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Abstract
Introduction. The task of analyzing the stability of plates and shells under creep conditions is critical for structural

elements made of materials with the property of aging, which are under the action of long-term loads, since the loss of
stability can occur abruptly and long before the exhaustion of the strength resource of the material. Currently, the issues
of joint consideration of geometric nonlinearity and creep in the problems of buckling plates remain poorly studied,
existing software systems do not provide such calculations. The objective of this work is to develop an algorithm for
calculating the stability of rectangular plates with initial deflection, which are subjected to loads in the middle plane,
taking into account geometric nonlinearity and creep.

Materials and Methods. When obtaining the resolving equations, the geometric and static equations of the theory of
flexible elastic plates were taken as the basis. Physical equations were derived from the assumption that total strains were
equal to the sum of elastic strains and creep deformations. Finally, the problem was reduced to a system of two differential
equations, in which the desired functions were the stress and deflection functions. The resulting system of equations was
solved numerically using the finite-difference method in combination with the method of successive approximations and
the Euler method. As the boundary conditions for the stress function, the frame analogy was used, as in the case of a plane
problem of elasticity theory.

Results. The solution to the problem for a plate compressed in one direction by a uniformly distributed load has been
presented. The nature of the growth of displacements at different load rates and initial deflection was studied. It has been
established that when the vertical displacements reach values comparable to the thickness of the plate, their growth rate
begins to decay even at a load greater than the long-term critical one.

Discussion and Conclusion. The results of stability analysis using the developed algorithm show that the growth of plate
deflection under the considered boundary conditions is limited, stability loss is not observed at any load values not
exceeding the instantaneous critical one. This indicates the possibility of long-term safe operation of such structures with
a load less than instant critical one.
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method
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< anton_chepurnenk@mail.ru

AHHOTALUA

Beedenue. 3anada aHanuza yCTOWYNMBOCTH IIACTHH M 00OJOYEK B YCIOBHUSIX MOJ3YYECTH aKTyalbHa JUIS JIEMEHTOB
KOHCTPYKIMH U3 MaTepHaIoB, 00Ia1al0MNX CBONCTBOM CTApEHNS, HAXOIAIINXCS IO/ JEHCTBUEM JUTUTEIBHBIX HATPY30K,
MOCKONIBKY TOTEPsl YCTOMYMBOCTH MOXKET NPOUCXOAUTH PE3KO M 33J0JII0 N0 HCYEPHAaHUS NPOYHOCTHOTO pecypca
Marepuana. Bonpocsl COBMECTHOrO ydeTra reOMETPUYECKON HEIMHEMHOCTH M IOJI3Yy4eCTU B 3a/adaxX BbIIyYHBAHUS
IUTACTUH B HACTOSIIEE BPEMS OCTAIOTCS ¢1a00 U3y4YEeHHBIMH, CYIIECTBYIOIINE IPOrPaMMHbIE KOMILUIEKCHI HE TIO3BOJISIOT
BBINIOJTHUTH TakoW pacuér. Llenpio HacTosmieil paboThl BEICTYNaeT pa3padOTKa ajJropuTMa pacyera Ha yCTOWYHMBOCTD
NPSIMOYTOJIBHBIX TUIACTHHOK C Ha4YaJbHOW MOTMOBIO, MCIIBITHIBAIONINX JICHCTBUE HArpy30K B CPEAMHHON IUIOCKOCTH C
Y4€TOM I€OMETPUYECKON HEJIMHEHHOCTH U II0JI3y4ECTH.

Mamepuanvt u memoow:. Ilpu noiydeHHH pa3pellarollUX YPAaBHEHUI B OCHOBY IOJOKEHBI F€OMETPUYECKHE H
CTaTHYECKHE yPaBHEHHS TCOPUH THOKHUX YIPYTHX IacTHH. PU3NYecKue ypaBHEHNUS BBIBOISTCS U3 MIPEATION0KEHHS, YTO
TIOJTHBIE IeOpMaIK paBHBI CyMMe yNnpyrux aedopmamuii u nepopmanuii nonsydectn. OKOHYIATENBHO 3a1a4a ObLIa
CBElICHA K CHCTEME U3 ABYX MU(QepeHIManbHbIX YPaBHEHHH, B KOTOPBIX B KaYECTBE MCKOMBIX (DYHKIMH BBICTYNAIOT
GbyHKIMA HanpspKeHUH 1 nporuda. PemieHne Moiyd4eHHOH CHCTEMbl YpaBHEHUH BBITOIHSAIOCH YHCIEHHO C MOMOIIBIO
METOJ[a KOHEYHBIX PA3HOCTCH B COYCTAHMU C METOJIOM IIOCIICAOBATCIbHBIX MPUOIIKEHUI U MeTonoM Jiinepa. B
Ka4yecTBe IPaHMYHBIX YCJIOBHUH JUIl (YHKIHMU HANpsDKEHUH WCIIONBb3YeTCs paMHasl aHajorus, Kak B CIydae IUIOCKOM
3a/1a4i TEOPUU yIIPYTOCTH.

Pesynvmamot uccnedosanus. B pamkax NoCTaBICHHOH Liesu pa3paboTaH alrOPUTM pacyera U NPeICTaBICHO PelIeHHe
3a7a4d A IUTACTHHBI, CKUMAeMOM B OJIHOM HAaIIpaBICHMM PaBHOMEPHO pacHpelleleHHOM Harpys3koil. Mccienosan
XapakTep pocTa NMEepeMEUICHUH NMpH pa3iInYHON BEIHMYMHE HAarpy3KM M HAYalbHOW IOTMOW. YCTAaHOBJIEHO, YTO IIPH
JIOCTH>KEHUM BEPTUKANbHBIMY MEPEMEIEHUAMU BEIUYMH, COM3MEPHMBIX C TOJIIMHOMN MIACTUHKHU, CKOPOCTh MX pOCTa
HAYMHACT 3aTyXaTh AaXXe IPHU Harpy3Kke OOJbIIIe IIUTEIbHON KPUTHIECKOI.

Oécyrycoenue u 3akniouenue. Pe3ynpTaTsl aHaIW3a YCTOWYHBOCTH C HCIIOJIB30BAaHHEM pPa3padOTAHHOTO alrOpHTMa
MOKa3bIBAlOT, YTO POCT IpOrmda IUIACTUHBI IPH PACCMOTPEHHBIX TPAHWYHBIX YCIOBUSIX OrPaHWYEH, HOTEPs
YCTOMYMBOCTH HE HAOIIOIAETCS MPH JTIOOBIX 3HAYCHNUAX HArPy3KH, HE IPEBOCXOSIINX MTHOBEHHYIO KPUTHIECKYIO. DTO
TOBOPHT O BO3MOXKHOCTH JIJIUTENILHOM O€3011acHOM SKCINTyaTallK TAKUX KOHCTPYKIMHI [IPU HArpy3Ke MEHee MTHOBEHHOM
KPUTUYECKOU.

KuioueBble €10Ba: yCTORYUBOCTD, TOJ3YY€ECTh, IIACTUHA, T€OMETPUUECKas HETUHEHHOCTD, (PM3nYecKast HETMHEHHOCTD,
HavaJlbHbIE HECOBEPIIEHCTBA, METO/I KOHEUHBIX Pa3HOCTEH

E.]IaFOIIapHOCTI/l: ABTOPBI BbIPpAKAIOT 6J'IaI'OZ[apHOCTL peAaKIu U PpEUCH3CHTAM 3a BHUMATCIIbHOC OTHOLICHUEC K CTATHC
1 YKa3aHHbBIC 3aME€YaHUsl, KOTOPBIC ITO3BOJIMIN ITOBBICUTH €€ Ka4YCCTBO.

Jas nutupoBanms. 3vieB C.b., Uenypuenko A.C. BeimyuuBaHHe HOpPSMOYTOJIbHBIX IUIACTUH MpPH HEJIUHEWHOM
nomydectu. Advanced Engineering Research (Rostov-on-Don). 2023;23(3):257-268. https://doi.org/10.23947/2687-
1653-2023-23-3-257-268

Introduction. Much attention is paid to the stability analysis of thin-walled structures in the form of plates and shells,
since such structures are widely used in construction and other branches of technology [1-3]. One of the challenges in
the field of calculating plates and shells is the analysis of their stress-strain state under creep conditions, which is
confirmed by a significant number of works published recently on this problem in domestic and foreign sources. Thus,
in [4-8], the issues of buckling under creep of composite thin-walled structures were investigated. In [9], the problem of
stability of functionally gradient plates was considered, taking into account the dependence of material properties on
temperature. In [10], stochastic analysis methods were applied to the problem of buckling composite plates. In [11-17],
the issues of stability of viscoelastic plates and shells under the influence of dynamic and tracking loads were discussed,
and [18] dealt with plates of medium thickness, taking into account the dependence of material properties on time.
Mathematical difficulties arising in solving these problems led to the fact that numerous researchers limited themselves
to linear laws of viscoelastic deformation or considered the case of steady-state creep. The finite element method opens
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up great possibilities in solving the problems of calculating plates and shells taking into account creep. However, modern
computational complexes, such as ANSYS, Abaqus, LIRA, etc., contain a limited set of rheological models applicable to
specific materials in a fixed range of stresses and temperatures. There is a need for alternative calculation methods suitable
for arbitrary laws of viscoelastic deformation, including nonlinear ones.

This work was aimed at constructing a system of resolving equations for the problem of buckling rectangular plates
with nonlinear viscoelastic properties under the action of forces in the middle plane, taking into account large
displacements, as well as an algorithm for its solution. Note that the problem of the stability of structural elements, taking
into account creep, cannot be solved as a problem of pure stability. Its solution requires the presence of disturbances in
the form of initial irregularities. Generally, the initial imperfections are given in the form of the initial loss or eccentricities
of the application of loads.

Materials and Methods. Let us consider the calculation method on the example of a plate with an initial deflection
Wo(X,y), compressed by a distributed load p [KN/m] in the x-axis direction and having a hinge support along the
contour (Fig. 1).

X
> o >

P

Fig. 1. Computational scheme

In the case under consideration, in the presence of creep, if compared to the theory of elastic flexible plates, the
difference manifests itself only in the form of physical equations. Total deformations can be presented as the sum of
deformations of the middle plane (passing into the surface) and bending deformations caused by changes in the curvature
of the middle surface:

2 2 2
gxzag—za—w;a =s°—za—w;yx =v°—226w, )
oxze YV oy Y X0y
where ¢, and ¢, — total linear deformations; y,, — total angular deformations; €% and & — linear deformations of the
middle surface; y° — angular deformations of the middle surface.
For deformations of the middle surface, the equation of continuity of deformations can be written [19]:
o Oy o0 (@ (W+w, ) 2 02 (WW) 2 (WHw,) | (02w, ‘ _ 0P, 07w, | (2)
oyz  Ox2  Oxoy oxoy ox2 oy? oxoy ox2  oy?
For materials with viscoelastic properties, total deformations can be represented as:
1 1 2(1+v
€, = E(GX —vcy)+8;;sy = E(Gy —VGX)+8:,; Yy = %Txy Vs 3)

where ¢},¢},v;, — creep deformations; E — modulus of elasticity; v — Poisson's ratio; oy, oy, 7oy — Vvalues of stress

components in the corresponding directions.
Having expressed the stress components in (3) through deformations, we write down the physical relations in the
inverse form:

E ot ))- E «ger ))- E .
% =10 (EX +ve, (& +vsy)), o, = m(gy +ve, — (&) +vgx)),rxy = m(yxy —yxy). 4)
The relationship of internal force factors and stresses is determined by integral relations:

h/2 h/2 h/2 h/2 h/2 h/2
N,= [odzN, = [o6,dz;S= [1,dz;M, = [ 62d5;M = [o,zd;;H = [ 1, zdz, (5)

-h/2 -h/2 —-h/2 -h/2 -h/2 -h/2
where N, and N, — linear longitudinal forces; S — linear shear forces; M, and M, — linear bending moments;

H — linear torques; h — plate thickness.
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Next, we substitute (1) in (4), as well as (4) in (5). As a result, we get:

Eh h Eh
N, = g2 +ved )]-NN, = €0 +vel ]— N S = 0—
= (V) mNGN, = (e e ) NG S =
ofw 02w 2w 0w 0?W ©
M,=-D| —+v -MiM, =-D +v——o [=M; :—D(l—v) -H*,
oxe - oy? oyr o oxe y OXoy
here D = — " lindrical rigidity of the plate, N* = —=— [ d
whnere = ——— 7 — cylndrical rigidity o e plate, = > +ve? )dz,
12(1—\/2) y gy P 1oy _r'm[/z(gX ng)
E 2 E h/2
N = e +vet)dz, S = * dz,
Yoo1-ve2 4'1[/2( y x) 2(1+V)7F1[/2yxy
E a2 E 2 E h2
M= g +ver)zdz, M = — g +vet)zdz, H = 20z,
12 43[/2( X y) Yoo1—v2 43[/2( y X) 2(l+v)4!/2y Y

Values Ny, N7, S*, M7, M7, H* have the dimension of internal forces and determine the contribution of creep

deformations to the redistribution of forces.
Static equations of the flexible plate theory have the form [19]:
aN
OX ay ax ay
2 2 0*M, 02 (W+Ww, 02 (W+W, 02 (W+w,
aMx+28H +Nx ( 0)+Ny ( O)+28 ( 0)
ox2 oxoy  oy? ox2 0oy? oxoy
Here, @ — normal load on the surface of the plate, which is zero in this problem.
It is possible to satisfy the first two static equations using the Airy stress functions, introduced by the formulas:
2 2 2
oy2 7 ox? OXoy
After substituting the last three equalities from (6) into the last static equation in (7) and taking into account (8), we
obtain the first resolving equation:

(7
+q=0.

02 82(w+wo)+52_q>82(w+w0)_2 920 02 (W+W,)

DViw=q+q" +
a+d ox2 0oy? 0oy? ox2 oxoy  oxoy ©)
oM aZH* o0*M7
where q* =— £ 4+2 .
G 8x6y oy?
To obtain the second resolving equation, it is required to express the deformation of the median surface from (6):
N, —vN, +N>—vN? 2 2
£y =— ARV L2, a(D+N*—VN
Eh 0oy? ox2
N, —vN, + N7 —vNz 2 2
A R PO ED NN | (10)
y Eh Eh o oyr !
2(1+ 2(1+ 2
Yo:u(ers*):M 8(D+S* .
Eh Eh oxoy
Substituting (10) into (2), we get:
2 2
02 (W+w, 2 02 (W+W,) 0% (W+Ww, 2 2 2g*
iv4(p: ( 0) _ aWO _ ( 0) ( 0)+6W08W0+i( (+V)8S +
Eh Oxoy OXoy ox2 oy? ox2 oy2 Eh Oxoy (11)
02Ny Ny &*N; aZN*)
+ -
oxz oy? oy? ox2

Thus, for the problem under consideration, a system of resolving equations is obtained from two fourth-order

differential equations (9) and (11). Equations (9) and (11) are nonlinear. In the resulting equations, values @ and w are
functions of the coordinates x, y, and time t. Explicitly, there is no time in these equations, the time dependence is laid
down in creep deformations ¢, €}, v}, which are taken into account by the introduction of integral quantities

N;, N, S My, M3, He.
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For the calculation scheme shown in Figure 1, the boundary conditions are written as:

2 20
atx=0,x=a:NX=a =—p;S=—a—=0;W=0;MX=0;
2 axay
o2 520 (12)
aty=0,y=b:N, = =0;S=- =0w=0;M, =0.
oX? Oxoy

Equation (11) for small displacements, in the case of a plate made of elastic material, is a biharmonic equation that is
used to solve the plane problem of the theory of elasticity in stresses. Frame analogy can serve as the boundary conditions
for the stress function for the biharmonic equation. The plate contour is considered as a frame, and the stress function on
the contour are equal to the bending moment M in it, and its derivative along the normal to the contour is the longitudinal
force N. Plots M and N in the frame can be constructed in one of the basic systems of the force method (BSFM). The
basic system, as well as the diagrams of the bending moment and longitudinal force in the frame are shown in Figure 2.

y
\ —
&)
= po
0 o | - 2
L x L1}
a A © 2

Fig. 2. BSFM and diagrams of the bending moment and longitudinal forces

If the vertical displacements do not exceed a quarter of the plate thickness, then it is possible to assume the forces in
the middle surface independent of the coordinates x and y (N, =—p,N, =S =0) and use the linearized equation for

calculations:

0?W,
oxe
The analytical solution to the system of equations (9) and (11) is associated with great difficulties. The authors propose

DV4w+ pgj(—\:v =q-p (13)

to solve this system numerically. The finite-difference method (FDM) was used in combination with the method of
successive approximations. The Euler method was applied to determine creep deformation in the time domain. As the
first stage, the solution for the elastic plate was performed. Load p was applied stepwise with small steps. At the initial
load values, deflections wi were calculated by solving the simplified equation (13). Then, the calculated values w; were
substituted into the differential equation (11). This provided determining the stress function. The next step was to solve
the differential equation (9) using the known values of function @, which made it possible to determine the nodal values

of deflections w; . After that, the values (11 w, =(w1 +wl')/ 2 were substituted into equation (11). The iterative process

was repeated at each step until the relative discrepancy with the norms of the vectors of the nodal values of deflections

w. and w/ was greater than the specified value (the authors assumed it to be equal to 0.1 %). For the second load step,
the initial value w, in each node was the final result obtained in the first step. The calculation technique in the time

domain, taking into account creep, was similar. The time interval, at which the process was investigated, was divided into
steps At. In the case of setting the law of viscoelastic deformation in differential form, the values of creep deformations

at step t + At were calculated on the basis of the known rate of their growth at time t using the Euler approximation:

og"
At. 14
= (14)

En =& T

The block diagram of the creep calculation algorithm is shown in Figure 3.
Note that the system of equations (9) and (11) provides using schemes of a higher order of accuracy, e.g., the fourth-

order Runge-Kutta method. At the same time, to achieve the same accuracy of the results, you can set noticeably large
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time steps. However, with an increase in the step, there is a chance of not catching the effects of unsteady creep at the
initial moments of time. And with the same time step, the Runge-Kutta method, in comparison to the Euler method,

requires four times more operations to be performed.

(s )

v

Solution to the elastic problem
i=1t=0;¢ =g, =7}, =0, d=]

ynp

v
2
R Definition w, from equation (9)

no
n>1
yes

W, = (W, +W, ;) /2
v
Substitution w, in (11) and definition @,

v
n=n+1

€2

_ W W 100%
Wmax

6<0.1%
yes

*

. Os
calculation 6, —

a

€y = &
v

i=i+1

v

/ Output of results /
v

)

Fig. 3. Block diagram of the creep calculation algorithm
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Research Results. A polyvinyl chloride polymer plate with dimensionsa=2m,b=2m, h=1cm at E = 1480 MPa,
v = 0.3 was considered. The nonlinear Maxwell-Gurevich equation was adopted as the law determining the rate of creep
strain growth:

g fij* . .

—=—,1=X)Y, =XY;

a Yy, ] y

f*—3 5 E g,

i _E(Gij_co ij)_ =Eij (15)

*

fmax * 3 *
n* = nB exp(_ m* J’ fmax = ‘E(Grr — Gy )_ Eocgrr '

max

where §; — Kronecker symbol; c,=J,/3, J, =0, +c, — first invariant of the stress tensor; n;, E. and
m* — rheological parameters of the material, called the initial relaxation viscosity, the modulus of high elasticity, and the

modulus of velocity.
Indices rr in formula (15) indicate the direction of the primary stresses.
For PVC, the authors took the values of rheological parameters from [20]: E.=5.99-103MPa, m* =12.6 MPa,

M, = 5.44-10" MPa-s. The shape of the initial deflection Wo(x,y) was taken in accordance with the first form of the loss of
stability of the plate made of elastic material:

Wy (%, y) = f, sin%xsin%y. (16)

For a plate made of elastic material without initial imperfections, the critical load, in the case of the whole ratio of
sides a/b, was determined from the formula [19]:
b = 412D
Kp bz "
To verify the developed calculation algorithm, the first step was to solve the elastic test problem and compare the
results to the calculation in the finite element LIRA-CAD package (Fig. 4). The value of the arrow of the initial
deflection fo was set to 0.15 mm. The grid size when using the FDM was 20x20, the number of load steps was 200.
When calculating in the LIRA-CAD PC, the plate was divided by triangular finite elements with a triangulation step
of 0.1 m. The load step size was assumed to be the same as when using the FDM. The value of the critical load for the
elastic plate, calculated from formula (17), was 1340 N/m. Table 1 shows a comparison of vertical displacements in
the center of the plate for different load values obtained by the author's method and using the finite element method
(FEM). The deflections calculated using two alternative methods are quite close, except for the load of 1330 N/m. The
deviation at this load value can be explained by the fact that when approaching the critical load, the movements rush to
infinity.

(17

I ] [ ] [ ] [ ] [ ] [ ) ) ——
0 0.0365 0.0456 0911 1.37 1.82 2.28 2.73 3.19 3.65

Nonlinear loading 1
Isofields of displacements by Z(G) = e
Units — mm

Fig. 4. Isofield of vertical displacements in LIRA-CAD PC (p = 1330 N/m)
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Table 1
Comparison of calculation results using the author's method and with the help of FEM
w-10%, mm
p, N/m
LIRA-CAD the authors’ method
133 16 16
266 37 37
399 63 63
532 98 99
665 146 148
798 218 221
931 336 342
1,064 562 578
1,197 1,163 1229
1,330 3,646 4,229

In [21], the possibility of transition from the solution of the elastic problem of calculating plates to the solution at the
end of the creep process is shown. The value of the long-term critical load p.. can be obtained by replacing the cylindrical
stiffness D of the elastic plate with the long-term cylindrical stiffness D.,, which is determined from the formula:

oh?

. :12(0L2—[32)' 18

1 1 v 1
where o =—=+—;B=—+—.
E E, E 2E,

For viscoelastic rods and round plates, it has been previously established that in case p <p., the growth of
displacements in time slows down, and the deflection arrow comes to a finite value. If p = p., deflections grow at a
constant rate. At p > p., the rate of deflection growth increases.

The authors also analyzed the nature of the growth of deflections over time for p < p, p = p and p > p. for different
values of the maximum initial loss fo. The deflection curves over time in the center of the plate at p = 0.9 p., p = pand

p = 1.1 pare shown respectively in Figures 5-7.

w, mm
14 : : : : ’ : : ’ :
— f0=0.025 mm
1.2 e f0=0.05 mm
e f0=0.1 Mm
1.0 — f0=0.15 mm

0.8

0.6

0.4

0.2

0 1 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20 t, hour

Fig. 5. Deflection curves over time in the center of the plate at p = 0.9ps
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W, mm

— 0=0.025 mm
e 0=0.05 mm
— f0=0.1 mm
= 0=0.15 mm

0 2 4 6 8 10 12 14 16 18 20 t, hour

— fo=0.15 mm
— fo=0.1 mm
= £=0.05 mm
= =0.025 mm

O 1 1 1 1 1 1 L 1 1
0 1 2 3 4 5 6 7 8 9 10 t, hour

Fig. 7. Deflection curves over time in the center of the plate at p = 1.1 p

Discussion and Conclusion. It can be seen from Fig. 5 that at p < p., the deflection arrow always comes to the final
value, regardless of the values of the initial imperfections. At the same time, at p > p, the pattern of deflection growth
obtained in [21] occurs only with small displacements. When deflections reach values exceeding about a quarter of the
plate thickness, the rate of deformation growth begins to decrease even in the case of loads exceeding the long-term
critical one. It should also be noted that there is a complete absence of a section with an increasing rate of displacement
growth for plates with large initial curvatures. The identified effects can be explained by the redistribution of efforts

N,, N,, S inthe middle surface.

Summarizing the above, we can conclude that the vertical movements of the plate pivotally supported along the
contour, under the action of a compressive load on one axis, always come to a final value if the load does not exceed the
instantaneous critical one. In other words, with the considered fastening and loading, the plate is in stable equilibrium
under creep conditions.

The obtained equations and the calculation algorithm make it possible to calculate plates made of arbitrary viscoelastic
materials for any fastening options. The law of the relationship between stresses and creep deformations can also be set

arbitrarily.
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