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Abstract

Introduction. The widespread use of piezoelectric materials in various industries stimulates the study of their physical
characteristics and determines the urgency of such research. In this case, modal analysis makes it possible to determine
the operating frequency and the coefficient of electromechanical coupling of piezoelectric elements of various devices.
These indicators are of serious theoretical and applied interest. The study was aimed at the development of numerical
methods for solving the problem of determining resonance frequencies in a system of elastic bodies. To achieve this goal,
we needed new approaches to the discretization of the problem based on the finite element method and the execution of
the software implementation of the selected method in C# on the .net platform. Current solutions were created in the
context of the ACELAN-COMPOS class library. The known methods of solving the generalized eigenvalue problem
based on matrix inversion are not applicable to large-dimensional matrices. To overcome this limitation, the presented
scientific work implemented the logic of constructing mass matrices and created software interfaces for exchanging data
on eigenvalue problems with pre- and postprocessing modules.

Materials and Methods. A platform was used to implement numerical methods .net and the C# programming language.
Validation of the research results was carried out through comparing the values found with solutions obtained in well-
known SAE packages (computer-aided engineering). The created routines were evaluated in terms of performance and
applicability for large-scale tasks. Numerical experiments were carried out to validate new algorithms in small-
dimensional problems that were solved by known methods in MATLAB. Next, the approach was tested on tasks with a
large number of unknowns and taking into account the parallelization of individual operations. To avoid finding the
inverse matrix, a modified Lanczos method was programmatically implemented. We examined the formats for storing
matrices in RAM: triplets, CSR, CSC, Skyline. To solve a system of linear algebraic equations (SLAE), an iterative
symmetric LQ method adapted to these storage formats was used.

Results. New calculation modules integrated into the class library of the ACELAN-COMPOS complex were developed.
Calculations were carried out to determine the applicability of various formats for storing sparse matrices in RAM and
various methods for implementing operations with sparse matrices. The structure of stiffness matrices constructed for the
same task, but with different renumbering of nodes of a finite element grid, was graphically visualized. In relation to the
problem of the theory of electroelasticity, data on the time required to perform basic operations with stiffness matrices in
various storage formats were summarized and presented in the form of a table. It has been established that the renumbering
of grid nodes gives a significant increase in performance even without changing the internal structure of the matrix in
memory. Taking into account the objectives of the study, the advantages and weaknesses of known matrix storage formats
were named. Thus, CSR was optimal when multiplying a matrix by a vector, SKS was optimal when inverting a matrix.
In problems with the number of unknowns of the order of 103, iterative methods for solving a generalized eigenvalue
problem won in speed. The performance of the software implementation of the Lanczos method was evaluated. The
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contribution of all operations to the total solution time was measured. It has been found that the operation of solving
SLAE takes up to 95% of the total time of the algorithm. When solving the SLAE by symmetric LQ method, the greatest
computational costs were needed to multiply the matrix by a vector. To increase the performance of the algorithm, parallelization
with shared memory was resorted to. When using eight threads, the performance gain increased by 40-50%.

Discussion and Conclusion. The software modules obtained as part of the scientific work were implemented in the
ACELAN-COMPOS package. Their performance for model problems with quasi-regular finite element grids was
estimated. Taking into account the features of the structures of the stiffness and mass matrices obtained through solving
the generalized eigenvalue problem for an electroelastic body, the preferred methods for their processing were determined.

Keywords: piezoelectric materials, finite element method, sparse matrices, generalized eigenvalue problem, Lanczos
method, Krylov subspace, preprocessing module, postprocessing module, triplets, coordinate storage format, compressed
sparse row, CSR, compressed sparse column, CSC, Skyline
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AHHOTAUUA

Beeoenue. 11lnpokoe NCTIONB30BAHKE TEE30MATEPHUANIOB B PA3IMIHBIX OTPACIISX CTUMYJIUPYET U3YUeHHE X PU3NIECKUX
XapaKTEePUCTUK M OOYCIIOBINBAET aKTyaJbHOCTh TAKHX M3bICKaHMH. B paccmarpuBaeMoM ciydae MOAAIbHBIN aHAIN3
MO3BOJISIET ONPENEIUTh PadoUuyI0 4acTOTy M KOI((GHUIMEHT IEKTPOMEXaHUIECKOH CBS3H MbE303JIEMEHTOB Pa3IMUHBIX
YCTPOUCTB. DTH HHAUKATOPHI IPEJICTABIISIIOT CEPhEe3HBIN TEOPETUUECKHIA 1 TPUKIIATHOW nHTepec. Llens uccnenoBanus —
pa3paboTKa YMCIEHHBIX METOJOB JUIS PEIICHMS 3aJaddl ONpEeeICHUs] YacTOT Pe30HaHCca B CUCTEME YNpyrux Tei. s
JIOCTHKEHUS IIE€NH HYXKHBl HOBBIC NMOJXOJbl K NUCKPETH3alMH 3a/ladd Ha OCHOBE METO/a KOHEUHBIX JJIEMEHTOB U
BBINOJIHEHHE MPOrPaMMHON peann3anii BEIOpaHHOTO MeTofa Ha s3bike C# Ha mmatdopme .net. AKTyabHbBIE pEIIeHUs]
co3maHbl B KOoHTeKcTe OmoOnmoTekn kimaccoB kKomimiekca ACELAN-COMPOS. OcHoBaHHBIE Ha OOpaIlleHUH MaTpPHI
N3BECTHBIC METOABI pemeHns] 0000IIEHHOH 3aa4n Ha cOOCTBEHHbBIE 3HAYEHHs HEPUMEHMMBI K MaTpHIaM OOJIBIION
pasmepHocTH. {71 NIpeoposieHHs] 3TOr0 OTPAHWYEHHS B IPEJCTABICHHOM Hay4HOM paboTe peain30BaHA JIOTHKA
MOCTPOEHHST MaTPHUI] MacC M CO3JaHbl IPOrpaMMHbIE MHTEP(EHCHI Uil 0OMeHa JaHHBIMH O 3ajJja4ax Ha COOCTBEHHbIE
3HAYEHMS C MOJYJISIMH IIpe- 1 TMOCTIPOLIECCHHTA.

Mamepuanst u memoost. Jlns peann3aldyl YHCICHHBIX METOMOB 3aJCHCTBOBANM IulaThopMmy .NEt U A3BIK
nporpammupoBanus C#. Banuaaius pe3yibTaToB HCCIEI0BaHHS IIPOBOIMIIACH ITYTEM CPABHEHHUS Hall/ICHHBIX 3HAUSHUH
¢ peuieHusiMH, nonydeHHbIMH B m3BecTHIXx CAE-makerax (anrnm.  computer-aided  engineering —
KOMITBIOTEpH3NpOBaHHast MHXeHepust). Co3gaHHbIe TOANIPOrPaMMbl OLIEHHBAIIUCH C TOUKH 3PEHHS TPOM3BOAUTEIILHOCTH
1 IPUMEHHMOCTH JUIA 3a/1a4 O0JbIIoil pazMepHOCTH. [IpOBOAMINCE YHCIIEHHBIE YKCIIEPUMEHTHI C LEJIBI0 BAJIUAAIIUN
HOBBIX aJTOPUTMOB B 3aJjadyax Mayoil pa3sMepHOCTH, KOTOpbIe pemaroTcs n3BecTHeIME MeTogamu B MATLAB. Jlanee
MOJIXOJ] TECTHUPOBAJIM Ha 3ajadax c OOJBIIMM YHCIOM HEHW3BECTHBIX M C YYETOM pacHapauIeIMBaHMS OTJENbHBIX
onepannii. UtoOb1 m36exaTh HaX0XKICHNUS 00pPaTHOW MaTPHUIIB], IPOTPAMMHO PEaTn30BaIN MOAUMUITUPOBAHHBIA METO

Jlannomra. PaccmoTpend ¢GpopMaThl XpaHEHHsT MaTpul] B onepaTuBHON mamstu: tpuiuietsl, CSR, CSC, SKyline. s
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pEIIeHUs] CUCTEMbI TMHEWHBIX anreOpandeckux ypaBHeHud (CJIAY) 3amefcTBOBaNM UTEPAITMOHHBIH CHMMETPHYHBIH
Mmeron LQ, azanTupoBaHHbII K 9TUM popMaTam XpaHEHHSI.

Peszynomamut uccnedoganus. Pa3paboTaHbl HOBBIE PACUETHBIE MOIYNIH, HHTETPHUPOBAHHBIE B OMONMOTEKY KIAacCOB
kommiekca ACELAN-COMPOS. IlpoBemeHBI pacdeTsl I ONpeAeNieHHS NPUMEHHMOCTH Pa3iIH4YHBIX (OpMaToB
XpaHEHHs Pa3pEeKEHHBIX MATPHIL B OTIEPATHUBHON MAMSTH U Pa3IMYHBIX METOAOB PeasTU3alny ONIePALUi C pa3pesKeHHBIMH
Marpuuamu. ['pagudeckn BU3yanu3upoBaHa CTPYKTYpa MaTpPUII )KECTKOCTH, IIOCTPOCHHBIX JUUIL OJJHON M TOH XKe 3a1auH,
HO C pasiIuMyHOM IepeHyMepalued y3j710B KOHEYHOJIEMEHTHON ceTku. IlpumMeHUTEeNnpHO K 3ajadye TEOpUH
IEKTPOYNPYTOCTH OOOOIIEHBI U MPECTaBICHBI B BU/IE TAOIHIBI JaHHBIE O BPEMEHH, HEOOXOAMMOM Ha BBIIIOJIHCHNE
0a30BbBIX OIlEpalrii ¢ MaTPULAMH YKECTKOCTH B Pa3jIMYHBIX (OpMaTax XpaHEHHs. Y CTaHOBJICHO, YTO MEepeHyMeparus
Y3JI0B CETKH JIa€T CYIIECTBEHHBIN IPUPOCT IPON3BOIUTENBHOCTH Jaxe 0€3 M3MEHEHNS BHYTPECHHEH CTPYKTYPBI MaTPHIIBI
B maMsaTH. C y4eToM IOCTaBICHHBIX 337ad HCCIECIOBAaHWSA Ha3BaHBI MPEHMYIIECTBA U CIa0ble CTOPOHBI M3BECTHBIX
¢dopmaToB xpanenus: marpuil. Tak, CSR onrtuManeH npu yMHOXXEHUH MaTpHibl Ha BekTop, SKS — mpu obpamennn
MaTpuIbl. B 3aa4ax ¢ 4MCIOM HEM3BECTHBIX MOpAAKa 10° BEIMIPBHIBAIOT B CKOPOCTH UTEPAIMOHHBIE METO/IbI PELIEHHUS
00001IeHHO 331291 Ha COOCTBEHHBIE 3HaUeHU:. OIIeHNBaIACh IPOU3BOUTEIHHOCTD IPOTPAMMHOM pearn3aIiiii MeTo1a
Jlannoma. Mi3Mepsiiicst BKIIaa Bcex omeparuii B obmiee Bpems peleHus. BersicHunocs, yto oneparus peuienus CJIIAY
3aHuMaetr 10 95 % ot oOmero BpemeHu paboThl anropurMma. [Ipu pemenun CJIAY cummerpuuHbiM MeTozoM LQ
HauOONbIINE BBYUCIMTEIBHBIC 3aTpaThl HYXXHBI IS yYMHOXKEHHSI MaTpuipl Ha BekTop. [lnd  yBenwdeHus
MIPOU3BOIUTENBHOCTH ANTOPUTMa NPUOETIIN K pachapaiieIMBaHuio ¢ o0meil nmamsTeio. [Ipu ncrons30BaHUN BOCBMU
MOTOKOB ITPOM3BOANTEIBHOCTH BhIpocia Ha 40-50 %.

Oécyancoenue u 3axniouenue. [loayueHHble B paMKax Hay4HOH paObOTHI NpOrpaMMHBIE MOYJIN ObUIM BHEAPEHBI B ITAKET
ACELAN-COMPOS. Ormenena wuX TNPOW3BOAWUTENFHOCTh [UII MOJCIBHBIX 3a1a4 C  KBa3HPETYJAPHBIMHA
KOHEYHOJIEMEHTHBIMU ceTKaMH. C y4eToM OCOOSHHOCTEH CTPYKTYp MAaTpHI] KECTKOCTH M Macc, IOJy4aeMbIX IpH
peleHnr 00001IeHHOIT 3a/1a41 Ha COOCTBEHHBIE 3HAYEHHS JUIS 3JIEKTPOYIPYTOro Tella, OIpeIesIeHbl IPeANOYTUTEIbHbIE

METOIBI U X 00padOTKH.

KaioueBble ci1oBa: mpe3oMaTepralibl, METOA KOHEUHBIX 3JIEMEHTOB, Pa3peXEHHBIE MaTpHIBl, 0000IIECHHAs 3aa4a Ha
coOCTBeHHBbIE 3HaueHus, MeTon JlaHuoma, mnoAnpocTpancTBo KpelgoBa, MOAynb IPENpoOLECCHHIa, MOAYIb
MOCTIPOLIECCHHTA, TPHILIEThI, KOOPAMHATHBIN QopMaTr XpaHEHHs, CXKaTblii paspexeHHbld psng, CSR, cxkaTbiit

paspexennsrii cronben, CSC, SKyline

BaarogapHocTH: aBTOphI BhIpaxkatoT OnarogapHocTs A.H. ConoBreBy u T.C. MapThIHOBOI 32 MOMOIIB B pa3zpaboTke
YHCIIEHHBIX MeTO/10B U Poccuiickomy HayuHOMY (OHAY 32 (PMHAHCOBYIO MOJICPIKKY MccienoBanus rpantom Ne 22-21—
00318, https://rscf.ru/project/22-21-00318

Jnsa nurupoBanus. OranecsH [1.A., Hlreiir O.0. Peanmm3amms 6a30BBIX oIlepanuii AN pa3peKCHHBIX MaTpHUI] B

KOHTEKCTEe peleHnsi 0000IeHHON 3a1aun Ha coOcTBeHHble 3HaueHnst B kommiekce ACELAN-COMPOS. Advanced
Engineering Research (Rostov-on-Don). 2023;23(2):121-129. https://doi.org/10.23947/2687-1653-2023-23-2-121-129

Introduction. Devices made of piezoelectric materials have been widely used, actively studied and improved for a
long time. Medical ultrasound devices (diagnostic equipment, ultrasonic scalpels) [1-4] and mobile energy generators [5]
should be noted separately. Paper [6] described the combination of photo- and piezoelectric effects to create efficient
compact energy sources. New materials designed for the application under specific conditions are being studied in science
and industry. In [7], the creation of a lead-free piezo-active composition suitable for operation at various temperatures
was considered.

In the study on piezoelectric elements, a key role is played by the modal analysis stage, which enables to establish
the resonance and antiresonance frequencies of the device. These data:

— are needed to find out the operating frequency of the device;

— provide determining the electromechanical coupling factor — an important performance indicator of the device;

—are input information in numerical experiments for problems on forced oscillations.

The study was aimed at the creation of numerical methods for solving the problem of determining resonance
frequencies for a system of elastic bodies. Achieving the stated goal required solving two tasks. The first was to develop
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methods of discretization of the problem based on the finite element method (FEM). The second was to carry out a
software implementation of the selected method in C# on the .net platform. All known programs take into account the
context of the ACELAN-COMPOS class library [8]. When solving a generalized eigenvalue problem, methods based
on matrix inversion are widely used. However, they are not applicable to large-dimensional matrices. In the presented
research, this limitation was overcome as follows:

— the logic of constructing mass matrices was additionally implemented;

— software interfaces were created for exchanging data on eigenvalue tasks with pre- and postprocessing modules.

Materials and Methods. Principally, the proposed approach was designed to solve static problems of electroelasticity
when implementing the averaging method [9], which was used to calculate the effective properties of piezo composites.
In this regard, only stiffness matrices were presented at the stage of constructing global FEM matrices. In this study, we
additionally implemented the logic of constructing mass matrices and developed software interfaces (application
programming interface, API) for exchanging data on eigenvalue tasks with pre- and postprocessing modules. The
developed routines were evaluated in terms of performance and applicability for large-scale tasks. Numerical experiments
were carried out to validate the algorithms created for such small-dimensional problems that provide obtaining a solution
by general methods in the MATLAB computing package. Next, testing was performed on tasks with a large number of
unknowns and taking into account the parallelization of individual operations.

The mathematical model of the problem being solved consists of the defining relations [9]:

Prc®2U + AsppoioU—V-c=¢, V-D=0, 1)
c=CF-(e+PBst)—€] -E, D+cyD=¢;- (e+Gué)+55 - E, 2)
e=(Vu+vur)/2,E=-V¢. (3)

Here, ¢ — stress tensor; pj— body density; ¢ — strain tensor; u — displacement vector; D — electric displacement
vector; E — electric-field vector; f; — body force vector; ¢ — electric potential; og, Bqsj, ¢ — damping
coefficients; cf, e], o5 — tensors of elastic constants, piezoelectric modules and dielectric permittivity; index j —

body number in the model.
The discretization is performed by replacing:
u(x,t) =NJ(x)-U(t) , o(x,t)= NJ(x)-O(t) .
Here, N, — shape function matrix for the displacement field; N, — shape function vector for electric potential;

U(t), @(t) — global vectors of the corresponding nodal degrees of freedom.

In this case, the original problem (1-3) takes the form:
M-&+K-a=F . (4)
Here, matrices M and K are global matrices of mass and stiffness, respectively, and the vector is a general vector of

unknowns:
a=[U, o].
In the problem of the theory of electroelasticity:

m-( 8- ) ©
Matrices M, ,» Ky and Ky, — symmetric. In the case of harmonic oscillations at natural frequency o, it is
possible to write:
a=v;sin(mt),
denoting the corresponding eigenvector by v;.
Consider free oscillations if F =0 . In this case, task (4) is represented as:
—o?Mv; +K-v; =0. (6)
Thus, the original problem is reduced to a generalized eigenvalue problem (6). For nonzero v, , inequality (6) is solved

by finding the matrix inverse to K . However, at the same time, the sparse matrix becomes full, i.e., the method is
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unsuitable for large matrices. Therefore, it is needed to use other methods that do not require finding the inverse matrix.
To solve this problem, a modified Lanczos method was programmatically implemented in this paper [10]. The author of
this modification is T. S. Martynova. The description of the development is not given in this article. Of the operations
used in the method, the most expensive from the point of view of computational resources was the solution to a system
of linear algebraic equations (SLAE), needed for performing a spectral transformation.

Matrices M and K — sparse, with a small number of nonzero elements. Several formats are used to store such
matrices in RAM:

— triplets, or coordinate format;

— CSR (compressed sparse row);

— CSC (compressed sparse column);

— Skyline storage format (SKS method).

The coordinate format involves storing triples (triplets) of values (i, j, k), representing coordinates (i, j) and values (k)
of nonzero elements. CSR is sometimes referred to as CRS or Yale format. It involves storing a sparse matrix in the form
of three arrays. Consider matrix of N size with NZ nonzero elements. We describe the possible organization of its
storage. All nonzero elements must be placed in one array of NZ size. The positions of these elements in the columns
should be placed in another array of NZ size, and the third array of N size should be used to store the indices of the first
elements of the rows. Similarly, the storage in CSV format is implemented.

The SKS format assumes the storage of a variable-width matrix band that includes all nonzero elements. In this case,
zeros are allowed. The efficiency of this format depends on the renumbering of the matrix rows. Methods for reducing
the size of the tape are described in [11]; however, their applicability to the stiffness matrix obtained when solving a three-
dimensional problem using FEM requires a separate study.

To solve the SLAE (system of linear algebraic equations), an iterative symmetric LQ method (SYMLQ [12]) adapted
to the storage formats listed above was used.

Research Results. At the beginning of the study, we chose the optimal storage format for sparse matrices. The
coordinate format enabled to quickly add and change an element of the matrix. These operations were needed at the stage
of assembling the global matrix and taking into account the boundary conditions. In addition, for ill-conditioned matrices,
to which K refers, a preliminary transformation is often used for normalization. It is also convenient to perform it in the
coordinate format. However, this format is ineffective when it comes to algebraic operations.

CSR is ill-adapted for changing the structure of the matrix: by adding a nonzero element, you need to insert into two
arrays. In this case, the matrix is multiplied by a vector quite easily and efficiently.

SKS has similar problems with the addition of nonzero elements and is highly dependent on the renumbering of
unknowns in the problem. We focus on the example of a quasi-regular grid, which is used in the ACELAN-COMPOS
package to work with representative volumes of composites. The width of the band containing all nonzero elements can
be predetermined and depends on the number of nodes and the type of final element. In the general case of an arbitrary
finite element grid, it is difficult to estimate the size of the band in advance.

Four methods of numbering unknowns were used in numerical experiments. Figure 1 shows the structure of stiffness
matrices constructed for the same task, but with different renumbering of nodes of a finite element grid.

.
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Fig. 1. Stiffness matrix structure with various methods of node numbering:
a— unknowns are ordered by nodes; b — first, displacement nodes are ordered,
then potentials; ¢ — nodes are sorted by layers of the FE grid, and unknowns — by nodes;
b, d — nodes are sorted by layers of the FE grid, and unknowns — as in example

Thus, the grid was a cube with regular partitioning by eight-node finite elements. A model matrix of 500 lines was
used for the illustrations. The matrices shown in Figures 1 a and 1 b, were not subjected to additional renumbering of
nodes and differed only in the numbering of degrees of freedom. In 1 a:

a :[ulx'uly'ulz’(Pl""’uNx’uNy'uNz’(\DN]'
In 1 b, the unknowns responsible for the potential distribution were collected at the end of the vector:
a= [ulx’uly’ulz""’uNx’uNy’uNz’(Pl""’(PN] .

The unknowns in matrices 1 ¢ and 1 d were numbered similarly, but the nodes of the finite element grid were pre-
numbered according to their coordinates through alternately sorting all nodes by each of the coordinates. This technique
is widely used to build more efficient SLAE solution modules, as it enables to work with the matrix in a suitable band
format, convenient for parallelization. Similar external modules were implemented for the ACELAN-COMPOS
complex [13-15]; however, in this work, only formats for storing sparse matrices of a general form were used.

Table 1 summarizes the data on the time required to perform basic operations with matrices in various formats.

Table 1
Time to perform basic operations with the stiffness matrix in the problem of the theory of electroelasticity.
19,652 rows
Storage . Elapsed time, ms
Operation
format la 1b lc 1d
CSR Conversion from coordinate format 123 132 97 117
CSR Multiplication by vector, 100 operations 260 260 260 260
SKS Conversion from coordinate format 690 703 124 268
SKS Multiplication by vector, 100 operations 60,558 | 61,450 | 7,616 | 22,113

The experimental results showed that the conversion operation from a coordinate storage format to a compact one
took little time. At the same time, the renumbering of grid nodes to form a block-tape matrix made it possible to get a
noticeable increase in performance even without changing the internal structure of the matrix in memory. CSR format
turned out to be optimal in terms of the efficiency of the matrix-vector multiplication operation. When the matrix was
inverted, SKS format was more efficient, but for problems with the number of unknowns of the order of 103, iterative
methods for solving a generalized eigenvalue problem worked noticeably faster.

Further, the performance of the software implementation of the Lanczos method was experimentally evaluated. The
contribution of all operations to the total solution time was measured. As a result, it was found that the operation of
solving SLAE took up to 95% of the total time of the algorithm. In the course of the algorithm, a Krylov subspace was
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constructed, and depending on its dimension, the number of SLAE that needed to be solved changed. Note that the
dimension of the Krylov subspace was chosen based on heuristics with respect to the number of desired eigenvalues.
Here, the SLAE differed only in the right part, so that the requirements for allocated memory remained low. Among the
basic operations used in the course of solving SLAE by the SYMLQ method, the greatest computational costs were needed
for multiplying the matrix by the vector.

To increase the performance of the algorithm, the simplest parallelization with shared memory was implemented.
Blocks of rows were allocated for the CRS format. They were transmitted to separate threads that calculated the
corresponding components of the resulting vector. The performance gain was 40-50% when using 8 threads. At the same
time, for matrices of the order of 10° elements, the increase was about 40%, and for matrices of the order of 10* — about 50%.

Discussion and Conclusions. Within the framework of this study, a method for solving a generalized eigenvalue
problem for matrices obtained by modeling electroelastic bodies was implemented. Software modules were created in C#
for constructing mass matrices by the finite element method and performing auxiliary operations within the framework
of the Lanczos method (working with Krylov subspace vectors, reorthogonalization, finding eigenvectors). The
computational complexity was mainly due to the operations of multiplying sparse matrices by a vector. In this regard,
numerical experiments were carried out to determine the optimal formats for storing matrices, the optimal structure of the
matrix obtained as a result of renumbering the nodes of the FE grid and degrees of freedom in the nodes. A version of the
SYMMLQ iterative algorithm using parallel computing was developed. The final scheme of work included three points.
First, global matrices were constructed in coordinate format with a renumbering algorithm (Fig. 1 c¢). Secondly, the data
was converted to CRS format. Thirdly, the data was processed by the Lanczos method, which included the SYMLQ
method for solving SLAE. The results of the work were included in the ACELAN-COMPOS software package.
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Oganesyan PA, et al. Implementation of Basic Operations for Sparse Matrices when Solving a Generalized Eigenvalue

3asenennviii 6xk1a0 coasmopos:
IT.A. OranecsiH — GopMHUPOBaHHE OCHOBHOM KOHIICIIIMH, IICTH U 3a]Ia4H UCCIICIOBAHUS, IPOTPAMMHAs peanu3aius,
MOJICOTOBKA TeKCTa, (OPMYIHPOBAHKE BHIBOIOB.

0.0. lTeits — nporpaMMHas peaar3anys, IPOBEICHAE YNCICHHBIX YKCIIEPUMEHTOB, ITOITOTOBKA MILTIOCTPAIIHH.

Kongruxm unmepecos: aBTOphI 3asBIAIOT 00 OTCYTCTBUU KOH(IIUKTA HHTEPECOB.

Bce agmopul npouumanu u 0006punu OKOHYAMENbHBII 6APUAHI PYKONUCU.
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