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Introduction. The launch vehicle (LV) in flight and the dynamic components of loads from the impact of a trapezoidal 
wind gust are considered. It is proposed to determine the dynamic components of the force factors using analytical 
solutions for the structure points accelerations. The work objective is to create a technique for selecting the duration of 
the standard gust, under the influence of which maximum loads are provided in the sections of the LV structure. 
Materials and Methods. The launch vehicle is presented as an uneven beam. The description of its vibrations is reduced 
to a system of independent ordinary differential equations that determine the motion of an equivalent system of 
oscillators. The equation of oscillator vibrations under the action of a trapezoidal pulse load is solved by the overlay 
method, and it is reduced to the calculation of the Duhamel integral. It is proposed to get the parameters of an 
equivalent system of oscillators based on the results of the calculation of dynamic characteristics for a finite element LV 
model in the Nastran program. 
Results. Analytical relations for the LV structure point accelerations under the action of a trapezoidal wind gust are 
given. For the beam model, test calculations of accelerations were carried out according to the technique proposed in 
this paper. These data are compared to the results of finite element modeling. With the help of analytical solutions, 
dependences are constructed that determine the nature of the change in the magnitude of the bending moment for 
different sections of the launch vehicle when the duration of the wind gust varies. 
Discussion and Conclusions. The presented technique provides building an equivalent dynamic model of systems with 
a large number of degrees of freedom on the example of a LV and obtaining analytical solutions for accelerations of 
points of a mechanical system under trapezoidal external action. These solutions are applicable for the study of dynamic 
loads. The analysis results enable to select the duration of the wind gust, at which maximum loads are reached in the 
sections of the LV structure. Calculations based on the analytical solutions are very economical in terms of time spent. 
They can be used in design calculations for preliminary assessment of loading. 
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Introduction. During the operation of the launch vehicle (LV), loads occur in the elements of its design. We 
are talking about longitudinal and shear forces, bending and torsion moments. Data on these force factors are used for 
strength analysis in the design of new products, experimental development of the design [1], and adaptation of launch 
vehicles for a specific start-up [2]. Loads are divided into quasi-static and dynamic. The quasi-static ones arising in 
flight are calculated from the condition of dynamic equilibrium of the LV as a solid body, taking into account the 
permissible parameters of the ascent trajectory. 

Generalized beam models are usually used to calculate dynamic loads. Such loads are determined by the results 
of solving the equation of the elastic LV motion, which in general is a partial differential equation. Methods based on 
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Introduction. During the operation of the launch vehicle (LV), loads occur in the elements of its design. We 
are talking about longitudinal and shear forces, bending and torsion moments. Data on these force factors are used for 
strength analysis in the design of new products, experimental development of the design [1], and adaptation of launch 
vehicles for a specific start-up [2]. Loads are divided into quasi-static and dynamic. The quasi-static ones arising in 
flight are calculated from the condition of dynamic equilibrium of the LV as a solid body, taking into account the 
permissible parameters of the ascent trajectory. 

Generalized beam models are usually used to calculate dynamic loads. Such loads are determined by the results 
of solving the equation of the elastic LV motion, which in general is a partial differential equation. Methods based on 
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the application of decomposition of the solution by the eigenvibration tones of the structure are able to provide a high 
speed of calculation in combination with sufficient accuracy of the results [3]. As shown in [4], using the method of 
decomposition by the forms of natural oscillations, it is possible to proceed to a system of independent ordinary 
differential equations. They describe: 

— centroidal motion of the LV, 
— rotation of the longitudinal axis of the LV relative to the center of mass, 
— transverse elastic modes of the LV in flight. 
The transition to independent equations describing elastic modes of the LV means that the distributed 

parameters of oscillators will be taken into account, each of which is a single-degree-of-freedom system. The motion of 
such an oscillator can be considered independently of the others, and a solution can be obtained for each of them using 
well-known methods of oscillation theory. 

To calculate the loads in flight, not the entire ascent trajectory is considered, but only some of its points, the so-
called load cases, characterized by the extreme value of individual parameters affecting loading, or the maximum value 
of loads on individual structural elements. One of the most important cases of loading is the atmospheric flight of the 
LV [1, 5]. The influence of a turbulent atmosphere on the LV loading can be determined by statistical methods [6, 7], or 
within the framework of a conservative approach, when the maximum possible (with some level of probability) wind 
characteristics are taken into account. This paper discusses the second approach. A single specified wind gust is 
accepted as an external dynamic effect. The profile of the specified gust, which characterizes the change in wind speed 
over time, can be set in a trapezoidal [8], cosine, or sinusoidal form [9]. In this paper, we will consider the launch 
vehicle motion under the trapezoidal gust action. The duration of the specified gust is usually selected to be comparable 
with the period of the lowest transverse tone of the LV1 vibrations. At the same time, there are often demands for its 
variation to achieve maximum efforts in the LV sections [8, 10]. The complexity of calculations using standard finite 
element (FE) analysis programs is due to: 

— the need to vary the parameters of external action, 
— a large number of calculated cases, 
— a variety of design options and configurations of structures at the stage of design calculations [9].  
This paper objective is to develop a methodology for selecting the duration of the specified gust using 

analytical solutions obtained for a simplified dynamic LV model presented as an equivalent system of oscillators. 
A semi-analytical approach using the Duhamel integral was successfully applied in [11] for hydroelastic 

analysis of ships. In [12] and a number of other works, the Duhamel integral is used as part of the problem solution of 
loading bridges with moving loads. In this paper, the Duhamel integral is used for analytical solutions to the LV 
reaction to the short-term impact of a wind gust in flight. 

Materials and Methods. At the stages of preliminary design, it is advisable to use flat design schemes for 
beam models. With the simplicity and speed of the solution, they enable to determine the motion variables and internal 
forces (with an accuracy acceptable for this stage of design) [13]. Imagine the LV in the form of an elastic beam with 
variable length mass and stiffness. Assume the usual assumptions for the resistance of materials, including the 
hypothesis for the smallness of elastic deformations. To determine the internal force factors in the LV section, we use 
the acceleration (overload) method [1, 4], which can be interpreted as a cross-section method adapted for dynamic 
calculation. In this case, internal forces are found from the conditions of static equilibrium of mentally cut off parts of 
the structure under the action of external distributed loads, supplemented by D'Alembert’s forces of inertia, and the 
desired internal forces. Quasi-static and dynamic values of force factors are determined separately based on pre-
calculated accelerations, and then summed up [4]. 

This paper considers the issue of determining the dynamic loading of the LV in the transverse direction under 
the action of a wind gust, whose speed is directed perpendicular to the longitudinal axis of the LV. It is assumed that the 
loading in the longitudinal direction can be calculated independently. It is not considered in this paper. 

To determine dynamic accelerations, the LV is presented as a free elastic beam. Its motion is studied in the 
vicinity of the moment of time corresponding to the load case under consideration, and is described in deviations from 
the state of dynamic equilibrium in which the LV was before the wind gust, moving along the nominal (undisturbed) 
trajectory. Here, such parameters as the mass and moment of inertia of the LV, the motor power, and the angle of 
projection are assumed to be constant and equal to the characteristics of the considered point of the nominal trajectory. 
The perturbed motion of the elastic LV is investigated in a fixed coordinate system associated with the position that the 
LV occupied at the time of the calculation. The perturbed motion will be a combination of plane-parallel motion of the 
LV as a rigid body in the plane in which the dynamic load is applied, and elastic modes of the structure. We do not take 

                                                           
1Likhoded AI. Dinamika konstruktsii i opredelenie nagruzok. Korolev: Izd-vo AO TSNIImash; 2020. 239 p. (In Russ.) 
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into account the control system response, i.e., for the stabilization machine, we assume a long delay time compared to 
the time of application of the dynamic load. In general, under the influence of a wind gust, together with elastic modes 
of the body, the LV starts to move as a rigid body. The transverse component of the aerodynamic force, which is 
considered proportional to it at a small angle of attack, changes its value due to the displacement of the structure in the 
direction of the wind gust and rotation relative to the forward flow vector. The projection of gravity on the transverse 
axis of the LV also changes. To properly account for these changes, the equations of LV motion must be integrated with 
the equations describing the logic of the automatic stabilization, which is impossible at the early stages of design. 
Taking into account the significant mass and the moment of inertia of the LV, we will consider small: 

— the angle of rotation of the LV as a rigid body for the time of calculation; 
— the rate of displacement of the LV center of mass in the direction of the wind. 
 This enables to ignore the impact of the above changes. The angle-of-attack increment (and, consequently, the 

transverse component of the aerodynamic force) is considered to depend only on the magnitude of the wind gust speed 
given as a function of time. Thus, taking into account the accepted assumptions, the aerodynamic load in the transverse 
direction is a load distributed along the length of the beam with a time-dependent proportionality coefficient. The law of 
distribution of aerodynamic load along the length of the LV is determined experimentally and is considered to be 
known in advance. The law of change of the proportionality coefficient (angle of attack) from time to time is 
determined by the selection of the profile of the specified wind gust. 

The motion of the LV modeled as an elastic beam can be described using the well-known equation of forced 
transverse vibrations of the beam, written with the account for Voigt's hypothesis: 

 𝑚𝑚(𝑥𝑥) 𝜕𝜕2𝑦𝑦(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑡𝑡2 + (1 + ℎ 𝜕𝜕

𝜕𝜕𝑡𝑡) 𝜕𝜕2

𝜕𝜕𝑥𝑥2 [𝐵𝐵(𝑥𝑥) 𝜕𝜕2𝑦𝑦(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥2 ] = 𝑞𝑞(𝑥𝑥, 𝑡𝑡), (1) 

where 𝑚𝑚(𝑥𝑥) — mass per unit length; 𝐵𝐵(𝑥𝑥) — bending stiffness; 𝑞𝑞(𝑥𝑥, 𝑡𝑡) — distributed external load; ℎ — friction 
factor. 

This equation should be supplemented with a boundary condition: the internal forces in the initial and final 
sections are zero. It means:  

 𝜕𝜕
𝜕𝜕𝑥𝑥 [𝐵𝐵(𝑥𝑥) 𝜕𝜕2𝑦𝑦(𝑥𝑥,𝑡𝑡)

𝜕𝜕𝑥𝑥2 ] = 0, 𝐵𝐵(𝑥𝑥) 𝜕𝜕2𝑦𝑦(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥2 = 0,   при 𝑥𝑥 = 0, 𝑥𝑥 = 𝐿𝐿, (2) 

where 𝐿𝐿 — the LV length. 
In this paper, the aerodynamic force is taken as an external distributed load, which can be presented as a 

product of functions:  
 𝑞𝑞(𝑥𝑥, 𝑡𝑡) = 𝑅𝑅(𝑡𝑡)𝑌𝑌𝑎𝑎(𝑥𝑥), (3) 
where 𝑅𝑅(𝑡𝑡) — the function that determines the temporal variability of the aerodynamic force and varies according to 
the trapezoidal law in accordance with the wind gust model adopted in this paper; 𝑌𝑌𝑎𝑎(𝑥𝑥) — the function of the 
aerodynamic force distribution along the LV length. 

Let us consider free LV vibrations without taking into account friction forces (at 𝑞𝑞(𝑥𝑥, 𝑡𝑡) = 0, ℎ = 0). We 
substitute the variable separation method 𝑦𝑦(𝑥𝑥, 𝑡𝑡) = 𝑓𝑓(𝑥𝑥) ∙ 𝑞𝑞(𝑡𝑡). In this case, from equation (1) with boundary 
conditions (2), it is possible to arrive at an ordinary differential equation  

 d2

d𝑥𝑥2 [𝐵𝐵(𝑥𝑥) d2𝑓𝑓(𝑥𝑥)
d𝑥𝑥2 ] − 𝑝𝑝2𝑚𝑚(𝑥𝑥)𝑓𝑓(𝑥𝑥) = 0, (4) 

with boundary conditions: 

 d
d𝑥𝑥 [𝐵𝐵(𝑥𝑥) d2𝑓𝑓(𝑥𝑥)

d𝑥𝑥2 ] = 0, 𝐵𝐵(𝑥𝑥) d2𝑓𝑓(𝑥𝑥)
d𝑥𝑥2 = 0,   при 𝑥𝑥 = 0, 𝑥𝑥 = 𝐿𝐿. (5) 

Solution (4) with conditions (5) is a classical Sturm-Liouville problem. Solving it, one can find a set of 
eigenforms 𝑓𝑓𝑗𝑗(𝑥𝑥) and eigenfrequencies 𝑝𝑝𝑗𝑗 of the beam in question (𝑗𝑗 = 1, 2, … ). It is known2 that some solutions to 
system (4) correspond to zero natural frequencies. The forms corresponding to zero natural frequencies determine the 
translational motion of the LV as a rigid body together with the center of mass and rotation around the center of mass: 
𝑓𝑓−1 = 1, 𝑓𝑓0 = 𝑥𝑥 − 𝑥𝑥𝐶𝐶, where 𝑥𝑥𝐶𝐶  — coordinate of the LV center of mass. 

It should be noted that the LV mass and stiffness characteristics most often have a piecewise constant pattern 
of distribution. In this case, the equations of form (1) and (4) should be written separately for each homogeneous beam 
section with boundary conditions at the junctions of the sections, as in the derivation of the ratios of the initial 
parameters method [1, 14]. In the given paper, this entry is omitted, because the calculation of the dynamic 
characteristics (modal analysis) of structures is carried out numerically, using the finite element method. 

Let us imagine the forced vibrations of an elastic beam modeling the LV structure in the form of 
decomposition according to the natural modes. Assume that the beam stiffness axis passes through its center of mass. 

                                                           
2 Kolesnikov KS. Dinamika raket. Moscow: Mashinostroenie; 2003. 520 p. (In Russ.) 
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into account the control system response, i.e., for the stabilization machine, we assume a long delay time compared to 
the time of application of the dynamic load. In general, under the influence of a wind gust, together with elastic modes 
of the body, the LV starts to move as a rigid body. The transverse component of the aerodynamic force, which is 
considered proportional to it at a small angle of attack, changes its value due to the displacement of the structure in the 
direction of the wind gust and rotation relative to the forward flow vector. The projection of gravity on the transverse 
axis of the LV also changes. To properly account for these changes, the equations of LV motion must be integrated with 
the equations describing the logic of the automatic stabilization, which is impossible at the early stages of design. 
Taking into account the significant mass and the moment of inertia of the LV, we will consider small: 

— the angle of rotation of the LV as a rigid body for the time of calculation; 
— the rate of displacement of the LV center of mass in the direction of the wind. 
 This enables to ignore the impact of the above changes. The angle-of-attack increment (and, consequently, the 

transverse component of the aerodynamic force) is considered to depend only on the magnitude of the wind gust speed 
given as a function of time. Thus, taking into account the accepted assumptions, the aerodynamic load in the transverse 
direction is a load distributed along the length of the beam with a time-dependent proportionality coefficient. The law of 
distribution of aerodynamic load along the length of the LV is determined experimentally and is considered to be 
known in advance. The law of change of the proportionality coefficient (angle of attack) from time to time is 
determined by the selection of the profile of the specified wind gust. 

The motion of the LV modeled as an elastic beam can be described using the well-known equation of forced 
transverse vibrations of the beam, written with the account for Voigt's hypothesis: 
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where 𝑚𝑚(𝑥𝑥) — mass per unit length; 𝐵𝐵(𝑥𝑥) — bending stiffness; 𝑞𝑞(𝑥𝑥, 𝑡𝑡) — distributed external load; ℎ — friction 
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This equation should be supplemented with a boundary condition: the internal forces in the initial and final 
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 𝜕𝜕
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where 𝐿𝐿 — the LV length. 
In this paper, the aerodynamic force is taken as an external distributed load, which can be presented as a 

product of functions:  
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where 𝑅𝑅(𝑡𝑡) — the function that determines the temporal variability of the aerodynamic force and varies according to 
the trapezoidal law in accordance with the wind gust model adopted in this paper; 𝑌𝑌𝑎𝑎(𝑥𝑥) — the function of the 
aerodynamic force distribution along the LV length. 

Let us consider free LV vibrations without taking into account friction forces (at 𝑞𝑞(𝑥𝑥, 𝑡𝑡) = 0, ℎ = 0). We 
substitute the variable separation method 𝑦𝑦(𝑥𝑥, 𝑡𝑡) = 𝑓𝑓(𝑥𝑥) ∙ 𝑞𝑞(𝑡𝑡). In this case, from equation (1) with boundary 
conditions (2), it is possible to arrive at an ordinary differential equation  
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with boundary conditions: 
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d𝑥𝑥2 = 0,   при 𝑥𝑥 = 0, 𝑥𝑥 = 𝐿𝐿. (5) 

Solution (4) with conditions (5) is a classical Sturm-Liouville problem. Solving it, one can find a set of 
eigenforms 𝑓𝑓𝑗𝑗(𝑥𝑥) and eigenfrequencies 𝑝𝑝𝑗𝑗 of the beam in question (𝑗𝑗 = 1, 2, … ). It is known2 that some solutions to 
system (4) correspond to zero natural frequencies. The forms corresponding to zero natural frequencies determine the 
translational motion of the LV as a rigid body together with the center of mass and rotation around the center of mass: 
𝑓𝑓−1 = 1, 𝑓𝑓0 = 𝑥𝑥 − 𝑥𝑥𝐶𝐶, where 𝑥𝑥𝐶𝐶  — coordinate of the LV center of mass. 

It should be noted that the LV mass and stiffness characteristics most often have a piecewise constant pattern 
of distribution. In this case, the equations of form (1) and (4) should be written separately for each homogeneous beam 
section with boundary conditions at the junctions of the sections, as in the derivation of the ratios of the initial 
parameters method [1, 14]. In the given paper, this entry is omitted, because the calculation of the dynamic 
characteristics (modal analysis) of structures is carried out numerically, using the finite element method. 

Let us imagine the forced vibrations of an elastic beam modeling the LV structure in the form of 
decomposition according to the natural modes. Assume that the beam stiffness axis passes through its center of mass. 
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To move the points of the LV axis, we write: 
 𝑦𝑦(𝑥𝑥, 𝑡𝑡) = 𝑦𝑦𝐶𝐶(𝑡𝑡) + ϑ(𝑡𝑡)(𝑥𝑥 − 𝑥𝑥𝐶𝐶) + ∑ 𝑓𝑓𝑗𝑗(𝑥𝑥) ∙ 𝑞𝑞𝑗𝑗

𝑁𝑁
𝑗𝑗=1 (𝑡𝑡), (6) 

where 𝑦𝑦𝐶𝐶(𝑡𝑡) — displacement of the beam center of mass; ϑ(𝑡𝑡) — angle of rotation of the axis of the undeformed beam; 
𝑓𝑓𝑗𝑗 — beam eigenmode corresponding to tone numbered 𝑗𝑗; 𝑞𝑞𝑗𝑗(𝑡𝑡) — generalized coordinate corresponding to tone 
numbered 𝑗𝑗; 𝑁𝑁 — number of elastic tones taken into account.  

After substituting (6) into (1) and applying the Bubnov-Galerkin procedure, we can arrive at an ordinary 
differential system with constant coefficients: 

𝑚𝑚�̈�𝑦𝐶𝐶(𝑡𝑡) = 𝑄𝑄𝑦𝑦, 
 𝐼𝐼ϑ̈(𝑡𝑡) = 𝑄𝑄ϑ,. (7) 

𝑚𝑚𝑗𝑗(�̈�𝑞𝑗𝑗(𝑡𝑡) + 2𝑛𝑛𝑗𝑗�̇�𝑞𝑗𝑗(𝑡𝑡) + 𝑝𝑝𝑗𝑗
2𝑞𝑞𝑗𝑗(𝑡𝑡)) = 𝑄𝑄𝑗𝑗(𝑡𝑡)  (𝑗𝑗 = 1, 2, … , N) 

Here, 𝑚𝑚 — LV mass; 𝐼𝐼 — moment of inertia relative to the axis passing through the LV center of mass perpendicular to 
the plane of rotation; 𝑚𝑚𝑗𝑗 — reduced (generalized) mass for the 𝑗𝑗-th vibration tone and determined from the formula: 

𝑚𝑚𝑗𝑗 = ∫ 𝑚𝑚(𝑥𝑥)𝑓𝑓𝑗𝑗
2(𝑥𝑥) 𝑑𝑑𝑥𝑥.𝐿𝐿

0    
The generalized forces in expression (7), taking into account (3), are defined as follows: 

 𝑄𝑄𝑦𝑦 = 𝑅𝑅(𝑡𝑡) ∫ 𝑌𝑌𝑎𝑎(𝑥𝑥)𝐿𝐿
0 𝑑𝑑𝑥𝑥 = 𝑅𝑅(𝑡𝑡)𝑄𝑄𝑎𝑎, (8) 

 𝑄𝑄ϑ = 𝑅𝑅(𝑡𝑡) ∫ 𝑌𝑌𝑎𝑎(𝑥𝑥)𝐿𝐿
0 (𝑥𝑥 − 𝑥𝑥𝐶𝐶)𝑑𝑑𝑥𝑥 = 𝑅𝑅(𝑡𝑡)𝑀𝑀𝑎𝑎, (9) 

 𝑄𝑄𝑗𝑗 = 𝑅𝑅(𝑡𝑡) ∫ 𝑌𝑌𝑎𝑎(𝑥𝑥)𝐿𝐿
0 𝑓𝑓𝑗𝑗𝑑𝑑𝑥𝑥 = 𝑅𝑅(𝑡𝑡)𝑄𝑄0𝑗𝑗. (10) 

Here, 𝑄𝑄𝑎𝑎 — maximum value of the main transverse aerodynamic load vector; 𝑀𝑀𝑎𝑎 — maximum value of the main 
transverse aerodynamic moment reduced to the LV center of mass; 𝑄𝑄0𝑗𝑗 — maximum value of the generalized force 
corresponding to the generalized coordinate 𝑞𝑞𝑗𝑗.   

The first two equations in (7) define the law of change of accelerations of the LV points in the process of 
translational and rotational motion of the LV as a rigid body. The last equation in (7) defines the law of motion of an 
equivalent system of oscillators. 

Consider the motion of one oscillator under the action of a trapezoidal external load, which: 
— increases from zero to 𝑄𝑄0 over time δ, 
— maintains a constant value over time θ,  
— drops to zero over time δ. 
For convenience, we omit the indices characterizing the tone number. Then we will rewrite the differential 

equation of the oscillator motion taking into account (10) in the form: 

 �̈�𝑞 + 2𝑛𝑛�̇�𝑞 + 𝑝𝑝2𝑞𝑞 = 𝑄𝑄(𝑡𝑡)
𝑚𝑚 = 𝑄𝑄0

𝑚𝑚 𝑅𝑅(𝑡𝑡), (11) 
where 𝑚𝑚 — oscillator mass; 𝑝𝑝 — angular frequency of natural oscillations, expressed in radians per second; n — 
damping coefficient (determines the oscillator damping); 𝑄𝑄(𝑡𝑡) = 𝑄𝑄0𝑅𝑅(𝑡𝑡) — law of variation of external load. 

We represent function 𝑅𝑅(𝑡𝑡) as a set of four linear functions: 
 𝑅𝑅1(𝑡𝑡) = δ−1𝑡𝑡,                 𝑅𝑅2(𝑡𝑡) = −δ−1(𝑡𝑡 −  δ),    

𝑅𝑅3(𝑡𝑡) = −δ−1(𝑡𝑡 −  δ − θ), 𝑅𝑅4(𝑡𝑡) = δ−1(𝑡𝑡 − 2δ − θ). 
Accordingly, external load 𝑄𝑄(𝑡𝑡) is a combination of four linear loads 𝑄𝑄𝑖𝑖(𝑡𝑡) = 𝑄𝑄0𝑅𝑅𝑖𝑖(𝑡𝑡), (𝑖𝑖 = 1, 2, 3, 4). Load 

𝑄𝑄1(𝑡𝑡)  is applied from moment 𝑡𝑡 = 0; 𝑄𝑄2(𝑡𝑡) — from moment 𝑡𝑡 = δ; 𝑄𝑄3(𝑡𝑡) — from moment 𝑡𝑡 = θ + δ; 𝑄𝑄4(𝑡𝑡) — from 
moment 𝑡𝑡 = θ + 2δ. 

To determine the system response to external actions, we divide the entire duration of the load into four 
intervals (Fig. 1). 

 
Fig. 1. Diagram of the external trapezoidal load 

 

𝑄𝑄(𝑡𝑡),𝑁𝑁 

δ 
 

θ 𝑡𝑡, s δ 
 

𝑡𝑡 = δ 
 

𝑡𝑡 = δ + θ 
 𝑡𝑡 = θ + 2δ 

1st section 
 

2nd section 
 

3rd section 
 

4th section 
 



ht
tp

://
ve

st
ni

k-
do

ns
tu

.ru

34

Advanced Engineering Research 2022. V. 22, no. 1. P. 30−41.  ISSN 2687−1653  

 
In accordance with the superimposition method3, let us represent the response of the linear system under 

consideration to an external action in the form of the Duhamel’s integral as the sum of responses to a set of 

independently applied elementary impulses:  

𝑞𝑞(𝑡𝑡) = ∫𝑃𝑃(𝑡𝑡 − ϑ)𝑌𝑌(ϑ)𝑑𝑑ϑ
𝑡𝑡

0

, 

Here, 𝑃𝑃(𝑡𝑡 − ϑ) — the shifted time law of variation of external action, and 𝑌𝑌(ϑ) characterizes the system 

response to a unit impulse input. The response of mechanical system 𝑞𝑞𝑙𝑙(𝑡𝑡) to a linearly increasing load 𝑃𝑃(𝑡𝑡) = 𝑘𝑘𝑡𝑡 can 

be expressed through the system response to unit impulse 𝑌𝑌(ϑ) and to a suddenly applied single load 𝑌𝑌1(ϑ):   

𝑞𝑞𝑙𝑙(𝑡𝑡) = 𝑘𝑘 ∫𝑌𝑌1(ϑ)𝑑𝑑ϑ
𝑡𝑡

0

, 𝑌𝑌1(𝑡𝑡) = ∫𝑌𝑌(ϑ)𝑑𝑑ϑ.
𝑡𝑡

0

 

The response of a one-degree-of-freedom mechanical system with damping coefficient 𝑛𝑛 to a unit pulse will 

have the form4: 

𝑌𝑌(ϑ) = 1
𝑚𝑚√𝑝𝑝2 − 𝑛𝑛2

𝑒𝑒−𝑛𝑛ϑ sin (√𝑝𝑝2 − 𝑛𝑛2ϑ). 

We introduce a notation for the frequency of damped vibrations 𝑝𝑝1 = √𝑝𝑝2 − 𝑛𝑛2. Let us calculate the system 

response to a suddenly applied unit load:  

𝑌𝑌1(ϑ) = ∫𝑌𝑌(ϑ)𝑑𝑑ϑ =
1
𝑚𝑚𝑝𝑝2 [1 − 𝑒𝑒

−𝑛𝑛𝑡𝑡 (cos(𝑝𝑝1𝑡𝑡) +
𝑛𝑛
𝑝𝑝1
sin(𝑝𝑝1𝑡𝑡))]

𝑡𝑡

0

. 

The response to a linearly increasing load: 

 𝑞𝑞𝑙𝑙(𝑡𝑡) = 𝑘𝑘 ∫ 𝑌𝑌1(ϑ)𝑑𝑑ϑ =
𝑡𝑡
0  𝑘𝑘

𝑚𝑚𝑝𝑝2 {
 

2𝑛𝑛
𝑝𝑝2
[−1 + 𝑒𝑒−𝑛𝑛𝑡𝑡 cos(𝑝𝑝1𝑡𝑡)]+

1
𝑝𝑝1
(2𝑛𝑛

2

𝑝𝑝2 − 1) 𝑒𝑒
−𝑛𝑛𝑡𝑡 sin(𝑝𝑝1𝑡𝑡) + 𝑡𝑡}. (12) 

We accept the notations: ∆1= 𝑡𝑡 − δ, ∆2= ∆1 − θ, ∆3= ∆2 − δ.
We introduce a function containing the harmonic terms of solution (12): 

𝑑𝑑(ϑ) =  2 𝑛𝑛𝑝𝑝2 (cos(𝑝𝑝1 ∙ ϑ) +
𝑛𝑛
𝑝𝑝1
sin(𝑝𝑝1 ∙ ϑ)) 𝑒𝑒−𝑛𝑛ϑ −

1
𝑝𝑝1
sin(𝑝𝑝1 ∙ ϑ) 𝑒𝑒−𝑛𝑛ϑ. 

We denote by 𝑞𝑞ст the motion under the action of a force statically applied to the system 𝑄𝑄0 = 𝑞𝑞ст𝑚𝑚𝑝𝑝2 and take 

into account that 𝑘𝑘 = 𝑄𝑄0/δ. The total movement of the oscillator under the action of a combination of loads 𝑄𝑄𝑖𝑖(𝑡𝑡) at 

every time point will be the sum of the corresponding solutions (12). The system response described by equation (11) to 

the external impact of the trapezoidal profile will have the form: 

 𝑞𝑞(𝑡𝑡) =

{ 
 
  

                                        
𝑞𝑞стδ−1[𝑑𝑑(𝑡𝑡) − 2𝑛𝑛/𝑝𝑝2 + 𝑡𝑡]                 
𝑞𝑞стδ−1[𝑑𝑑(𝑡𝑡) − 𝑑𝑑(∆1) + δ]                  

𝑞𝑞стδ−1[𝑑𝑑(𝑡𝑡) − 𝑑𝑑(∆1) − 𝑑𝑑(∆2) + 2𝑛𝑛/𝑝𝑝2 − ∆3]
𝑞𝑞стδ−1(𝑑𝑑(𝑡𝑡) − 𝑑𝑑(∆1) − 𝑑𝑑(∆2) + 𝑑𝑑(∆3))     

𝑎𝑎𝑡𝑡 0 ≤ 𝑡𝑡 < δ,         
𝑎𝑎𝑡𝑡 δ ≤ 𝑡𝑡 < θ + δ,     
𝑎𝑎𝑡𝑡 θ + δ ≤ 𝑡𝑡 < θ + 2δ,
𝑎𝑎𝑡𝑡 𝑡𝑡 ≥ θ + 2δ.        

 (13) 

The law of variation of the oscillator accelerations can be obtained from double differentiation in time of 

expression (13). Let us introduce function 𝑔𝑔(ϑ) = 𝑑𝑑2

𝑑𝑑ϑ2 (𝑑𝑑(ϑ)). We differentiate and record the result taking into account 

the number of the oscillation tone: 

𝑔𝑔𝑗𝑗(ϑ) =  [(𝑛𝑛𝑗𝑗2 − 𝑝𝑝1 𝑗𝑗2 ) (2
𝑛𝑛𝑗𝑗
𝑝𝑝𝑗𝑗2
(cos(𝑝𝑝1 𝑗𝑗 ∙ ϑ) +

𝑛𝑛𝑗𝑗
𝑝𝑝1 𝑗𝑗

sin(𝑝𝑝1 𝑗𝑗 ∙ ϑ)) −
1
𝑝𝑝1 𝑗𝑗

sin(𝑝𝑝1 𝑗𝑗 ∙ ϑ)) − 

                                                           
3 Biderman VL. Teoriya mekhanicheskikh kolebanii. Moscow: URSS; 2017. 416 p. (In Russ.) 
4 Yablonskii AA. Kurs teoreticheskoi mekhaniki. Moscow: Integral-Press; 2007. 603 p. (In Russ.) 
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In accordance with the superimposition method3, let us represent the response of the linear system under 

consideration to an external action in the form of the Duhamel’s integral as the sum of responses to a set of 

independently applied elementary impulses:  

𝑞𝑞(𝑡𝑡) = ∫𝑃𝑃(𝑡𝑡 − ϑ)𝑌𝑌(ϑ)𝑑𝑑ϑ
𝑡𝑡

0

, 

Here, 𝑃𝑃(𝑡𝑡 − ϑ) — the shifted time law of variation of external action, and 𝑌𝑌(ϑ) characterizes the system 

response to a unit impulse input. The response of mechanical system 𝑞𝑞𝑙𝑙(𝑡𝑡) to a linearly increasing load 𝑃𝑃(𝑡𝑡) = 𝑘𝑘𝑡𝑡 can 

be expressed through the system response to unit impulse 𝑌𝑌(ϑ) and to a suddenly applied single load 𝑌𝑌1(ϑ):   

𝑞𝑞𝑙𝑙(𝑡𝑡) = 𝑘𝑘 ∫𝑌𝑌1(ϑ)𝑑𝑑ϑ
𝑡𝑡

0

, 𝑌𝑌1(𝑡𝑡) = ∫𝑌𝑌(ϑ)𝑑𝑑ϑ.
𝑡𝑡

0

 

The response of a one-degree-of-freedom mechanical system with damping coefficient 𝑛𝑛 to a unit pulse will 

have the form4: 

𝑌𝑌(ϑ) = 1
𝑚𝑚√𝑝𝑝2 − 𝑛𝑛2

𝑒𝑒−𝑛𝑛ϑ sin (√𝑝𝑝2 − 𝑛𝑛2ϑ). 

We introduce a notation for the frequency of damped vibrations 𝑝𝑝1 = √𝑝𝑝2 − 𝑛𝑛2. Let us calculate the system 

response to a suddenly applied unit load:  

𝑌𝑌1(ϑ) = ∫𝑌𝑌(ϑ)𝑑𝑑ϑ =
1
𝑚𝑚𝑝𝑝2 [1 − 𝑒𝑒

−𝑛𝑛𝑡𝑡 (cos(𝑝𝑝1𝑡𝑡) +
𝑛𝑛
𝑝𝑝1
sin(𝑝𝑝1𝑡𝑡))]

𝑡𝑡

0

. 

The response to a linearly increasing load: 

 𝑞𝑞𝑙𝑙(𝑡𝑡) = 𝑘𝑘 ∫ 𝑌𝑌1(ϑ)𝑑𝑑ϑ =
𝑡𝑡
0  𝑘𝑘

𝑚𝑚𝑝𝑝2 {
 

2𝑛𝑛
𝑝𝑝2
[−1 + 𝑒𝑒−𝑛𝑛𝑡𝑡 cos(𝑝𝑝1𝑡𝑡)]+

1
𝑝𝑝1
(2𝑛𝑛

2

𝑝𝑝2 − 1) 𝑒𝑒
−𝑛𝑛𝑡𝑡 sin(𝑝𝑝1𝑡𝑡) + 𝑡𝑡}. (12) 

We accept the notations: ∆1= 𝑡𝑡 − δ, ∆2= ∆1 − θ, ∆3= ∆2 − δ.
We introduce a function containing the harmonic terms of solution (12): 

𝑑𝑑(ϑ) =  2 𝑛𝑛𝑝𝑝2 (cos(𝑝𝑝1 ∙ ϑ) +
𝑛𝑛
𝑝𝑝1
sin(𝑝𝑝1 ∙ ϑ)) 𝑒𝑒−𝑛𝑛ϑ −

1
𝑝𝑝1
sin(𝑝𝑝1 ∙ ϑ) 𝑒𝑒−𝑛𝑛ϑ. 

We denote by 𝑞𝑞ст the motion under the action of a force statically applied to the system 𝑄𝑄0 = 𝑞𝑞ст𝑚𝑚𝑝𝑝2 and take 

into account that 𝑘𝑘 = 𝑄𝑄0/δ. The total movement of the oscillator under the action of a combination of loads 𝑄𝑄𝑖𝑖(𝑡𝑡) at 

every time point will be the sum of the corresponding solutions (12). The system response described by equation (11) to 

the external impact of the trapezoidal profile will have the form: 

 𝑞𝑞(𝑡𝑡) =

{ 
 
  

                                        
𝑞𝑞стδ−1[𝑑𝑑(𝑡𝑡) − 2𝑛𝑛/𝑝𝑝2 + 𝑡𝑡]                 
𝑞𝑞стδ−1[𝑑𝑑(𝑡𝑡) − 𝑑𝑑(∆1) + δ]                  

𝑞𝑞стδ−1[𝑑𝑑(𝑡𝑡) − 𝑑𝑑(∆1) − 𝑑𝑑(∆2) + 2𝑛𝑛/𝑝𝑝2 − ∆3]
𝑞𝑞стδ−1(𝑑𝑑(𝑡𝑡) − 𝑑𝑑(∆1) − 𝑑𝑑(∆2) + 𝑑𝑑(∆3))     

𝑎𝑎𝑡𝑡 0 ≤ 𝑡𝑡 < δ,         
𝑎𝑎𝑡𝑡 δ ≤ 𝑡𝑡 < θ + δ,     
𝑎𝑎𝑡𝑡 θ + δ ≤ 𝑡𝑡 < θ + 2δ,
𝑎𝑎𝑡𝑡 𝑡𝑡 ≥ θ + 2δ.        

 (13) 

The law of variation of the oscillator accelerations can be obtained from double differentiation in time of 

expression (13). Let us introduce function 𝑔𝑔(ϑ) = 𝑑𝑑2

𝑑𝑑ϑ2 (𝑑𝑑(ϑ)). We differentiate and record the result taking into account 

the number of the oscillation tone: 

𝑔𝑔𝑗𝑗(ϑ) =  [(𝑛𝑛𝑗𝑗2 − 𝑝𝑝1 𝑗𝑗2 ) (2
𝑛𝑛𝑗𝑗
𝑝𝑝𝑗𝑗2
(cos(𝑝𝑝1 𝑗𝑗 ∙ ϑ) +

𝑛𝑛𝑗𝑗
𝑝𝑝1 𝑗𝑗

sin(𝑝𝑝1 𝑗𝑗 ∙ ϑ)) −
1
𝑝𝑝1 𝑗𝑗

sin(𝑝𝑝1 𝑗𝑗 ∙ ϑ)) − 

                                                           
3 Biderman VL. Teoriya mekhanicheskikh kolebanii. Moscow: URSS; 2017. 416 p. (In Russ.) 
4 Yablonskii AA. Kurs teoreticheskoi mekhaniki. Moscow: Integral-Press; 2007. 603 p. (In Russ.) 
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 −2𝑛𝑛𝑗𝑗 (2
𝑛𝑛𝑗𝑗
𝑝𝑝𝑗𝑗
2 (−𝑝𝑝1 𝑗𝑗 sin(𝑝𝑝1 𝑗𝑗 ∙ ϑ) + 𝑛𝑛𝑗𝑗 cos(𝑝𝑝1 𝑗𝑗 ∙ ϑ)) − cos(𝑝𝑝1 𝑗𝑗 ∙ ϑ))] 𝑒𝑒−𝑛𝑛ϑ. (14) 

We rewrite the expression for the frequency of damped natural vibrations: 

 𝑝𝑝1 𝑗𝑗 = √𝑝𝑝𝑗𝑗2 − 𝑛𝑛𝑗𝑗2. (15) 

To determine the accelerations of the LV points, we differentiate twice (6): 

 �̈�𝑦(𝑡𝑡, 𝑥𝑥) = �̈�𝑦𝐶𝐶(𝑡𝑡) + ϑ̈(𝑡𝑡)(𝑥𝑥 − 𝑥𝑥𝐶𝐶) + ∑ 𝑓𝑓𝑗𝑗(𝑥𝑥)�̈�𝑞𝑗𝑗(𝑡𝑡).𝑁𝑁
𝑗𝑗=1  (16) 

Let us express the accelerations of the generalized coordinates from the first two equations of system (7) taking 

into account (8) and (9). We represent the accelerations of the points of the LV axis that it acquires through moving as a 

rigid body: 

 𝑎𝑎(𝑡𝑡) = �̈�𝑦𝐶𝐶(𝑡𝑡) + ϑ̈(𝑡𝑡)(𝑥𝑥 − 𝑥𝑥𝐶𝐶) = 𝑅𝑅(𝑡𝑡)(𝑄𝑄𝑎𝑎/𝑚𝑚 +𝑀𝑀𝑎𝑎/𝐼𝐼). (17) 

In addition, we take into account the law of variation of function 𝑅𝑅(𝑡𝑡) from time: 

𝑅𝑅(𝑡𝑡) = {
δ−1𝑡𝑡                      
1                         

−δ−1(𝑡𝑡 −  2δ − θ)         
0                         

𝑎𝑎𝑡𝑡 0 ≤ 𝑡𝑡 < δ,         
𝑎𝑎𝑡𝑡 δ ≤ 𝑡𝑡 < θ + δ,     
𝑎𝑎𝑡𝑡 θ + δ ≤ 𝑡𝑡 < θ + 2δ,
𝑎𝑎𝑡𝑡 𝑡𝑡 ≥ θ + 2δ.        
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δ−1𝑡𝑡(𝑄𝑄𝑎𝑎/𝑚𝑚 +𝑀𝑀𝑎𝑎/𝐼𝐼)              
𝑄𝑄𝑎𝑎/𝑚𝑚 +𝑀𝑀𝑎𝑎/𝐼𝐼                    

−δ−1(𝑡𝑡 −  2δ − θ)(𝑄𝑄𝑎𝑎/𝑚𝑚 +𝑀𝑀𝑎𝑎/𝐼𝐼) 
0                                

𝑎𝑎𝑡𝑡 0 ≤ 𝑡𝑡 < δ,         
𝑎𝑎𝑡𝑡 δ ≤ 𝑡𝑡 < θ + δ,     
𝑎𝑎𝑡𝑡 θ + δ ≤ 𝑡𝑡 < θ + 2δ,
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 (18) 

For accelerations of generalized coordinates corresponding to the elastic vibration tones, as a result of double 

differentiation of expression (13), taking into account (14), we obtain: 

 �̈�𝑞𝑗𝑗(𝑡𝑡) =

{
 
 

 
 δ−1𝑞𝑞ст 𝑗𝑗𝑔𝑔𝑗𝑗(𝑡𝑡)                       𝑎𝑎𝑡𝑡 0 ≤ 𝑡𝑡 < δ,         

δ−1𝑞𝑞ст 𝑗𝑗 (𝑔𝑔𝑗𝑗(𝑡𝑡) − 𝑔𝑔𝑗𝑗(∆1))            𝑎𝑎𝑡𝑡 δ ≤ 𝑡𝑡 < θ + δ,     

δ−1𝑞𝑞ст 𝑗𝑗 (𝑔𝑔𝑗𝑗(𝑡𝑡) − 𝑔𝑔𝑗𝑗(∆1) − 𝑔𝑔𝑗𝑗(∆2))   𝑎𝑎𝑡𝑡 θ + δ ≤ 𝑡𝑡 < θ + 2δ,

δ−1𝑞𝑞ст 𝑗𝑗 (𝑔𝑔𝑗𝑗(𝑡𝑡) − 𝑔𝑔𝑗𝑗(∆1) − 𝑔𝑔𝑗𝑗(∆2) + 𝑔𝑔𝑗𝑗(∆3))  𝑎𝑎𝑡𝑡 𝑡𝑡 ≥ θ + 2δ.

 (19) 

Taking into account (16) and (17), the law of variation in the accelerations of the elastic LV axis points under 

the action of a trapezoidal wind gust will have the form: 

 �̈�𝑦(𝑡𝑡, 𝑥𝑥) = 𝑎𝑎(𝑡𝑡) + ∑ 𝑓𝑓𝑗𝑗(𝑥𝑥)�̈�𝑞𝑗𝑗(𝑡𝑡),𝑁𝑁
𝑗𝑗=1  (20) 

where 𝑎𝑎(𝑡𝑡) is determined from expression (18), �̈�𝑞𝑗𝑗(𝑡𝑡) — from expression (19). 

While investigating the LV elastic modes, damping is traditionally taken on the basis of the data obtained from 

the results of full-scale dynamic tests and presented in the form of values of logarithmic decrements 𝐷𝐷𝑗𝑗 . Then, the 

coefficient determining the damping parameter and included in expressions (14) and (15) can be calculated from 

formula: 

 𝑛𝑛𝑗𝑗 =
𝐷𝐷𝑗𝑗
2𝜋𝜋 𝑝𝑝𝑗𝑗. (21) 

The change in generalized coordinate 𝑞𝑞𝑗𝑗 included in formula (19) under the action of a statically applied 

generalized force 𝑄𝑄0𝑗𝑗 is determined from expression:  

 𝑞𝑞ст 𝑗𝑗 =
1
𝑝𝑝𝑗𝑗2

𝑄𝑄0𝑗𝑗
𝑚𝑚𝑗𝑗
= 1

𝑝𝑝𝑗𝑗2
∫ 𝑌𝑌𝑎𝑎(𝑥𝑥)𝑓𝑓𝑗𝑗(𝑥𝑥) 𝑑𝑑𝑥𝑥
𝐿𝐿
0
∫ 𝑚𝑚(𝑥𝑥)𝑓𝑓𝑗𝑗2(𝑥𝑥) 𝑑𝑑𝑥𝑥
𝐿𝐿
0

. (22) 

Taking into account (14), (15), (18), (19), (21), (22), formula (20) is an analytical expression that defines the 

functions of the acceleration change over time for the points of the LV axis under the action of an external transverse 

aerodynamic force varying according to the trapezoidal law, taking into account the impact of dissipative forces. 

Knowing the law of acceleration variation, it is possible to determine the dynamic, and then the total structure 
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loads acting in the LV sections using the known methods [4]. We calculate the bending moment due to inertial forces 

from the elastic modes of the LV structure: 

 𝑀𝑀(𝑥𝑥, 𝑡𝑡) = −∑ 𝑀𝑀𝑗𝑗(𝑥𝑥)�̈�𝑞𝑗𝑗(𝑡𝑡).𝑁𝑁
𝑗𝑗=1  (23) 

Here, 𝑀𝑀𝑗𝑗(𝑥𝑥) — function of distributing a unit (with acceleration �̈�𝑞𝑗𝑗(𝑡𝑡), equal to one) bending moment for the 𝑗𝑗-th 

vibration tone along the LV length. It can be found from formula:  

 𝑀𝑀𝑗𝑗(𝑥𝑥) = ∫ ∫ 𝑚𝑚(𝑥𝑥)𝑓𝑓𝑗𝑗(𝑥𝑥)𝑑𝑑𝑥𝑥
𝑥𝑥
0 𝑑𝑑𝑥𝑥𝑥𝑥

0 . (24) 

As noted above, for the modal analysis in this work, the FE method was used. This approach is due to the fact 

that in practice, the dynamic LV model has rather complicated structure. It includes substructures, and their own 

dynamics cannot be neglected. Substructures can be attached to the LV body in one section, or be located parallel to the 

longitudinal axis of the LV and have several attachment points. In this case, the calculation of dynamic characteristics in 

a continuum setting is a complex mathematical problem. In addition, dynamic models of individual substructures are 

presented by development companies in a condensed (matrix) form in the Nastran format. For this reason, it will be 

optimal to use the Nastran engineering analysis software package to calculate the dynamic characteristics of the 

structure. 

However, the use of standard FE analysis programs for the calculation of dynamic loading is fraught with 

certain difficulties. These include the need to pre-construct an equivalent model of the external aerodynamic load 

suitable for use in the FE analysis program [15], which in itself is quite difficult. In addition, there are difficulties 

associated with processing the calculation results. The use of the postprocessor functionality for analyzing the results is 

extremely time-consuming and requires a large number of manual operations. Another way involves the application of 

additional software for processing large array of numeric data5. In this paper, an approach is proposed in which the FE 

analysis program is used only for modal analysis. In this case, dynamic loading is calculated using specially developed 

software that allows you to vary external loads and automatically process the calculation results. 

For a complex LV design, equations (7) retain their form [3]. The standard output information of the Nastran 

program can be the basis for obtaining the parameters of an equivalent system of oscillators, LV mass and moment of 

inertia, as well as for calculating the generalized forces included in the third equation of system (7). To form the left 

side of the third equation in (7), the values of natural frequencies 𝑝𝑝𝑗𝑗 (Radians) and generalized masses 𝑚𝑚𝑗𝑗 (Generalized 

mass) are required. To determine the generalized forces in the right part of the third equation in (7), the eigenmode 

functions 𝑓𝑓𝑗𝑗(𝑥𝑥) (Eigenvector) are needed. When calculating dynamic inertial loads according to (23), instead of (24), it 

is more convenient to use unit inertial loads (forces and moments), which are output by the Nastran program after the 

standard application of forces when calculating eigenforms and frequencies. Unit inertial loads are output separately for 

each vibration tone and multiplied by the square of the natural frequency, which should be taken into account for their 

correct use. 

Research Results. To carry out test calculations, a medium class tandem launcher is considered.  Figure 2 

shows the type of functions of linear bending stiffness 𝐵𝐵(𝑥𝑥) and mass 𝑚𝑚(𝑥𝑥), as well as the distribution of concentrated 

masses 𝑚𝑚соср(𝑥𝑥) = 𝑚𝑚соср𝑟𝑟∆(𝑥𝑥 − 𝑥𝑥𝑟𝑟) along the length of the considered LV (the Dirac delta function  is denoted by ∆).  

                                                           
5 Malykhina OI. Avtomatizatsiya obrabotki rezul'tatov konechnoehlementnogo analiza nagruzheniya konstruktsii raketno-kosmicheskoi tekhniki. In: 
Proc. VII Sci.-Tech. Postdoctoral Conf., Mission Control Center. Korolev: TSNIIMash; 2017. P. 427–434. (In Russ.)  
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5 Malykhina OI. Avtomatizatsiya obrabotki rezul'tatov konechnoehlementnogo analiza nagruzheniya konstruktsii raketno-kosmicheskoi tekhniki. In: 
Proc. VII Sci.-Tech. Postdoctoral Conf., Mission Control Center. Korolev: TSNIIMash; 2017. P. 427–434. (In Russ.)  

Malykhina O. I. Analytical solution to approximate equations of the launch vehicle motion under the gust action 

 

 
а) 

 
b) 

 
c) 

Fig. 2. Distribution of mass and stiffness characteristics along the LV length:  
linear mass (a), concentrated mass (b), bending stiffness (c) 

To check the obtained analytical solutions under the impact of a trapezoidal external load, the dynamic LV 

accelerations are calculated according to formula (20), taking into account (14), (15), (18), (19), (21), (22). At the same 

time, 5 elastic tones of natural transverse LV vibrations are considered. Characteristics 𝑝𝑝𝑗𝑗, 𝑚𝑚𝑗𝑗 and 𝑓𝑓𝑗𝑗(𝑥𝑥) were obtained 

from the calculation results in the MSC Nastran software package using the solution sequence for modal analysis of 

natural vibrations (SOL 103). The LV dynamic finite element model is presented as a set of beam elements with various 

inertial and stiffness characteristics. The following elements are elastically or rigidly attached to the beam elements: 

— elements describing the inertial properties of devices, aggregates, parts of the block structure; 

— condensed models of individual blocks presented in the digital matrix form. 

The finite element LV model includes about 1000 components. The elements simulating restraints were not 

used to preserve the ability of the LV to move as a rigid body. 

According to the same finite element LV model in the MSC Nastran software package, the accelerations are 

calculated through the SOL 119 solution sequence used for modal transient analysis. At the same time, all tones of 

natural vibrations in the range up to 100 Hz were taken into account in the modal decomposition. The aerodynamic load 

is represented by transverse linear loads distributed over all beam elements simulating the LV structure. In addition, the 

trapezoidal law of the aerodynamic load variation over time is given. 

Figure 3 shows the results of a comparative analysis of accelerations obtained using two different approaches 

𝑎𝑎0(𝑡𝑡) = �̈�𝑦(𝑡𝑡, 𝑥𝑥0) of a certain point of the LV axis with coordinate 𝑥𝑥 = 𝑥𝑥0. It can be seen that the following two 

solutions agree well:  

𝑚𝑚(𝑥𝑥), kg/m 

x, m 

𝑚𝑚соср(𝑥𝑥), kg 

x, m 

𝐵𝐵(𝑥𝑥), kg∙Nm  
 

x, m 
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— the solution obtained for accelerations using a simplified LV model based on the analytical relations given 

in this paper; 

— numerical solution obtained from the complete finite element LV model. 

 
Fig. 3. Comparison of transverse accelerations obtained through two different  

approaches:  — finite element modeling,  — analytical solution for a simplified model  

The peak value of the bending moment selected from the time process determines the level of equivalent forces 

taken to carry out the strength calculation, and acts as a variable parameter when changing the parameters of external 

action in the transverse direction [16]. 

Dependences are obtained based on the values of dynamic accelerations (Fig. 4). They show how the change in 

peak bending moment 𝑀𝑀 or different LV sections are related to parameter θ, which characterizes the gust duration. In 

Figure 4, the bending moment values are presented in the form of dimensionless quantities 𝑀𝑀∗. They are calculated 

through dividing the dimensional bending moment by the maximum value for a given section (e.g., for section 𝑥𝑥 = 0.3𝐿𝐿 

maximum value 𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚 = 4.6 ∙ 105 N ∙ m), found when value θ varies over the entire range under consideration.  
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d) 

  
e) 

  
f) 

Fig. 4. Dependence of the value of dimensionless bending moment 𝑀𝑀∗ on the duration of wind gust θ∗, expressed in fractions of 
period 𝑇𝑇1 for various LV sections:  zone 1 (𝑥𝑥 = 0.0 − 0.2𝐿𝐿) (a); zone 2 (𝑥𝑥 = 0.2𝐿𝐿 − 0.4𝐿𝐿) (b);  

zone 3 (𝑥𝑥 = 0.4𝐿𝐿 − 0.55𝐿𝐿) (c); zone 4 (𝑥𝑥 = 0.55𝐿𝐿 − 0.75𝐿𝐿) (d);  
zone 5 (𝑥𝑥 = 0.75𝐿𝐿 − 0.9𝐿𝐿) (e); zone 6 (𝑥𝑥 = 0.9𝐿𝐿 − 𝐿𝐿) (f) 

So, on the graphs, the duration of the gust action is represented by dimensionless value θ∗ obtained through 

dividing parameter θ by period 𝑇𝑇1 of the first tone of the LV vibrations. Each line of the graph corresponds to one 

section of the LV. All LV sections are grouped according to the nature of function 𝑀𝑀∗(θ∗) and are shown on various 

graphs, and the LV length is appropriately divided into zones (Fig. 5). 

 
Fig. 5. LV cross-section zones 

It can be seen from Figure 4 that for the first zone, the maximum bending moment is reached already at θ 

values at least 15% of period 𝑇𝑇1 of the first vibration tone. For the second and third zones — slightly more than half of 

period 𝑇𝑇1. A further increase in θ values does not affect the magnitudes of the maximum values of the bending moment. 

For zones 4-6, the maximum value of the bending moment turns out to be local and is within the zone of θ values close 

to the value of half of period 𝑇𝑇1 of the first tone of the LV vibrations. The results obtained fully correspond to the results 

of finite element modeling carried out earlier6.   

                                                           
6 Malykhina OI, Glugovskii MS. Analiz vliyaniya profilya poryva vetra na velichinu korpusnykh nagruzok rakety-nositelya v poletnykh sluchayakh 
nagruzheniya. In: Proc. VI All-Russian Sci.-Tech. Conf. Samara. 2019;1:133–138. (In Russ.) 
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Thus, to obtain the maximum values of the bending moment in the sections of the considered LV, a dynamic 

analysis of the behavior of the structure with external action in the form of a wind gust of is required. Its duration is 

determined by parameter θ, close in value to half of the period of the first tone of the LV vibrations. 

Discussion and Conclusions. Using the superposition method, analytical solutions are obtained that describe 

the motion of a one-degree-of-freedom system, which is affected by the friction force and an external force varying 

according to the trapezoidal law. The method of application of the obtained analytical solutions for systems with many 

degrees of freedom is given. A good coincidence of two types of solutions is shown: 

— analytical one, for accelerations of LV points found from a simplified model; 

— numerical data obtained from the complete finite element LV model. 

It is shown that analytical solutions can be used to analyze dynamic force factors to select the duration of a 

wind gust, under the impact of which maximum loads are achieved in the sections of the LV structure. Similarly, it is 

possible to analyze the overloads that are achieved in the LV sections (e.g., at the installation points of measurement 

systems). 

In addition, the proposed methodology provides building a full cycle of the load analysis pre-calculation in the 

case when an analytical representation of the external dynamic load is possible. The load analysis based on analytical 

solutions is very economical in terms of calculation time, and it can be a remarkable alternative to finite element 

modeling at the design stage, when a large number of combinations of external loads and configurations of the design 

under development are studied. Finite element analysis of the detailed model in this case can be used as a refine final 

calculation. 
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Thus, to obtain the maximum values of the bending moment in the sections of the considered LV, a dynamic

analysis of the behavior of the structure with external action in the form of a wind gust of is required. Its duration is

determined by parameter θ, close in value to half of the period of the first tone of the LV vibrations.

Discussion and Conclusions. Using the superposition method, analytical solutions are obtained that describe

the motion of a one-degree-of-freedom system, which is affected by the friction force and an external force varying

according to the trapezoidal law. The method of application of the obtained analytical solutions for systems with many

degrees of freedom is given. A good coincidence of two types of solutions is shown:

— analytical one, for accelerations of LV points found from a simplified model;

— numerical data obtained from the complete finite element LV model.

It is shown that analytical solutions can be used to analyze dynamic force factors to select the duration of a

wind gust, under the impact of which maximum loads are achieved in the sections of the LV structure. Similarly, it is

possible to analyze the overloads that are achieved in the LV sections (e.g., at the installation points of measurement 

systems).

In addition, the proposed methodology provides building a full cycle of the load analysis pre-calculation in the

case when an analytical representation of the external dynamic load is possible. The load analysis based on analytical

solutions is very economical in terms of calculation time, and it can be a remarkable alternative to finite element 

modeling at the design stage, when a large number of combinations of external loads and configurations of the design

under development are studied. Finite element analysis of the detailed model in this case can be used as a refine final

calculation.
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