Advanced Engineering Research (Rostov-on-Don). 2023;23(3):329-339. eISSN 2687—-1653

INFORMATION TECHNOLOGY, COMPUTER
SCIENCE AND MANAGEMENT

. Lot Lo
BY

UDC 004.272.22 Original article
https://doi.org/10.23947/2687-1653-2023-23-3-329-339

Model of a Parallel-Pipeline Computational Process for Solving a System of Grid Equations

Vladimir N. Litvinov*='B<, Nelli B. Rudenko?*’, Natalya N. Gracheva?®

!Don State Technical University, Rostov-on-Don, Russian Federation

2 Azov-Black Sea Engineering Institute, Don State Agrarian University, Zernograd, Russian Federation
B4 LitvinovVN@rambler.ru

Abstract

Introduction. Environmental problems arising in shallow waters and caused by both natural and man-made factors
annually do significant damage to aquatic systems and coastal territories. It is possible to identify these problems in a
timely manner, as well as ways to eliminate them, using modern computing systems. But earlier studies have shown
that the resources of computing systems using only a central processor are not enough to solve large scientific problems,
in particular, to predict major environmental accidents, assess the damage caused by them, and determine the
possibilities of their elimination. For these purposes, it is proposed to use models of the computing system and
decomposition of the computational domain to develop an algorithm for parallel-pipeline calculations. The research
objective was to create a model of a parallel-conveyor computational process for solving a system of grid equations by a
modified alternating-triangular iterative method using the decomposition of a three-dimensional uniform computational
grid that takes into account technical characteristics of the equipment used for calculations.

Materials and Methods. Mathematical models of the computer system and computational grid were developed. The
decomposition model of the computational domain was made taking into account the characteristics of a heterogeneous
system. A parallel-pipeline method for solving a system of grid equations by a modified alternating-triangular iterative
method was proposed.

Results. A program was written in the CUDA C language that implemented a parallel-pipeline method for solving a
system of grid equations by a modified alternating-triangular iterative method. The experiments performed showed that
with an increase in the number of threads, the computation time decreased, and when decomposing the computational
grid, it was rational to split into fragments along coordinate z by a value not exceeding 10. The results of the
experiments proved the efficiency of the developed parallel-pipeline method.

Discussion and Conclusion. As a result of the research, a model of a parallel-pipeline computing process was
developed using the example of one of the most time-consuming stages of solving a system of grid equations by a
modified alternating-triangular iterative method. Its construction was based on decomposition models of a three-
dimensional uniform computational grid, which took into account the technical characteristics of the equipment used in
the calculations. This program can provide you for the acceleration of the calculation process and even loading of
program flows in time. The conducted numerical experiments validated the mathematical model of decomposition of
the computational domain.

Keywords: parallel algorithm, computational process, grid equations

Acknowledgements: the authors would like to thank the editorial board of the journal and the reviewer for their
professional analysis and recommendations for correcting the article.

Funding information. The research was done with the support of the Russian Science Foundation (project No. 21-71-20050).

For citation. Litvinov VN, Rudenko NB, Gracheva NN. Model of a Parallel-Pipeline Computational Process for
Solving a System of Grid Equations. Advanced Engineering Research (Rostov-on-Don). 2023;23(3):329-339.
https://doi.org/10.23947/2687-1653-2023-23-3-329-339

© Litvinov VN, Rudenko NB, Gracheva NN, 2023

Information Technology, Computer Science and Management

329

https://doi.org/10.23947/2687-1653-2023-23-3-329-339
https://doi.org/10.23947/2687-1653-2023-23-3-329-339
mailto:LitvinovVN@rambler.ru
https://doi.org/10.23947/2687-1653-2023-23-3-329-339
https://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=https://doi.org/10.23947/2687-1653-2023-23-3-329-339&domain=pdf&date_stamp=2023-09-30
https://orcid.org/0000-0001-8234-3194
http://orcid.org/0000-0001-5468-3626
https://orcid.org/0000-0003-3699-7255

http://vestnik-donstu.ru

330

Advanced Engineering Research (Rostov-on-Don). 2023;23(3):329-339. eISSN 2687—-1653

Hayunas cmamos

Pa3paboTka Mmoaem napaJijieibHO-KOHBEHEPHOro0 BLIYUCIUTEIBLHOTO Mpolecca JJis1 pelleHust
CHCTEMbI CETOUYHBIX YPaBHEHHUIl

B.H. Jluteunos!' = 0<, H.B. Pygenko? "', H.H. I'pauena?

! JToHcKoif rocyIapCTBEHHBIN TEXHUYECKHH YHUBEPCHUTET, T. PocToB-Ha-Jlony, Poccuiickas ®enepanus,
2 A30B0-UepHOMOpPCKUIi HHKeHepHBIH uHCTHTYT, ITAY, 1. 3epHorpan, Poccuiickas @enepanus

B4 LitvinovVN@rambler.ru

AHHOTaLUA

Beedenue. Jxonorndeckne mpoOIeMpl, BOSHUKAIONINE HA MEIKOBOJHBIX BOJOEMAaxX M BBI3bIBAEMbIC KaK MPHPOIHBIMH,
TaK W TEXHOTEHHBIMH (DaKTOpaMm, €KETOJHO HAHOCAT CYIIECTBEHHBIH YyIIepO akBacuCTeMaM M MPHOPEKHBIM
TepputopusiM. CBOEBPEMEHHO OIPECIUTh 3TH MPOOJIEMBI, 8 TAKXKe IYTH UX YCTPaHEHHs] BO3MOKHO C UCIIOJIb30BAaHHEM
COBPEMEHHBIX BBIUHCIUTENBHBIX cHcTeM. Ho mnpoBenéHHble paHee UCCIENOBaHMA IIOKa3aldHd, YTO PECypcoB
BBIYHCIIUTEIBHBIX CHCTEM, UCIOJB3YIOMINX TOJBKO HEHTPAIBHBIN MPOIECCOp, HEJOCTATOUHO ISl PEIICHHsT OONBIINX
HaY4YHBIX 3a71a4, B YaCTHOCTH, 110 MPOTHO3MPOBAHUIO KPYITHBIX KOJOTMYECKUX MPOUCIIECTBHH, OIICHKE HAHECEHHOTO
uMH ymepOa U OnpenieNeHHI0 BO3MOXKHOCTEH MX ycTpaHeHHs. J{st 9THX Lenei mpeJyiaraeTcsi UCIoIb30BaTh MOJIEIH
BBIUHMCIINTENIPHOM CHUCTEMBl M JICKOMIIO3MIMM pacuéTHOW oOyacT A pa3paboTKH aIropuTMa IapaulesIbHO-
KOHBEHEpHBIX BbIYMCIEHWN. llenblo maHHON paOOTHI SBIAETCS CO3JaHWE MOJENM IApauIeIbHO-KOHBEHEPHOTO
BBIYHCIIMTENIBHOTO IIpoLiecca JUI PEIICHHS] CHCTEMbl CETOYHBIX YPAaBHEHHH MOIM(HUIMPOBAHHBIM IONEPEMEHHO-
TPEYrONbHBIM HUTEPAllMOHHBIM METOJIOM C HCHOJNB30BAHHUEM ACKOMIIO3HMIMH TPEXMEPHOW paBHOMEPHOW pacuéTHOM
CETKH, YUUTHIBAIOLIECH TEXHIUECKHE XapaKTEPUCTHKN HCIIOIb3YEMOTO ISl pacieTOB 000PyI0BAHHUS.

Mamepuanovt u memoowt. PazpaboTaHbl MaTeMaTHUYECKHE MOJIEIM BBIYUCIUTEIHHOW CHCTEMBI U PACUETHOM CETKH.
Mogens JAEeKOMIIO3UIMM pPACYETHOW OONAaCTH BBHINOJIHEHA € Y4YETOM XapaKTepUCTHK TE€TePOreHHONH CHCTEMBI.
[MpennoxkeH mnapayiebHO-KOHBEHEPHBIH METOJ PEIICHUsT CUCTEMBl CETOYHBIX YPaBHEHUH MOAM(MUIMPOBAHHBIM
NONEPEMEHHO-TPECYT'OJIbHBIM UTECPAITUOHHBIM METOJIOM.

Peszynemamut uccneoosanus. Ha s3pike CUDA C HamucaHa mporpaMma, peaiusyromiasl napaiielbHO-KOHBeHepHbIi
METOJl PEIICHHUs CHCTEMbI CETOYHBIX YPaBHEHHH MOIU(DHIMPOBAHHBIM IMONEPEMEHHO-TPEYTOIbHBIM HTEPAIHOHHBIM
MeronoM. IIpoBenéHHBIE SKCIEPHUMEHTHI IOKA3alIM, YTO C YBEIMUYCHHEM YHCJIA ITIOTOKOB BPEMs BBIYHCIICHUH
YMEHBIIACTCSI M NPU JEKOMIIO3MINN DPACUYETHOW CETKH pAIMOHAIBHBIM SIBIACTCS pa3OneHne Ha (parMeHThl II0
KOOpIMHATe Z Ha BENWYMHY, He MpeBblmaromnryio 10. Pe3ynpraTsl 9KCIEpHMEHTOB NOATBEpAMIH 3(PdeKTHBHOCTH
Ppa3paboTaHHOTO MapaIeTbHO-KOHBEHEPHOT0 METO/1a.

Oécyscoenue u 3akniouenusa. [lo uTOraM TPOBENCHHBIX HCCIIEIOBAaHMHA pa3paboTaHa MOJENb IapauIeIbHO-
KOHBeﬁepHOFO BBIYHUCIIUTEIIBHOI'O MpoHecCca Ha MPUMEPE OAHOIO M3 CaAMBIX prI[OéMKI/IX OTanoB PCHICHUSA CUCTEMBbI
CETOYHBIX ypaBHEHHH MOAM(UIMPOBAHHBIM IONEPEMEHHO-TPEYTOJIHBIM HUTEPALMOHHBIM MeTosioM. E€ moctpoeHue
OCHOBAaHO Ha MOJEIAX JEKOMIIO3ULMM TPEXMEPHONW DPAaBHOMEPHOM pPacYETHOM CETKH, YUUTHIBAIOLIEH TEXHUYECKUE
XapaKTepUCTUKH HCIOJIB3yeMOro B pacderax obopynoBaHus. IIpumMeHeHHe MporpaMMBbl MO3BOJIHUT YCKOPHUTH IPOILECC
pacyéra W pPaBHOMEpPHO IO BPEMEHHU 3arpy3HTh MPOTpaMMHBIE NMOTOKH. [IpoBeneHHBIC UHCIEHHBIE 3KCHEPUMEHTHI
TIOATBEPIMIIM MaTeMAaTHUECKYI0 MOJIEIb IEKOMIIO3UIIMN pacyETHOH 001acTH.

KaroueBrbie ciioBa: HapaJ'IHCHLHHﬁ aJITOPUTM, BBIYHMCITUTCIbHBIN mponecc, CCTOYHbIC YPABHCHUS

BaarogapHocTn: aBTOpHI BBIPAXKAIOT OJNArofapHOCTh PENAKIMOHHONW KOJUISTHM J>KypHala M PELEH3EHTY 3a
npodecCHOHANBHBIN aHAIN3 U PEKOMEHJANH JJIs1 KOPPEKTUPOBKH CTATHH.

dunancupoBanue. PaboTa BeINoNHEHA IPH MOEPKKe Poccuiickoro Hayanoro ¢onaa (mpoekt Ne 21-71-20050).

Jdas mutupoBanus. Jluteunos B.H., Pynenko H.b., I'paueBa H.H. Pa3pabotka Mozenu mapaienbHO-KOHBEHEPHOTO
BBIYKMCIIMTEIBHOTO TIPOIECcca I PELIEHNs] CUCTEMBI CETOUHBIX ypaBHeHuit. Advanced Engineering Research (Rostov-
on-Don). 2023;23(3):329-339. https://doi.org/10.23947/2687-1653-2023-23-3-329-339

Introduction. Recently, a number of serious environmental problems have been observed in the Rostov region.
These include, in particular, the eutrophication of waters of the Sea of Azov and the Tsimlyansk reservoir, which causes
the growth of harmful and toxic species of phytoplankton populations [1]. Engineering works in the waters of rivers and
seas cause pollution of adjacent territories, changes in the population structure of biota, and deterioration of
reproduction conditions of valuable and commercial fish. Climate change in the south of Russia has led to an increase in
the number of cases of flooding of some territories in the area of the Taganrog Bay and the floodplain of the Don River
caused by up and down surges. In the last decade, during the summer period, almost complete drainage of the Don

mailto:LitvinovVN@rambler.ru
https://doi.org/10.23947/2687-1653-2023-23-3-329-339
https://orcid.org/0000-0001-8234-3194
http://orcid.org/0000-0001-5468-3626
https://orcid.org/0000-0003-3699-7255

Litvinov VN, et al. Model of a Parallel-Pipeline Computational Process for Solving a System of Grid Equations

riverbed was observed several times, which led to a complete stop of navigation. To predict the occurrence and
development of such cases, to plan ways to address their consequences, to assess the damage caused by them, modern
software systems built using high-precision mathematical models, numerical methods, algorithms and data structures
are needed [2].

Mathematical models used in predicting natural and man-made disasters are based on systems of partial differential
equations, such as Poisson, Navier-Stokes, diffusion-convection-reaction, and thermal conductivity equations. The
numerical solution to such systems causes the need for operational storage of large amounts of data (in arrays of various
structures) and the solution to systems of grid equations of high dimension exceeding 10°. The amount of RAM
required to store arrays of data when numerically solving only one Poisson equation for a three-dimensional domain
with a dimension of 103x103x%103 by an alternately triangular iterative method is more than 64 GB. In the case of
numerical solution to combined tasks, hundreds of gigabytes of RAM are required, which can be accessed only when
using supercomputer systems.

An earlier study has shown that the resources of a computing system using only the CPU are not enough to solve
such scientific problems [3]. Increasing the GPU power and video memory made it possible to use video adapter
resources for calculations [4]. The GPU utilization depends on the application of parallel algorithms to solve
computationally intensive problems of aquatic ecology [5-7]. To partially solve the problems of lack of memory and
computing power on workstations, you can install additional video adapters in PCI-E X16 slots directly and in PCI-E
X1 slots using PCI-E X1-PCI-E X16 adapters. Thus, the number of video adapters installed on one workstation can be
increased to 12 [8-11].

Heterogeneous computer systems that provide sharing CPU and GPU resources are becoming increasingly popular
in the scientific community. Application of such systems makes it possible to reduce the computation time of scientific
problems [12—14]. However, the utilization of a heterogeneous computing environment involves the modernization of
mathematical models, algorithms and programs that implement them numerically. A heterogeneous system provides
organizing the calculation process in parallel mode. At the same time, fundamental differences in the construction of
software systems using CPU and GPU together should be taken into account.

Materials and Methods. We describe the proposed mathematical models of the computational system, the
computational grid, as well as the method of decomposition of the computational domain.

Let D be aset of technical characteristics of a computing system, then

D =DtybD2yDs, 1)

where D! — a subset of the characteristics of the central processing units (CPU) of a computing system; D2 — a
subset of the characteristics of video adapters (GPU) of a computing system; D3 — a subset of RAM characteristics.

D! = <d1,1, duz, d1,3,d1,4>’ (2)
where dit — total number of CPU cores; di2 — number of streams simultaneously processed by one CPU core;

d:® — clock rate, MHz; di4 — CPU bus frequency, MHz.
Dz2= U Dkzspu = {dz | FKepy € Kepy, d2 € DkzspU } , (3)

Kepu <Kopu

where Ko, ={1,...,Ngp, } — multiple video adapter indices; N, — number of computer system video adapters;
kepy — Vvideo adapter index. Each video adapter is represented as a tuple

D, =(dic, 02,). “)
where d?! — amount of video memory of the video adapter with index K, , GB; di2 — number of streaming
multiprocessors.

D3 = <d3,1' d3,2> ’ (5)

where d3t — total amount of RAM, GB; d32 — clock rate of RAM, MHz.

Let S — a set of software streams involved in the computing process, then

S =s1Us?,
St={1...Ng}, ©
e U S, Sz, ={leNg |,

kapy €Kapy kepu

Information Technology, Computer Science and Management

331

http://vestnik-donstu.ru

332

Advanced Engineering Research (Rostov-on-Don). 2023;23(3):329-339. eISSN 2687—-1653

where St — a subset of program streams implementing the calculation process on the CPU; S2 — a subset of CUDA

streaming blocks implementing the calculation process on GPU streaming multiprocessors; N, — number of CPU

program streams involved; SZ =~ — a subset of CUDA streaming blocks that implement the calculation process on

GPU streaming multiprocessors with index kg, ; Kgpy ={L....Ngp, } — multiple GPU indices; Ng,, — number of

GPU in the computing system; N., — number of CUDA stream blocks involved that implement the calculation
kePu

process on GPU stream multiprocessors with index Kgp,, -

Let E be a set of identifiers of program streams. Then, in order to identify program flows in the computing system,
we assign tuple e of two elements to each element of the set of program flows S:

VseS JeeE: e=(n,,n), (7
where n, — index of a computing device in a computing system; n, — index of the CPU program stream or GPU
streaming unit.

_ 10, seSt
v =K, S55 ®)
Ky, se8St
I'lt:{K:2 ’ Seskzspu . (9)
Let us take the computational domain with the following parameters: 1, — characteristic size on axis Ox; I, —on

axis Oy ; I, —onaxis Oz . We compare a uniform computational grid of the following type to the specified area:
W ={x =ih,y, = jh .z =kh,;
i=0,n-1j=0n,-1k=0,n, -1, (10)
(n,=1)h, =1,.(n,=1)h, =1,,(n,~1)h, =1},

where h, h , h, — steps of the computational grid in the corresponding spatial directions; n,, n , n, — number of

nodes of the computational grid in the corresponding spatial directions.
Then, we represent the set of nodes of the computational grid in the form

G={g,;.i=0n,1j=0n -Lk=0n, -1},

- :<Xi’ V. Zk>' (11)
where g; ;, — computational grid node.
The number of nodes of the computational grid N is calculated from formula
Ng =n,-n, -n,. (12)

By the subsection of the computational grid Gk —G (hereinafter — subsection), we mean a subset of the nodes of

the computational grid G .

G=U le={gk1|E|kieKkl,gklele}, N Gk =0, (13)

kleKkl kiszl
where K, = {1 Nkl} — multiple indices of subsections Gk of computational grid G ; N, — number of subsections
Gh; K, N, ©N; N — setof natural numbers; k, — index of subsection Gk .

Since Gk =G, then

10X

kg 1 — . ky —
lez{giyi‘k,l_On -1,J=0,n; —1,k—0,nz—1}, (14)
ky

where g;%;, — node of subsection k; ; sign ~ indicates belonging to the subsection;] — node index of subsection

k, by coordinate Y ; n';l — number of nodes in subsection k; by coordinate Y .

Litvinov VN, et al. Model of a Parallel-Pipeline Computational Process for Solving a System of Grid Equations

K,

935 :<Xi’ Yis Zk>7

k-1 _ 15

where n*y‘l — number of nodes by coordinate y of b, -th subsection.

Under the block of computational grid Gk-k (hereinafter — block), we mean a subset of the computational grid

nodes of subsection Gk .

Gkl = U Glake ={gk1<k2 |E|k2 S Kkl,kz’ glate elevkz}, ﬂ Ghake =®, (16)

k2EKk1,k2 kZEKkl‘kz
where K, :{1,..., Nkl,kz} — multiple indices of block Gk k. of subsection Gk ; N, , — number of blocks Gk ;
Ki i+ N «, ©N; k, —index of block Gkt of subsection Gk .

Since Gkt = Gk, then

Ghk = {gfjfz =0, —1j=0n"—1k=0n, —1} , 17)

K ko

ik

where ¢ — node of block kj,k,; sign indicates belonging to the block; j — node index of block k., k, by

coordinate y ; ne*= — number of nodes in block k;,k, by coordinate y .

g5 =(x v 2,
kl—lNkl‘k2 N 18
X =ih,, yi:[z Zntyll'bz—‘_jj'hy’ z, = kh,, o
B by

where n®* — number of nodes of block b,b, .

By a fragment of the computational grid Gue (hereinafter — fragment), we mean a subset of the nodes of the

computational grid of block G« of subsection Gk .

levkz = U le,kz,k3 :{gk1xk2~k3 |E”(3 S Kk3’ gklkavka ele-kaka},

kseK

N Ghikk =&

k3€Kk3

(19)

where K, \ ={L...,Nk1,k21k3} — multiple indices of fragments Gz of block Gk of subsection Gk ; N, \ , —
number of fragments Gt ; Ky v N, =N k; — index of fragment Gu«xs of block Gk of subsection Gk .
Each index k, of fragment Gk is assigned a tuple of indices <k4, k5> , designed to store the fragment coordinates
in the plane xOz , where k, — fragment index by coordinate x; k; — fragment index by coordinate z .
k, =k, + Ky, ks, (20)
where k, — fragment index by coordinate x; k; — fragment index by coordinate z .

Number of fragments Gk of block Gk k is calculated from the formula
K =Ky Ky, (21)

where K, ~— number of fragments along axis Ox ; K, — number of fragments by coordinate z .

Since Gkl < Gk | then

Ghiele ={g;.j,w i=on

X

-1, j=0,A,-1 k=0,n —1}, (22)

Information Technology, Computer Science and Management

333

http://vestnik-donstu.ru

334

Advanced Engineering Research (Rostov-on-Don). 2023;23(3):329-339. eISSN 2687—-1653
|

where g, o fragment node; sign _ indicates belonging to the fragment; T, k — fragment node indices by
coordinates x, z; n,, A, — number of nodes of the computational grid in the fragment by coordinates x, z;

I, [, — fragment dimensions by coordinates x, z .

g, ik _<Xi' yj' Zk>’
k-1 B N ks —1 _ 23
xlz(Zﬁijhx, y;=1Jh, zk_(an+kth, (23)
b=1 b=1
where i, — number of nodes of b -th fragment.
We introduce a set of comparisons of the computational grid blocks to program flows M?*
Mi= U (U M] (24)
ki eKy, \ ko €Ky,
where Mg , — element of the set M*.
Let M; ,, — mapping block G« to program stream s, , , then
Mi,, =(Gk%.s) (25)

where St i, €S — program flow, computing block G .

In the process of solving hydrodynamic problems on three-dimensional computational grids of large dimension,
high-performance computing systems and huge amounts of memory for data storage are needed. The resources of one
computing device are not enough for computing and storing a three-dimensional computational grid with all its data. To
solve this problem, various methods of decomposition of computational grids followed by the use of parallel calculation
algorithms in heterogeneous computing environments are proposed [15].

For the decomposition of the computational grid, it is required to take into account the performance of computing
devices involved in calculations. By performance, we mean the number of nodes of the computational grid calculated
using a given algorithm per unit of time.

Assume that all computing devices are used for calculations. Then, the total performance of the computing system

P, is calculated from the formula
Ngpy
P =PRepy Ng+ 2 P =N, (26)

b=1

where P, — performance of a single CPU stream; N, — number of program streams implementing the calculation
process on the CPU; Ps‘iu — GPU performance with index b on a single streaming multiprocessor; N2, — number of

CUDA streaming blocks implementing the calculation process on GPU streaming multiprocessors.
Then, the number of nodes of the computational grid n in the subsection by coordinate y for each GPU with index

b can be calculated from the formula

Pb
nb = {%J n,. (27)

z
In the process of calculating by formula (27), we get the remainder — a certain number of nodes of the
computational grid. These nodes will be located in RAM. The number of remaining nodes n° by coordinate y is

calculated from the formula:

NGPU

nb =n, - bzzl no (28)
To calculate the number of nodes by coordinate y in the blocks of the computational grid processed by GPU

streaming multiprocessors, we use the formulas:

Litvinov VN, et al. Model of a Parallel-Pipeline Computational Process for Solving a System of Grid Equations

{ 3
e = b=1N° -1
yGT L] Y 52 Y
NZ’Z -1 (29)
N';z -1
nSGTL = ne - bZ::1 n)tjGT’

where nb.. — number of nodes by coordinate y in computational grid blocks processed by GPU streaming
multiprocessors with index b, except for the last block; n’.; — number of nodes by coordinate y in the last block of
the computational grid processed by GPU streaming multiprocessors with index b .

To calculate the number of nodes of the computational grid by coordinate y in blocks processed by software

streams implementing the calculation process on the CPU, we use the formulas

ncPu
Ner = !)
Y N -1 (30)
Nyer, =NSPY —n ~(N51 —1),
where n, — number of nodes of the computational grid by coordinate y, processed by CPU program streams,
except the last stream; n ., — number of nodes of the computational grid by coordinate y, processed by CPU

program streams, in the last stream.
Calculate the number of the computational grid fragments by coordinate vy :

Ngpy
Nf=N_+ 3N
Y b=l

S

' (31)

Let the number of fragments N and N, be specified by coordinates x and z, respectively. Then, the number of

nodes of the computational grid by coordinate x is calculated using the formulas

f —
nf = ,

Nf -1 (32)
nt=n,-nf-(Nf-1),

where n/ — number of nodes of the computational grid by coordinate x in all fragments, except the last fragment;
nt — number of nodes of the computational grid by coordinate x in the last fragment.

Similarly, the number of nodes of the computational grid is calculated by coordinate z :

nf = n,
tOINSf-1) (33)
nft=n,-nf-(Nf-1),

where nf — number of nodes of the computational grid by coordinate z in all fragments, except the last node; nft —

number of nodes of the computational grid by coordinate z in the last fragment.
Let us describe a model of the parallel-pipeline method. Suppose it is necessary to organize a parallel process of

computing some function F on M!?, and the calculations in each fragment Gu« depend on the values in neighboring

fragments, each of which has at least one of the indices by coordinates x, y , z, and one less than the current one

(Fig. 1).
To organize the parallel-pipeline method, we introduce a set of tuples A, that specify correspondences a between

the identifiers of program streams e, processing fragments Gues , to the step numbers of the parallel-pipeline
method r

VeeE JaeA: a=(e Ghks,r), (34)

where r =1, N, — step number of the parallel-pipeline method,

Information Technology, Computer Science and Management

335

http://vestnik-donstu.ru

336

Advanced Engineering Research (Rostov-on-Don). 2023;23(3):329-339. eISSN 2687—-1653

N, — number of steps of the parallel-pipeline method, calculated from the formula
N, =NSNFf+Nf-1, (35)
The full load of all calculators in the proposed parallel-pipeline method starts with step ry,er0er = N/ and ends at
step gsror = NS N, . At the same time, the total number of steps with a full load of calculators N, will be
Nipar = foostor — foostarr +1= NN — NJ +1. (36)
The calculation time of some function F by the parallel-pipeline method is written as

T = NZ max(T,) , 37)

where T, — vector of values of time spent on processing fragments in parallel mode.

0 1 2 3 N,-1
0,0,0) [(1,00) | 2,00) | 3,00 [4 (N1,00) | x
€ —p 0 r=0 r=1 r=2 r=3 Nyo r=Ny-1
Y
N
(0,1,0) | (1,1,0) | (21.0) | (3,1,0) (Nx-1,1,0)
GL—p 1 r=1 r=2 r=3 Nyl r= Nxf
Y
A
0,20) | (1,20 2,2,0) | (3,.2,0) (N«-1,2,0)
€2 —p 2 r=2 (r:3) () Ny2 r= Nxf+1
\ 4 |
A
(0,30) | (1,30) | (230) | (33.0) (Nx-1,3,0)
€& —>» 3| (=3 Nys r=Ny+2
Y
y
v

Fig. 1. Parallel-pipelined computing process

Research Results. The computational experiments were carried out on K-60 high-performance computing system
of the Keldysh Applied Mathematics Institute, RAS. A GPU section was used, each node of which was equipped with
two Intel Xeon Gold 6142 v4 processors, four Nvidia Volta GV100GL video adapters and 768 GB of RAM.

The computational experiment consisted of two stages — preparatory and basic. At the preparatory stage, the
correctness of the decomposition of the computational domain into subsections, blocks and fragments was checked by
step-by-step comparison of values in the nodes of the initial grid and in fragments obtained as a result of decomposition.
Then, the operation of the flow control algorithm during which the time spent on calculating 1, 8, 16 and 32 fragments
of the computational grid with a dimension of 50 nodes by spatial coordinates x, y, z, and the same number of CPU

streams N, was checked by the iterative alternating-triangular method in parallel mode. Ten repetitions were
performed with the calculation of the arithmetic mean T, and standard deviation . Based on the data obtained,
time T, =T, /N, spent by each stream on processing one fragment of the computational grid and acceleration
E=T2(Ng)/TL(@), equal to the ratio of the processing time T2(N) of one fragment N, by streams to the
corresponding processing time by one stream T:(1) was calculated. The experimental data are given in Table 1. The

experiment showed that the standard deviation had the smallest value in the case of using 32 parallel CPU streams and
was 0.026 ms, i.e., using 32 parallel CPU streams when calculating 32 fragments of the computational grid gave a more
uniform time load of program streams, which generally increased the efficiency of the computing node. At the same
time, the average value of the calculation of one fragment was 4.14 ms. The dependence of acceleration E on the
number of streams turned out to be linear E =0.603+0.804N, , with a coefficient of determination equal to 0.99. We

Litvinov VN, et al. Model of a Parallel-Pipeline Computational Process for Solving a System of Grid Equations
|

have found that with an increase in the number of streams, the acceleration of the developed algorithm increases. This
indicates the efficient use of the subsystem when working with memory.

Table 1
Results of the preparatory stage of the computational experiment
Ng max(T,) , ms c,ms T,, ms E
1 3.38 0.141 3.38 1.00
8 3.66 0.042 0.46 7.39
16 3.94 0.028 0.25 13.73
32 414 0.026 0.13 26.13

At the basic stage of the computational experiment, a three-dimensional computational domain having dimensions
of 1,600; 1,600; 200 by spatial coordinates x, y and z, accordingly, was divided into 32 fragments of 50 nodes for

each of the coordinates x and y. The division into fragments by coordinate z is given in Table 2. For each

decomposition option with a tenfold repetition, the processing time of the entire computational grid was measured by
the proposed parallel-conveyor method, and its average value T, was calculated. Acceleration E,~was calculated as

ratio T, totime T, of the calculation by sequential version of the algorithm, equal to 6.963 ms. Regression equation
E,n =7.35+1.97In(Nf) with a determination coefficient equal to 0.94 was obtained. Analysis of the results of the
basic stage of the computational experiment showed a significant slowdown in growth E ~at Nf >10. Therefore, we
conclude that splitting into fragments by coordinate z by an amount not exceeding 10 is optimal.

Table 2
Results of the main stage of the computational experiment

N n/ T, ms Eon

1 200 1033.20 6.74
2 100 779.00 8.94
4 50 651.90 10.68
8 25 588.35 11.84
20 10 550.22 12.66

Discussion and Conclusion. As a result of the conducted research, a model of a parallel-pipeline computing process
was developed by the example of one of the most intensive stages of solving a system of grid equations by a modified
alternating-triangular iterative method. Its construction was based on decomposition models of a three-dimensional
uniform computational grid, taking into account the technical characteristics of the equipment used in the calculations.

The results obtained under the computational experiments validated the effectiveness of the developed method. The
correctness of the decomposition of the computational domain into subsections, blocks and fragments was also
confirmed. The operation of the flow control algorithm was verified. At the same time, it was revealed that the standard
deviation had the smallest value in the case of using 32 parallel CPU streams and is 0.026 ms, i.e., using 32 parallel
CPU streams when calculating 32 fragments of the computational grid gave a more uniform time load of program
streams. Here, the average value of the calculation of one fragment was 4.14 ms.

The results of processing the measurements of the calculation time by the proposed parallel-conveyor method
showed a significant slowdown in the growth of acceleration when divided into fragments by coordinate z at N >10.
It was found that splitting into fragments by coordinate z by an amount not exceeding 10 was optimal.

References

1. Shiganova TA, Alekseenko E, Kazmin AS. Predicting Range Expansion of Invasive Ctenophore Mnemiopsis
leidyi A. Agassiz 1865 under Current Environmental Conditions and Future Climate Change Scenarios. Estuarine,
Coastal and Shelf Science. 2019;227:106347. https://doi.org/10.1016/j.ecss.2019.106347

2. Sukhinov Al, Chistyakov AE, Nikitina AV, Filina AA, Lyashchenko TV, Litvinov VN. The Use of
Supercomputer Technologies for Predictive Modeling of Pollutant Transport in Boundary Layers of the Atmosphere

Information Technology, Computer Science and Management

337

https://doi.org/10.1016/j.ecss.2019.106347

http://vestnik-donstu.ru

338

Advanced Engineering Research (Rostov-on-Don). 2023;23(3):329-339. eISSN 2687—-1653

and Water Bodies. In book: L Sokolinsky, M Zymbler (eds). Parallel Computational Technologies. Cham: Springer;
2019. P. 225-241. 10.1007/978-3-030-28163-2_16

3. Rodriguez D, Gomez D, Alvarez D, Rivera S. A Review of Parallel Heterogeneous Computing Algorithms in
Power Systems. Algorithms. 2021;14(10):275. https://doi.org/10.3390/a14100275

4. Abdelrahman AM Osman. GPU Computing Taxonomy. In ebook: Wen-Jyi Hwang (ed). Recent Progress in
Parallel and Distributed Computing. London: InTech; 2017. http://dx.doi.org/10.5772/intechopen.68179

5. Parker A. GPU Computing: The Future of Computing. In: Proceedings of the West Virginia Academy of Science.
Morgantown, WV: WVAS; 2018. Vol. 90 (1). 10.55632/pwvas.v90i1.393

6. Nakano Koji. Theoretical Parallel Computing Models for GPU Computing. In book: ¢ Kog (ed). Open Problems in
Mathematics and Computational Science. Cham: Springer; 2014. P. 341-359. 10.1007/978-3-319-10683-0_14

7. Bhargavi K, Sathish Babu B. GPU Computation and Platforms. In book: Ganesh Chandra Deka (ed). Emerging
Research Surrounding Power Consumption and Performance Issues in Utility Computing. Hershey, PA: IGI Global;
2016. P.136-174. 10.4018/978-1-4666-8853-7.ch007

8. Ebrahim Zarei Zefreh, Leili Mohammad Khanli, Shahriar Lotfi, Jaber Karimpour. 3-D Data Partitioning for
3-Level Perfectly Nested Loops on Heterogeneous Distributed System. Concurrency and Computation: Practice and
Experience. 2017;29(5):e3976. https://doi.org/10.1002/cpe.3976

9. Fan Yang, Tongnian Shi, Han Chu, Kun Wang. The Design and Implementation of Parallel Algorithm
Accelerator Based on CPU-GPU Collaborative Computing Environment. Advanced Materials Research. 2012;529:408—
412. https://doi.org/10.4028/www.scientific.net/AMR.529.408

10. Varshini Subhash, Karran Pandey, Vijay Natarajan. A GPU Parallel Algorithm for Computing Morse-Smale
Complexes. IEEE Transactions on Visualization and Computer Graphics. 2022. P.1-15.
10.1109/TVCG.2022.3174769

11. Leiming Yu, Fanny Nina-Paravecino, David R Kaeli, Qiangian Fang. Scalable and Massively Parallel Monte
Carlo Photon Transport Simulations for Heterogeneous Computing Platforms. Journal of Biomedical Optics.
2018;23(1):010504. https://doi.org/10.1117/1.JB0O.23.1.010504

12. Fujimoto RM. Research Challenges in Parallel and Distributed Simulation. ACM Transactions on Modeling and
Computer Simulation. 2016;26(4):1-29. https://doi.org/10.1145/2866577

13. Qiang Qin, ChangZhen Hu, TianBao Ma. Study on Complicated Solid Modeling and Cartesian Grid Generation
Method. Science China Technological Sciences. 2014;57:630-636. 10.1007/s11431-014-5485-5

14. Seyong Lee, Jeffrey Vetter. Moving Heterogeneous GPU Computing into the Mainstream with Directive-Based,
High-Level Programming Models. In: Proc. DOE Exascale Research Conference. Portland, Or; 2012.

15. Thoman P, Dichev K, Heller Th, lakymchuk R, Aguilar X, Hasanov Kh, et al. A Taxonomy of Task-Based
Parallel Programming Technologies for High-Performance Computing. Journal of Supercomputing. 2018;74(2):1422—
1434. https://doi.org/10.1007/s11431-014-5485-5

Received 17.07.2023
Revised 14.08.2023
Accepted 18.08.2023

About the Authors:

Vladimir N. Litvinov, Cand.Sci. (Eng.), Associate Professor of the Mathematics and Informatics, Don State
Technical University (1, Gagarin sg., Rostov-on-Don, 344003, RF), ResearcherlD, ScopusiD, ORCID,
LitvinovVN@rambler.ru

Nelli B. Rudenko, Cand.Sci. (Eng.), Associate Professor, Associate Professor of the Mathematics and
Bioinformatics Department, Azov-Black Sea Engineering Institute, Don State Agrarian University (21, Lenina St.,
Zernograd, 347740, RF), ScopusID, ORCID, nelli-rud@yandex.ru

Natalya N. Gracheva, Cand.Sci. (Eng.), Associate Professor of the Mathematics and Bioinformatics Department,
Azov-Black Sea Engineering Institute, Don State Agrarian University (21, Lenina St., Zernograd, 347740, RF),
ScopuslID, ORCID, grann72@mail.ru

https://doi.org/10.1007/978-3-030-28163-2_16
http://dx.doi.org/10.5772/intechopen.68179
https://doi.org/10.55632/pwvas.v90i1.393
https://doi.org/10.1007/978-3-319-10683-0_14
https://doi.org/10.4018/978-1-4666-8853-7.ch007
https://doi.org/10.1109/TVCG.2022.3174769
https://doi.org/10.1117/1.JBO.23.1.010504
https://doi.org/10.1145/2866577
https://doi.org/10.1007/s11431-014-5485-5
https://doi.org/10.1007/s11431-014-5485-5
https://www.webofscience.com/wos/author/record/HPH-4500-2023
https://www.scopus.com/authid/detail.uri?authorId=57210417831
https://orcid.org/0000-0001-8234-3194
mailto:LitvinovVN@rambler.ru
https://www.scopus.com/authid/detail.uri?authorId=57222150363
http://orcid.org/0000-0001-5468-3626
mailto:nelli-rud@yandex.ru
https://www.scopus.com/authid/detail.uri?authorId=57201921924
https://orcid.org/0000-0003-3699-7255
mailto:grann72@mail.ru

Litvinov VN, et al. Model of a Parallel-Pipeline Computational Process for Solving a System of Grid Equations

Claimed Contributorship:

VN Litvinova: basic concept formulation, research objectives and tasks, development of algorithms for performing a
computational experiment, calculation analysis.

NB Rudenko: analysis of research results, drawing conclusions, text preparation.

NN Gracheva: writing program code for performing a computational experiment, preparing illustrations, finalizing
the text, correction of the conclusions.

Conflict of interest statement: the authors do not have any conflict of interest.
All authors have read and approved the final manuscript.

Hoctynuiaa B pexaknuio 17.07.2023
Hoctynuia nmocjie peunenzupopanus 14.08.2023
Hpunsara k nydauxanun 18.08.2023

06 asmopax:

Baagumup HuxonaeBnu JIMTBHHOB, KaHIUIAT TEXHUYECKHX HAyK, JOLEHT Kadenpbl MaTeMaTHKH |
nHdopmartuku JIOHCKOro TOCYJapcTBEHHOrO TexHMUYeckoro yHuBepcurera (344003, P®, r. Pocros-Ha-/lony,
wr. [arapuna, 1), ResearcherlD, ScopusID, ORCID, LitvinovVN@rambler.ru

Heanu bBopucoBna PyaeHko, KaHIuAaT TEXHMYECKUX HAyK, JMAOIEHT, JOLEHT Kadeapbl MaTeMaTHKH |
ouonmapopmaTiky A3oBo-UepHoMopckoro wumkeHepHoro wHcTtHTyTa, LAY (347740, P®, r. 3eprorpan,
yi. Jlenuna, 19), ScopusID, ORCID, nelli-rud@yandex.ru

Haranss HukonaepHa I'paueBa, KaHAMZAT TEXHWYECKMX HAyK, JOLCHT Kadeapsl MaTeMaTHKH |
ononH(popMaTHKy A3oBo-UepHOMOpCcKoro wuHXeHepHOTO uHCTUTYTa, LAY (347740, PoctoBckas o0macTs,
r. 3epHorpan, yi. Jlenuna, 19), ScopusiD, ORCID, grann72@mail.ru

3assnenHvlil 6K1A0 COABMOPOB:

B.H. JIutBHHOB — ()OpMHUpOBaHNE OCHOBHOI KOHIEMIUH, LIEJIN U 3aJa4d UCCIIEOBaHMUs, pa3paboTKa alrOPUTMOB
JJIA BBITTIOJTHEHUS BBIYUCIUTEIILHOTO SKCIIEPUMEHTA, ITPOBEACHUE PaCUYCTOB.

H.B. Pynenko — aHanu3 pe3ysbTaToB UCCIeNOBaHUMH, (HOPMHUPOBAHUE BHIBOJIOB, ITOJITOTOBKA TEKCTA.

H.H. Fpaqua — HalMCaHUE€ NPOrpaMMHOI0O Koaa JJIA BBINNOJHCHUA BBIYUCIUTCIBHOT'O OKCIICPUMEHTA, IMTOATIOTOBKA
WITIOCTPAIMH, 10paboTKa TeKcTa, KOPPEKTUPOBKA BEIBO/IOB.

Kongpnuxm unmepecos: aBTOpHI 3asBIAIOT 00 OTCYTCTBHN KOH(JINKTA HHTEPECOB.

Bce agmopur npouumanu u 0006puu OKOHYAMENbHBIN 6APUAHI PYKONUCHU.

Information Technology, Computer Science and Management

339

https://www.webofscience.com/wos/author/record/HPH-4500-2023
https://www.scopus.com/authid/detail.uri?authorId=57210417831
https://orcid.org/0000-0001-8234-3194
mailto:LitvinovVN@rambler.ru
https://www.scopus.com/authid/detail.uri?authorId=57222150363
http://orcid.org/0000-0001-5468-3626
mailto:nelli-rud@yandex.ru
https://www.scopus.com/authid/detail.uri?authorId=57201921924
https://orcid.org/0000-0003-3699-7255
mailto:grann72@mail.ru

