

—[Zaﬁbl(f) cos(SB,p)sh(S.ap)+ (bl(?) (a2 -B ) -bY )sin (6,8p)ch (5kap)] x

(8.8)ch(8,a) (b (@ = )b )eos(8.8)sh(8,) |+ O ()| m (6).

where §,, are the solutions to equation

Blabya ~(b) (@ = p) -0 ) |sh(260) +a 250 B° +(b) (@ = 5*) =B ) [sin (268) = 0. (41)

0) u

L (o

0)-
-[mﬁb}? cos(8,)ch(8,a) + (b (a* = *) b )sin (s, ﬂ)sh(éka)] -

iE;‘”&: (6 + b ){[ Bsin(8,8p) ch(8,ap) - acos(8, Bp) sh(8,ap) |

k=1

~[asin (5, Bp)ch(,ap)+ Beos(S, ﬂp)sh(ﬁkap)][zaﬂbf?) sin(5, B)sh(5,e) -

xcos(ékﬂp)ch(§kap)][Zaﬂbf?) cos(5,B)ch(S.er)+ (bff) (a2 —ﬁz)—bﬁg) )sin(5kﬂ)sh(5ka)] -

x[Za[)’b

Uy (,0

(0)
y, sin

(b0 (@ = )= )cos(8,8)ch(8.a) |+ O(2) | m, (6),

0)= iEf)é: {[2048[)1(?) sin(5kﬂp)sh (é‘kap) - (bl(lo) (a2 -p’ ) -b ) x

k=1

—[Mﬁb}f) cos(88,p)ch(3,ap)+ (B (o = )~ b )sin (&, ﬁp)sh(akap)]x

(5,8)sh(8,a)~ (b (e = ) =LY ) cos (&, ﬁ)ch(&ka)]+0(5)} m, (6),

where ¢,, are the solutions to equation

30

Blaby e ~(B) (a = B7) -0 ) |sh(260) ~a| 267 B2 + (B ( = ) -84 ) |sin (268) 0.

a)

u

ZE,ES) {( b)s? +b(°))(cos(§ks)cos(5ksp)+psin(é)“,(s)sin(é'ksp))—i-

(39)

(40)

(42)

(43)
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0) 2 (0)
+(b11 s _b44 )

50,

sin(&ks)cos(éksp)+0(8)}mk (9), (45)

» b's* +b5) )2
;0 _ E(S) ( 11 44
“(e:0) ; C (605 +bY) 8,

x(psin(dks)cos(5,(3/))—cos(é‘ks)sin(@(sp)) + 0(8)} m; (0), (46)
where §,, are the solutions to equation

(Bs* = b )sin(255) +2(bs* + b ) 55 =0 (47)

. 02 _pO
6) u,(p;0)=> E° {M c:os(éks)sin(éksp)—(b](lo)s2 +b§2))><

k=1 kS

x(sin(8,s)sin(8,50)+ pcos(5,s)cos(5,sp) )+ 0(8)} m, (6) (48)
x BOs* b )
u, (p:0)=> E© (”—“X
(0= 25 (b9 +5)5,s
x[ pcos(d,s)sin(3,sp)—sin(5,s)cos(5,sp) |+ O(g)} m, (0), (49)

where §,, are the solutions to equation
(B's* by )sin(258) = 2(b)'s* + b )55 = 0 (50)
4° In case b <0, b’ —b, >0, asymptotic formulas for displacements are obtained from (33)—(38) through
replacing s,,s, with is,, is,.
5% In case b, <0, b’ —b, <0 , asymptotic formulas for displacements are obtained from (39)—(44) through
replacing s,,s, with is,,is, .
6". In case b, <0, b’ =b, , all asymptotic formulas for displacements are obtained from (45)—(50) through

replacing s withis .
For roots (26), the main term of the asymptotic solution of equation (15) at £ — 0 takes the form [9, 10]:

11 7
\sin@ 4f_52 eXp[_g N (0_‘91)}(”0(8)); near =20,
0k

m @)=y 1 (D)
————exp| & -0, (0-6,) [(1+.0()); near 6=6,.
'_smﬁ 4y—_§02k 0k 2 2
We represent displacements in the form:
u,(p,0) =2 Ea, (p)m, (0), (52)
k=1
u,(p.0) = Y E,d, (p)m] (6). (53)
k=1
We represent stresses o, and o, in the form:
G = 2 E, (0 (p)m,(0)+ 5 (p)m] (O)cig0), (54)
k=1
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0,0 =D B0y (p)m) (6), (55)
k=1
here,
1 , 1
o () =—[ B ai(p) v (B + b5 ), (p) - ebfy ( —Zjdk (p)}

ol (p) =05 =0 ) (p);
(0)

&y () = ”? [d:(p)+ £(a, (0)—d, (P)].

The character of solutions (33)—(50) depends essentially on the type of roots ¢,, . The first boundary-layer
terms of these solutions correspond to the Saint-Venant edge effect [4]. In the case of imaginary roots o, , these
boundary layers have weak damping. Thus, the stress-strain state is far enough away from the ends and significantly
depends on them. That is, in this case, the transversely isotropic properties of the inhomogeneous material significantly,
in comparison to the isotropic material of the sphere, change the pattern of the stress-strain state. At the same time, for
real or complex J, , the pattern of the stress-strain state of an inhomogeneous sphere for such materials qualitatively
coincides, differing in the decay rate of the above-described Saint-Venant boundary layer solutions of an
inhomogeneous plate.

From (51), it turns out that when moving away from the conic sections 6=6,(j=1,2), solutions(33)—~(50)
decrease exponentially.

Since the constructed solutions satisfy the equilibrium equation and boundary conditions on the side surface,

the Lagrange variational principle takes the following form [4, 11]:

&*dp=0. (56)
0

0=0,

Jj=

S J[(0 £,00), +(0, - 1:,02)w,

Substituting (52)—(55) into (56) and taking OF « as independent variations, we obtain an infinite system of linear

algebraic equations
M Eq, =1, (j=12..), (57)
k=1

Here,

1 2 1
g, = [l (p)d, (p)e””dp(z m(0,)m’ (6, )) +[ ol (p)d, (p)e**d px
-1 s=1 -1

[Z m (6, (6 )ergo), j +[ oo, <p>e2wdp[2m; ©m, @)j,

2

7, = Z{m; O) [ £u(p)d (P rdp+m (0)][ f.(P)a, (p)e“‘*’dp}

s=1

System (57) is always solvable under physically meaningful conditions imposed on the right side (57). The
solvability and convergence of the reduction method for (57) is proved in [12].

Using the smallness of parameter &£ , it is possible to construct asymptotic solutions of system (57).

Research Results. The structure of the stress-strain state of a radially inhomogeneous transversally isotropic
sphere of small thickness is analyzed under kinematic conditions on the side surface. It is shown that, in the case of
fixing the side surface, the character of the solution is determined by the boundary layers. It is found that the asymptotic
decomposition of the stress state starts with a solution describing the Saint-Venant edge effect in the theory of
transversally isotropic inhomogeneous plates. In the case of transversal isotropy of the radially inhomogeneous material
of the sphere, some boundary layer solutions decay very weakly, they can penetrate deep far from the conic sections and
change the pattern of the stress-strain state. Asymptotic relations for displacements and stresses are derived, which

provide calculating the three-dimensional stress-strain state of a radially inhomogeneous transversally isotropic sphere
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of small thickness with any predetermined accuracy. It is shown that the root branching generates a countable set of
new solutions for a transversely isotropic radially inhomogeneous sphere.

Discussion and Conclusions. An asymptotic analysis of the stress-strain state of inhomogeneous shells, based
on three-dimensional equations of elasticity theory, makes it possible to establish the limits of application of
approximate theories. The identified behavior pattern of the solution far from the ends for different boundary conditions
on the side surfaces can become the basis for creating refined applied theories for calculating the deformation of a
radially inhomogeneous transversally isotropic spherical shell of small thickness. One of the applications of the
asymptotic analysis performed can be the calculation of shells with thin coatings, in which, in this case, a radial

inhomogeneity arises [13, 14].
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