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Abstract 

Introduction. The prediction module generates possible future trajectories of dynamic objects that enables a self-driving 

vehicle to move safely on public roads. However, all modern prediction methods evaluate their performance only under 

urban conditions and do not consider their applicability to the domain of rural roads. This work examined the adaptability 

of existing methods to work under rural unstructured conditions and suggested a new, improved approach. 

Materials and Methods. As a solution, we propose to use a neural network that includes the following submodules: a 

graph-based scene encoder, a multimodal trajectory decoder, and a trajectory filtering module. Another proposed feature 

is to use an adapted loss function that penalizes the network for generating trajectories that go beyond the drivable area. 

These elements use standard practices for solving the prediction problem and adapting it to the domain of rural roads. 

Results. The presented analysis described the basic features of the prediction module in the rural road domain, showed a 

comparison of popular models, and discussed its applicability to new conditions. The paper describes the new approach 

that is more adaptive to the considered domain of study. A simulation of the new domain was performed by modifying 

existing public datasets.  

Discussion and Conclusion. Comparison to other popular methods has shown that the proposed approach provides more 

accurate results. The disadvantages of the proposed approach were also identified and possible solutions were described. 

Keywords: trajectory prediction, behavior prediction, neural networks, self-driving cars, artificial intelligence, 

autonomous cars 
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Аннотация 

Введение. Благодаря модулю прогнозирования траекторий движения динамических объектов беспилотный 

автомобиль способен безопасно двигаться по дорогам общего пользования. Однако все современные методы 

прогнозирования оценивают производительность только в городских условиях и не рассматривают свою 

применимость к домену проселочных дорог. Цель данного исследования заключается в анализе адаптивности 

существующих методов прогнозирования и разработке подхода, который будет демонстрировать лучшую 

производительность при работе в новых условиях.  

Материалы и методы. В качестве решения предлагается использовать нейронную сеть, включающую в себя 

следующие подмодули: графовый кодировщик сцены, мультимодальный декодировщик траекторий, модуль 

фильтрации траекторий. Также предлагается применить адаптированную функцию потерь, которая штрафует 

сеть за генерацию траекторий, выходящих за границы дорожного полотна. Данные элементы задействуют 

распространённые практики решения задачи прогнозирования, а также адаптируют её для домена проселочных 

дорог. 

Результаты исследования. Проанализированы основные отличия и условия работы модуля прогнозирования в 

условиях проселочных дорог. Выполнена симуляция нового домена путем модификации существующих наборов 

данных. Проведено сравнение популярных методов прогнозирования и оценена их применимость к новым 

условиям. Представлен новый, более адаптивный к новому домену, подход. 

Обсуждение и заключение. Проведенное сравнение с другими популярными методами показывает, что 

предложенное авторами решение обеспечивает более точные результаты прогнозирования. Также были 

выявлены недостатки предложенного подхода и описаны возможные пути их устранения. 

Ключевые слова: прогнозирование траекторий, прогнозирование поведения, нейронные сети, беспилотные 

автомобили, искусственный интеллект, автономные автомобили 
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Introduction. The latest achievements in the field of artificial intelligence (AI) are being actively implemented in 

various areas of activity. One of such achievements is autonomous vehicles (AV). The current research was aimed at 

creating algorithms that allow AV to move safely on public roads. This will significantly reduce the number of road 

accidents [1]. 

The scientific community has already identified the basic modules of an autonomous vehicle. One of them is a 

system for predicting the future behavior of road users (agents) [2]. A clear understanding of how the environment will 

develop and in which direction dynamic objects (pedestrians, cars, cyclists) will move is urgently needed for AV to 

search and use a safe and effective trajectory of movement.  

Numerous scientific papers are devoted to the problem of predicting such trajectories [3–12]. However, there is 

currently no active research on the application of existing methods outside of urban conditions. And this is extremely 

important, since autonomous cars will be used on country roads, too [13]. Urban conditions are highly structured: cars 
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mostly follow traffic lanes, and pedestrians move through special zones. In this sense, the area of country roads is the 

complete opposite, which means that it will have additional difficulties during development. In the given paper, attention 

is focused on these difficulties: the existing predicting methods and their applicability to new, less structured conditions 

are considered. 

The objective of the study involved: 

– analysis of the major differences and working conditions of the prediction module under the conditions of country roads; 

– simulation of a less structured country road domain by modifying the existing datasets; 

– comparison of modern prediction methods, including their applicability to new conditions; 

– description of the new approach and proof of its higher accuracy in comparison to other prediction methods. 

Materials and Methods. At first glance, it would seem that the domain presented is a simpler version of urban 

conditions due to the fact that country roads are characterized by less traffic. However, the absence of complex multi-

level junctions, special traffic-free zones, a large number of signs, markings, etc., makes the domain of country roads less 

structured, i.e., fewer rules and specific traffic patterns increases the randomness and reduces the predictability of the 

behavior of cars and pedestrians. 

The following features of the country road domain influence strongly on the selection of the architecture of the 

prediction module: 

– crossroads. Undoubtedly, they are more simple on country roads in comparison to urban ones, but at the same time 

this fact of simplicity means that the model must take into account multimodality and assess the probability of choosing 

each possible direction of movement at the crossroad when the agent approaches it; 

– country roads do not have lane markings, pedestrian crossings, bike paths, etc. Instead, the HD map will contain 

only information about the boundaries of the roadway. Therefore, the stage of encoding the scene should take into account 

this feature to describe the surrounding context more effectively; 

– pedestrians and cyclists will move along the same road with conventional and autonomous vehicles. Therefore, the 

model should be adaptive for predicting the future trajectories of both cars and pedestrians/cyclists. 

The prediction module implies the presence of AV recognition, tracking and localization systems and their accurate 

operation. The authors of the article use the Argoverse dataset, which stores the required records of the operation of all 

systems in a convenient form [14]. 

The dataset consists of recordings of road scenes observed on the streets of Miami and Pittsburgh, USA. Each of the 

entries contains a local part of the terrain map (lane boundaries, roads, pedestrian crossings) and a list of all recognized 

agents, including the current position and movement history of each of them. Each of the records is divided into two parts: 

two seconds of the observation history and three subsequent seconds for which prediction is made (prediction horizon). 

Data on the future movement of objects is also available and used to calculate the accuracy of prediction methods and 

model training. 

Information about agents is presented in a discrete format. The time interval between measurements is fixed, in this 

work it is equal to 0.1 seconds (10 Hz). 

For each moment of time t, the module receives the observation history 𝑆𝑖
𝑝
 for each detected agent i. The observation 

history consists of the agent's current and past states, where each of the states 𝑠𝑡 is a 2D position in the global coordinate 

system. The authors make the assumption that the height information is redundant.    

The dataset also provides access to an HD map that contains information about road borders and roadway, pedestrian 

crossings. To simulate the domain of country roads, the dataset was modified in such a way as to exclude all information 

from road maps, except for the boundaries of the roadway D. This reduces the amount of information about the road 

context and complicates the task of prediction. 

Hence, the context of the scene is represented as  

  1 2, , , , , p p p

kc S S S D   (1) 

where k — the total number of tracked agents on the scene. 
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This approach implies predicting the trajectory for only one agent per execution, therefore further 
p

iS  is treated as 

pS  for simplification. To generalize the model for all recognized agents, it is required to repeat the proposed approach 

for all k agents on the scene. The agent for which the prediction is currently being made is considered a target agent.  

To assess the accuracy of prediction methods, the dataset contains recorded future trajectories 
fS  for each target agent: 

  1 2, , , , f

HS s s s    (2) 

where H indicates the number of next time steps. In this case, parameter H will be equal to 30, since the planning horizon 

is three seconds with a sampling frequency of 10 Hz.  

The domain of the prediction module is multimodal, i.e., the future behavior of agents may differ significantly in 

absolutely identical traffic situations. Let us say, a car approaching a crossroad may continue straight ahead or make a 

turn. To take this into account, it is required to generate M possible future trajectories and M probabilities of each of them 

at the model output.  

Therefore, the purpose of the prediction module is to create function 𝑓, that takes the context of the scene c as input 

and generates M pairs of possible future trajectories and their probabilities:  

    1 2 1 2, , , , , , ,f f f

M Mf c S S S p p p   .  (3) 

Here, at least one generated trajectory 
fS  should be as close as possible to the real trajectory  fS , and the probability 

of its execution p should be close to unity. 

Model architecture. The proposed approach involves the use of a neural network consisting of submodules of scene 

encoding, decoding and filtering trajectories. The architecture of the system is shown in Figure 1. 

 

 

Fig. 1. System architecture 

A neural network adapted to the new conditions, based on a vector representation, is responsible for encoding the 

scene. This selection is due to the fact that on country roads, the HD map will contain a limited amount of information 

(only the roadway boundaries and the history of observations of dynamic objects). Popular methods represent the context 

of a road scene с in an image format and process it using convolutional neural networks. However, vector coding avoids 

the overhead associated with image generation [4–5].  

The presented encoder is based on the VectorNet model, but its input data format has been modified to receive 

information only about the boundaries of the roadway and the state of the agents. [3]. This encoder represents the 

boundaries of the road and the state of agents using polylines, which are further processed by a graph neural network. 

This provides encoding the interaction between polylines. Details of the implementation are described in paper [3].  

A trajectory decoder is a task of regressing several possible trajectories and generating a set of probabilities. To solve 

this problem, a multilayer perceptron model is used. The decoder implementation is inspired by the MTP model [4], 

however, the authors of the article propose a different formula for calculating the best trajectory m* from the set of 

M trajectories. It is also proposed to use an additional mechanism that penalizes the model for predictions that go beyond 

the area of movement. 

The authors of the original MTP model propose to train a multilayer perceptron using the loss function that represents 

the sum regL and 
classL , where: 

  *,f f

reg m
S SL L   (1) 

Trajectory decoder HD map with agents Scene encoder 

Filtering trajectories 
Polyline 

encoder 

Interaction  

graph 
VectorNet 

Output: 

М*(2H+1) M trajectories 

M probabilities 



Ivanov SA, et al. Predicting the Behavior of Road Users in Rural Areas for Self-Driving Cars 

 

 

In
fo

rm
at

io
n

 T
ec

h
n

o
lo

g
y

, 
C

o
m

p
u

te
r 

S
ci

en
ce

 a
n
d

 M
an

ag
em

en
t 

 

173 

 *

1

log
M

class mm m
m

I p




 L   (5) 

In this case, regL  — mean-square error between the real trajectory  fS  and the best trajectory m* of M generated. 

    *

2
*

1

1
,  ,

H
f f

i im
i

S S s s
H 

 L   (6) 

where si — the agent's actual future position at time i, and *

is — the predicted future state of the best trajectory m*. 

classL  — loss function based on cross entropy, which increases the probability of executing the best of the predicted 

trajectories m* to 1 and reduces the probability of other trajectories to 0. 

 Ic is a binary indicator equal to 1, if condition c is true, and 0 — otherwise. 

In the original article, the best of the predicted trajectories m* is defined as the one that has the minimum value of the 

root-mean-square error in comparison to the real trajectory:   

  , .f f

m
m

m argmin S S  L   (7) 

The authors of the article suggest using the following modification: 

  
Δ

, ,f f

m
m

m argmin S S


  L   (8) 

where ∆ — subset of generated trajectories that has a similar final direction to the real trajectory 
fS  .  

The idea is to remove from consideration trajectories in which the final direction of the agent differs significantly 

from the direction in the real trajectory when calculating the best trajectory m*. If the difference in directions features 

less than certain threshold γ, then the generated trajectory is considered correct, i.e., m⸦∆. In the case under consideration 

γ=30o. Therefore, the best trajectory m* should have a similar final direction and the lowest value of the loss function. 

This work also involves prior knowledge of the domain to achieve greater convergence of the model [15]. Since only 

information about the roadway boundaries is available from the HD map when driving in the domain of country roads, 

an additional variable is introduced — 
daL  into the loss function. Thanks to it, the model will penalize the predicted 

trajectories that go beyond the road in cases where at least one state is 𝑠𝑖 ∉ 𝐷. The model penalizes only the best trajectory, 

since only in this case, it is possible to determine the direction of error reduction by approximating the best of the generated 

trajectories m* to the real trajectory 
fS . 

Thus, 
daL  is defined as: 

  
2

*

1

1
 ,

H

da c i i

i

I s s
H 

  L   (9) 

where 
cI  is equal to 1, if 

is D , and 0 — otherwise. 

The final loss function is defined as 

  ,class reg da  L L L L   (10) 

where α and β — neural network hyperparameters used for training. In this case, both of these parameters are equal to 0.5. 

To filter similar and duplicate trajectories, the proposed approach uses the filtering of a finite set of trajectories M at 

the final stage. This module is required because in some cases, the number of possible agent trajectories may be less 

than M, e.g., when a car is moving along a straight road at a constant speed, the model can generate only one trajectory: 

the car continues to move straight. However, the need to generate exactly M trajectories will result in the situation when 

all predictions are similar to each other. 

The proposed filtering is based on the final direction and positions of states 𝑠𝑖: if the direction and the sum of the 

deviations between states 𝑠𝑖 of the real and generated trajectories are less than the threshold value σ, then the trajectories 

are considered similar. The authors average each state of the trajectories and sum up the probabilities of the trajectories 𝑝𝑖 .   

This approach was implemented in the Python programming language on the PyTorch deep learning framework. The 

model was trained on GeForce RTX 2080 Ti graphics card for 40 epochs, the training took four hours. 
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Research Results. To assess the accuracy of prediction models, this section applies widely used metrics for the 

trajectory prediction problem: average displacement error, ADE, final displacement error, FDE [6], MissRate (MR), and 

Offroad rate (OR).  

For multimodal cases with the generation of several trajectories, ADE and FDE are taken as the minimum ADE and 

FDE among M trajectories (the trajectory with the lowest metric value) [5]. 

The prediction is considered “missed” if ADE metric of the generated trajectory is more than two meters. OR metric 

is calculated as the percentage of trajectories in which at least one state 𝑠𝑖 goes beyond the range of motion D.   

To visualize the context of scene с, as well as the real and predicted future trajectories S f and
fS a script in the Python 

programming language was implemented using the Matplotlib library. 

This section compared the operation of several different methods in the case of an unstructured domain. The following 

methods were used in comparison: 

– Kalman filter; 

– Single trajectory output – the proposed scene encoder with the generation of a single trajectory; 

– Fixed set classification – the proposed scene encoder with the reduction of the task to classification among 

predefined trajectories: by sets of 64 and 415 predefined trajectories; 

– Proposed approach. 

Table 1 presents comparison of the accuracy of the methods when working under unstructured conditions. Several 

methods are compared, including the proposed approach. 

Table 1  

Comparison of models in the unstructured domain of work 

Method Modes ADE1 FDE1 ADE6 FDE6 MR21 MR26 OR 

Kalman filter 1 3.78 8.05 3.78 8.05 0.89 0.89 5.89 

Single trajectory output 1 3.12 6.75 3.12 6.75 0.89 0.89 3.26 

Fixed set classification 415 3.27 7.00 1.74 3.57 0.84 0.52 3.61 

Fixed set classification 64 2.6 5.63 1.52 2.91 0.82 0.49 2.58 

Proposed approach 6 2.36 5.29 1.32 2.55 0.78 0.38 1.84 
 

Kalman filter. The simplest way to predict behavior is to obtain the current state of the object (current lane, speed, 

direction, etc.) and extend this state to future steps based on some assumptions, e.g., that the car will continue to follow 

its lane or will have a constant speed and/or acceleration. Another popular method for such tasks is to use the Kalman filter [12].  

According to Table 1, the Kalman filter works worse than all the presented methods based on neural networks. 

Figure 2 shows two cases. In the first case, the Kalman filter successfully performs prediction because the vehicle is 

moving straight, without any turns or speed variation. In the second case, the Kalman filter mispredicts due to lack of 

knowledge about the context of the traffic situation. 

             

Fig. 2. Example of predictions using the Kalman filter. Dotted lines — roadway boundaries,  

red lines — target agent with history of observations, blue — other agents, green — real trajectory, yellow — predicted 

trajectory, red crosses indicate predicted states outside the roadway 
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Single trajectory output. This method involves the use of a graph scene encoder, which is identical to the one used in 

the proposed approach. The output of the network implies the generation of only one trajectory. This model is trained 

using the root-mean-square loss function. 

As shown in Table 1, the neural network, even with the generation of a single trajectory, demonstrates better results 

in comparison to the Kalman filter.  

Figure 3 shows the visualization of this prediction method operation. The image on the left shows that the model can 

successfully predict the agent's turn. The image on the right shows that generating one trajectory is not enough. The neural 

network tries to imagine both possible outcomes: going straight and turning right. As a result, the model outputs the 

average of the two outcomes. 

             

Fig. 3. Example of generating a single trajectory. Red line shows the target agent with 

history of observations, green — real trajectory of movement, yellow — predicted trajectory 

Fixed set classification. The implementation was inspired by the CoverNet prediction method [5]. This model consists 

of a proposed vector scene encoder, followed by a different trajectory decoder. The decoder is a classification task based 

on a predefined set of trajectories consisting of physically realizable vehicle trajectories with sufficient coverage. Two 

sets were created for experiments: of 415 and 64 possible trajectories. The second set has the same coverage as the first, 

but provides a lower density of trajectories. Detailed information about the sets of trajectories is contained in paper [5]. 

The visualization of the work is shown in Figure 4. The classification model successfully copes with multimodality at 

crossroads, but in some cases, the lack of sufficient coverage by a set of trajectories negatively affects the results. 

 

             

Fig. 4. Example of prediction using a classification model. Red lines represent the target agent  

with history of observations, green lines — real trajectory. M predicted trajectories  

with different probability of execution pi are presented using red-yellow hues 

As shown in Table 1, this method works more accurately than generating a single trajectory, but worse than the 

proposed approach. In addition, increasing the density of the set of trajectories by using a set of 415 trajectories did not 

improve the results. The authors attribute this to the presence of noise in the dataset, which comes from the tracking 

system used in the data collection. 

 

 

30 

20 

10 

0 

-10 

-20 

 

30 

20 

10 

0 

-10 

-20 
-30      -20     -10        0       10        20      30  X -30     -20     -10       0       10       20        30  X 

Y Y 

  

30 

20 

10 

0 

-10 

-20 

 

  

30 

20 

10 

0 

-10 

-20 

Y Y 

-30      -20     -10        0       10        20      30  X -30      -20     -10        0       10        20      30  X 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

Pi 



Advanced Engineering Research (Rostov-on-Don). 2023;23(2):169–179. eISSN 2687−1653  

 

 

  
  

h
tt

p
:/

/v
es

tn
ik

-d
o

n
st

u
.r

u
 

176 

Proposed approach. The proposed approach eliminates the disadvantages of all the methods described above. This is 

a multimodal forecasting method that does not suffer from the limitations of a predefined set of trajectories. 

Moreover, according to Table 1, the proposed approach surpasses all other methods in all indicators. As shown in 

Figure 5, the method successfully captures two possible outcomes at the crossroad: driving straight or making a turn. 

 

             

Fig. 5. Example of prediction using a classification model. Red lines represent the target agent 

 with history of observations, green lines — real trajectory. M predicted trajectories  

with different probability of execution pi are presented using red-yellow hues 

 Figure 6 shows an example of filtering similar trajectories in the case of a single possible outcome. The probability 

that the agent will complete the initiated turn is close to 1, since he is already in the process of turning. Therefore, in this 

case, the probability of other outcomes is close to 0. The proposed module successfully filters similar trajectories. 

 

             

Fig. 6. Filtering effect. The entire set of predictions is shown on the left, and only filtered set — on the right 

Limitations. Although the authors of the original article on the MTP model [4] indicate that their method solves 

the problem of mode collapse, the experiments conducted by the authors of this article do not confirm this. The 

problem still occurs in some cases. It is assumed to be due to the following features: the loss function does not 

penalize the neural network for generating all possible trajectories that the target agent can execute, as long as the 

best of them is as close as possible to the real trajectory.  But also, the model does not encourage the network in any 

way to predict a variety of possible trajectories. Therefore, it is advantageous for the network to make several similar 

predictions in one direction, in which it is more confident than to make one prediction for each possible trajectory.  

One of the possible solutions to this problem may be the use of a trajectory decoder presented in the TnT, 

DenseTnT models [10–11], which imply the generation of final goals at the first stages of work. In these models, 

all possible final goals for the agent are generated first, and then trajectories  that describe the movement from the 

starting position to each of the goals, are generated. This provides filtering out similar final goals in the early stages, 

and preventing the mode collapse.  
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Discussion and Conclusion. In the work performed, modern methods of solving the trajectory prediction 

problem are investigated. The adaptability of the methods to unstructured road conditions — country roads, is 

considered. Insufficient accuracy of the methods is established, and a new approach to predicting is pro posed. 

The proposed approach is based on the VectorNet and MTP models, but has been adapted for the country road 

domain. In addition, a trajectory filtering module and an additional mechanism for the loss function, which penalizes 

trajectories for going beyond the movement zone, are proposed. 

The presented comparison shows that the proposed approach is superior to other popular methods.  

Limitations of the MTP approach have been identified: the output data still tends to mode collapse. The 

suggestion for further modifications is to use methods that generate the final goal at the early stages of prediction 

and thus are less susceptible to regime collapse. 
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