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Abstract 

Introduction. The article studies the problem of investigation of coupled nonstationary thermoelectroelastic fields in 

piezoceramic structures. The main approaches related to the construction of a general solution to the initial non-self-

adjoint equations describing the process under consideration are briefly outlined. The work aims at constructing a new 

closed solution to the axisymmetric thermoelectroelasticity problem for a long piezoceramic cylinder. 

Materials and Methods. A long hollow cylinder whose electrodated surfaces were connected to a measuring device 

with large input resistance was considered. On the cylindrical surfaces of the plate, a time-varying temperature was 

given. The hyperbolic theory of Lord–Shulman thermo-electro-elasticity was used. The closed solution is constructed 

using a generalized method of finite integral transformations. 

Results. The developed calculation algorithm makes it possible to determine the stress–strain state of the cylinder, its 

temperature, and electric fields. In addition, it becomes possible to investigate the coupling of fields in a piezoceramic 

cylinder, as well as to analyze the effect of relaxation of the heat flow on the fields under consideration. 

Discussion and Conclusion. The use of assumptions about the equality of the components of the temperature stress 

tensor and the absence of temperature effect on the electric field allowed us to formulate a self-adjoint initial system of 

equations and construct a closed solution. 

Keywords: thermoelectroelasticity, hyperbolic theory, nonstationary coupled problem, long piezoceramic cylinder, 

finite integral transformations. 
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Introduction. Recently, different-purpose technical devices made of piezoceramic material have become 

widespread. Here, devices whose operation is based on the effect of the coupling of elastic, electric and temperature 

fields hold a specific place [1]. Various theories of thermoelectroelasticity were developed to describe their work taking 

into account the coupling of fields [2–4]. At the same time, for a better description and evaluation of non-stationary 

processes in structures, it was required to construct analytical solutions. However, the mathematical formulation of the 

problems under consideration included a system of non-self-adjoint partial differential equations, whose integration was 

difficult to treat mathematically. 

To solve this problem, as a rule, equations are investigated in an uncoupled form [5, 6], infinitely long bodies are 

analyzed [7−11], or thermoelectroelasticity problems are considered in a quasi-static formulation [12, 13]. 
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In this paper, we consider a coupled dynamic thermoelectroelasticity problem for an infinitely long hollow 

piezoceramic cylinder. As a result of the transformation of the initial calculated ratios, it was possible to form a self-

adjoint system of equations, the integration of which was carried out by the method of incomplete separation of 

variables in the form of a generalized finite integral transformation [13]. 

Materials and Methods. Let a hollow, long, loose in the radial plane, piezoceramic cylinder occupy area   in the 

cylindrical coordinate system  , ,r z :  ,0 2πa r b z        . On the cylindrical surfaces, the 

temperature is given in the form of the following nonstationary functions (boundary conditions of the 1st kind) —

1 *ω ( )t ( r a  ), 
2 *ω ( )t  r b  . The internal electrodated surface is grounded, and the external one is connected to a 

measuring device with a large input resistance (electric idle mode. 

The mathematical formulation of the axisymmetric problem under consideration in dimensionless form includes 

differential equations of motion, electrostatics, and thermal balance based on the hyperbolic Lord–Shulman theory, as 

well as the boundary conditions [2, 7, 15]: 
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* * *( , ), ( , ), ( , )U r t r t r t  

   — accordingly, the radial component of the displacement vector, the electric field 

potential, and the temperature increment in dimensional form; ( * * 0( , ) ( , ) ( )r t T r t Т r

     , — current temperature 

and temperature of the initial state of the body; 33, , ,ms msС e  — elastic moduli, density, piezo module, and 

permittivity coefficient of electroelastic anisotropic material;  , 1,3m s  ; 11 33,  — components of the temperature 

stress tensor ( 11 11 tC  , 33 33 tC  ); , , tk  — coefficients of thermal conductivity, volumetric heat capacity, and 

linear thermal expansion of the material; 3g — component of the pyroelectric coefficient tensor; rel — relaxation time; 

0 — the rate of temperature change known at the initial moment; 
1

r r


  


. 

In the case of grounding of the inner surface of a piezoceramic element, electrical voltage  V t  is determined by 

the potential on its outer surface: 

    1,V t t  . (4) 

When constructing a general solution at the first stage of the study, the radial component of the electric field 

intensity vector is determined as a result of integrating the electrostatics equation: 
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where
1D — integration constant. 

Substituting (5) into (1)–(3) allows us to formulate a new problem with respect to functions    , , ,U r t r t . In 

this case, the condition of the absence of a radial component of the electric field induction vector on the outer 

cylindrical surface of the element (the last equality (2)) is fulfilled at 
1 0D  ; and the condition of grounding of 

the inner surface (
| 0r R   ) is satisfied as a result of integration (5).  

At the next stage of the solution, the inhomogeneous boundary conditions (2) are reduced to a form that allows 

further use of the procedure for incomplete separation of variables by the method of finite integral transformations. To 

do this, new functions  ,u r t ,  ,N r t  related to  ,U r t ,  ,r t are introduced:  

      1, , ,U r t H r t u r t  ,      2, , ,r t H r t N r t   , (6) 
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         2 5 1 6 2,H r t f r t f r t   , 

1 6( )... ( )f r f r — twice differentiable function,      4 5 9,1
, 1 ,

r R
A r t a a a U r t r


    . 

Substituting (6) into the calculated ratios (1)–(3) with respect to functions    , , ,U r t r t  when the following 

conditions are met:  
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     , 2| 1r RH   , 2| 1 2rH   , (7) 

allows us to get a new boundary value problem with respect to function  ,u r t ,  ,N r t : 
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It should be noted here that  ,A r t  is a function of the displacements of the cylindrical surfaces of the cylinder. 

Initially,  ,A r t  is equated to zero with its subsequent determination and refinement 1 1 2, ,H F F .  

Further transformations of the calculated ratios (8)–(10) are associated with the use of the following assumptions: 

1 1b  , 3 0b  , and the introduction of a thermoelastic potential 

 N B . (11) 
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Condition 
1 1b   can be accepted without a large error, since for piezoceramic materials 

1 0.94 0.98b   , and 

dependence 
3 0b   is fulfilled in the case of equality of the components of the temperature stress tensor (

11 33  )  and 

the absence of temperature influence on the electric field (
3 0g  ).  

As a result, the following task is formed regarding    , , ,u r t B r t : 
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The initial boundary value problem (12)–(14) is solved using the structural algorithm of the generalized finite 

integral transformation (FIT) [14]. At the same time, it is possible to use single-component unknown transformation 

kernel  ,iK r  for this task:  
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where i — eigenvalues forming a countable set. 

As a result of using the FIT algorithm [14], we obtain problems with respect to the transformation kernel  ,iK r : 
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The general solution to problem (17), (18) has the form: 

        0 1 0 1( , )i i i i iK r Y J r J Y r      . (21) 

Here, eigenvalues 
i  are determined using the following transcendental equation: 

       0 0 0 0 0i i i iY J R J Y R     . 

The system of differential equations (19) is reduced to the following resolving equation of the 4th order with respect 

to 
1( , )iG t : 
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Since the characteristic equation corresponding to (22), 

4 3 2

4 5 6 7 0i i ik b k b k b k b     , 

is valid, then it, from the condition of the oscillating solution for 1( , )iG t , has two real roots (
1 2,i ik k ) and two 

complex-conjugate roots  

 (
3ik i   , 4ik i   ). 

In this case, the general solution to equation (22) has the form: 
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Function 
2 ( , )iG t

 
is determined from the first equation of system (19). Substitution of the obtained 

expressions for the transforms under the boundary conditions (20) makes it possible to determine the integration 

constants 2 5...i iD D . .. (19).  

Substitution of 1( , )iG t ,
2 ( , )iG t  into (16), (11), (6) allows us to get the final expressions for functions  ,U r t ,

 ,r t : 
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





  , (24) 

     
2

2 2

1

, , ( , ) ,i i i

i

r t H r t G t K r K 






    . 

At the final stage of the study, functions    1 2, , ,H r t H r t  are determined through solving the following differential 

equations: 

 1 1 2 2

1 2 32
0

H H H H
b b b

r r rr

 
    

 
, 2 0

H

r


 


, (25) 

which makes it possible to significantly simplify the right parts  1 2,F F  of the calculated ratios (8).  
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Substitution of expressions for 
1 2,H H in (25) enables to form systems of equations with respect to functions 

1 6( )... ( )f r f r , that are determined when the conditions are satisfied (7).  

The potential of the electric field of a piezoceramic cylinder is determined from integrating equality (5) and 

satisfying the next-to-last boundary condition (2): 

 

 
   

 1 1

4 5 6 2

, ,
,

H r t H r t
a a a H r t dr

r r






 
    

 
   (26) 

2 2

1 1 6 2 2 6

1 1

( , ) ( ) ( , ) ( ) ( )i i i i i i

i i

G t B K a G t B K D t   
 

 

 

     

 

where 
   

 
21 1

6 4 5 6 2 1 1

1

, ,
( ) , ( , ) ( )i i i

i

H r t H r t
D t a a a H r t dr G t B K

r r


 








  
       

  
  

2

6 2 2

1 |

( , ) ( )i i i

i r R

a G t B K 




 


 


 ,  

   
1 4 5

, ,i i

i

K r K r
B a a dr

r r

  




 
  

 
 , 

   2 ,i iB K r dr   . 

 

The obtained calculated relations (24), (26) satisfy differential equations (1) and boundary conditions (2), (3), i.e., 

they are a closed solution to the problem under consideration. 

Research Results. As an example, we considered a radially polarized piezoceramic cylinder ( 0.02b  m, 0.8R  ) 

of PZT–4 composition, having the following physical characteristics [10]: 7500  kg/m 3 ,  

 

    10

11 33 13, , 13.9; 11.5; 7.43 10С С С   N/m 2 ,   31 33, 5.2; 15.1e e    C/m 2 , 

    5

11 33, 4.6; 3.9 10    H/(m 2 o
C), 9

33 5.62 10   Ф/м, 4

3 2 10g   Kл/(m 2 o
C), 

63 10k    J/( m 3 o
C), 1.6   W/(m 

o
С), 55 10rel   с. 

A temperature load acts on the inner surface ( r a  ) of the piezoceramic cylinder: 

     1 max max max

max

sin
2

t T t H t t H t t
t


  

   

  
     

   
,  2 0t

  , 

where  H t  —Heaviside step function (   1H t   at 0t  ,   0H t   at 0t  ), 
max max 0T T T  , 

max max,T t  — 

maximum value of the external temperature effect and the corresponding time in dimensional form 

max( 373T K   0100 С , 0 293T K ( 020 С ), max 1t   s).  

Figure 1 shows graphs of changes in functions  , ,r t  , ,U r t  ,r t  along radial coordinate r  at various points 

in time t . The numbers 1−3 respectively indicate the results obtained at the following time values: max max max,4 ,15t t t t   

( max max2
t t

kb

 ).  

Analysis of the calculation results allows us to draw the following conclusions: 

− sufficiently large value of the coefficient of linear thermal expansion t  of the piezoceramic material causes rapid 

heating of the cylinder; 

− radial displacements on the inner cylindrical surface ( r R ) at the first stage of the study ( maxt t ) take the 

greatest values, followed by a decrease over time. The reverse pattern is observed with respect to the displacements at 

1r  ;  
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a) 

 
b)  

 
c) 

Fig. 1. Graphs of  , ,r t    , , ,U r t r t  changes along radial coordinate r  

 at various points in time t  ( max max max1 ,2 4 ,3 15t t t   ): a —  ,r t r  ; b —  ,U r t r ; c —  ,r t r   

The degree of coupling of thermoelectroelastic fields is most conveniently analyzed using the coefficient 

2

8

6 4

7

1i

a
b a

a





 
   

 
 from equality (21). Here, 4a  determines the coupling of electroelastic fields, and 8

7

a

a
— the 

effect of the rate of change in the volume of the body on its temperature field.  

Figure 2 shows displacement graph  1,U t  in time t  taking into account (solid line) and without taking into 

account (dotted line) the induced electric field.  

It should be noted that the preliminary polarization of piezoceramics causes the formation of a more “rigid” material 

( 4 0.353a  ) and, accordingly, a decrease in displacements during deformation of the cylinder. 

  o

, , Сr t


  
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The coupling of temperature and electroelastic fields in a piezoceramic cylinder can be neglected due to the small 

value 

48

7

1.8 10 1
a

a

  . 

 

Fig. 2. Graph of change  1,U t  in time t  

(solid line — including the polarization; dotted line — without including the electric field) 

Figure 3 shows graphs of changes in electrical voltage ( )V t  over time, taking into account (solid line) and without 

taking into account (dotted line, 0rel  ) the heat flow relaxation.  

 

Fig. 3. Graph of change  V t  over time t (
max 0.001t s  ,

max 196t  ) 

The calculation results show that for the problem under consideration, the refined hyperbolic Lord-Shulman theory 

should be used at a high rate of change in the temperature load ( max 0.001t   s, 
 1 5

| 0

5.56 10
t

d t
K

sdt





 

  and at 

lower speeds — the classical theory of thermoelectroelasticity ( 0rel  ).  

Discussion and Conclusion. The constructed new closed solution to the coupled dynamic problem with satisfaction 

of the boundary conditions of thermal conductivity of the 1st kind made it possible to determine all the components of 

thermoelectroelastic fields in a long piezoceramic cylinder. The advantage of the presented calculation algorithm is that 

there is no need to approximate the temperature function when studying the equation of motion, in contrast to the 

uncoupled formulation of the problem. At the same time, the effect of the rate of change in the volume of a 

piezoceramic body on its temperature field can be neglected.  
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