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Abstract

Introduction. All polymer materials and composites based on them are characterized by pronounced rheological
properties, the prediction of which is one of the most critical tasks of polymer mechanics. Machine learning methods open
up great opportunities in predicting the rheological parameters of polymers. Previously, studies were conducted on the
construction of predictive models using artificial neural networks and the CatBoost algorithm. Along with these methods,
due to the capability to process data with highly nonlinear dependences between features, machine learning methods such
as the k-nearest neighbor method, and the support vector machine (SVM) method, are widely used in related areas.
However, these methods have not been applied to the problem discussed in this article before. The objective of the
research was to develop a predictive model for evaluating the rheological parameters of polymers using artificial
intelligence methods by the example of polyvinyl chloride.

Materials and Methods. This paper used k-nearest neighbor method and the support vector machine to determine the
rheological parameters of polymers based on stress relaxation curves. The models were trained on synthetic data generated
from theoretical relaxation curves constructed using the nonlinear Maxwell-Gurevich equation. The input parameters of
the models were the amount of deformation at which the experiment was performed, the initial stress, the stress at the end
of the relaxation process, the relaxation time, and the conditional end time of the process. The output parameters included
velocity modulus and initial relaxation viscosity coefficient. The models were developed in the Jupyter Notebook
environment in Python.

Results. New predictive models were built to determine the rheological parameters of polymers based on artificial
intelligence methods. The proposed models provided high quality prediction. The model quality metrics in the SVR
algorithm were: MAE — 1.67 and 0.72; MSE — 5.75 and 1.21; RMSE — 1.67 and 1.1; MAPE — 8.92 and 7.3 for the
parameters of the initial relaxation viscosity and velocity modulus, respectively, with the coefficient of determination
R?— 0.98. The developed models showed an average absolute percentage error in the range of 5.9-8.9%. In addition to
synthetic data, the developed models were also tested on real experimental data for polyvinyl chloride in the temperature
range from 20° to 60°C.

Discussion and Conclusion. The approbation of the developed models on real experimental curves showed a high quality
of their approximation, comparable to other methods. Thus, the k-nearest neighbor algorithm and SVM can be used to
predict the rheological parameters of polymers as an alternative to artificial neural networks and the CatBoost algorithm,
requiring less effort to preset adjustment. At the same time, in this research, the SVM method turned out to be the most
preferred method of machine learning, since it is more effective in processing a large number of features.
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IIporHo3upoBaHue peoIOrnyecKuX NapaMeTpoB NOJIUMEPOB METOAAMH
MAIIMHHOIO 00y4eHus!
T.H. KongparnseBa '~ <, A.C. UenypHeHKo

JIoHCKOM rocyapCTBEHHbIN TEXHUYECKUI yHUBEPCUTET, T. PocToB-Ha-JloHy, Poccuiickas denepanus

D4 ktn618@yandex.ru

AHHOTANNSA

Beeoenue. JIns Bcex TNONMMEPHBIX MaTepHalIoOB M KOMIIO3UTOB Ha WX OCHOBE XapaKTepHBI SBHO BBIPAXKEHHBIC
peosioruuecKre CBOMCTBA, MPOTHO3UPOBAHUE KOTOPBIX SBJSIETCS OJHOM M3 Ba)KHEHIIMX 3a/1ad MEXaHUKH IOJHUMEPOB.
Bbonpiie BO3MOMKHOCTM ISl IPOTHO3UPOBAHMS PEOJIOTHUECKUX IapaMeTpOB IOJIMMEPOB OTKPBIBAIOT METOJIBI
MalIMHHOTO 0O0yd4eHus. PaHee mnpoBOOMINCH HCCIENOBaHMA Ha IpPEAMET IOCTPOSHMS IIPOTHO3HBIX MOAENeH ¢
HCTIOJH30BAHNEM HMCKYCCTBEHHBIX HEWPOHHBIX ceTeit m anroputma CatBoost. Hapsany ¢ stumu meromamu, Oiaromaps
BO3MOXKHOCTH 00pabaTeiBaTh [aHHBIE C CHJIBHO HEJIMHEHHBIMH 33aBUCHMOCTSIMH MEXAY NPH3HAKAMH, LIMPOKOE
MIPUMEHEHHNE B CMEXHBIX 00JIACTAX HAXOISAT METO/AbI MAIIMHHOTO O0YYEHHUs] — METOA k-OnmKalImx coceiel 1 MeTox
OTIOPHBIX BeKTOPOB (SVM). OtHako paHee Kk mpobieMe, pacCMOTPEHHOI B IaHHOM cTaTbe, 3TH METO/IbI HE IIPHUMEHSIIHCH.
Lenpto paboTel siBUIIACh pa3pabOTKa IMPOTHO3HOW MOJENH JUIS OLEHKH PEOJIOTMYECKHX IapaMeTpOB IOJMMEPOB
METO/IaMH UCKYCCTBEHHOTO MHTEIUIEKTa Ha IPUMepe MOJTMBUHIIIXJIOPHIA.

Mamepuanvt u memoodsl. B paboTe TPUMEHEHBI METON k-ONMIKANIINX COCeNeH W METOJ| OTOPHBIX BEKTOPOB JIIS
OIIpEJICTICHUsI PEOJIOTMYECKUX IapaMeTpOB IOJIMMEPOB HAa OCHOBE KPHUBBIX pellakcali HanpspkeHud. OOyueHne
Mo,uenei/i BBITIOJIHAJIOCHh HA CHHTCTUYCCKUX JJaHHBIX, CTCHCPUPOBAHHBIX Ha OCHOBC TCOPCTUYCCKUX KPUBBIX pelaKkCalluu,
MMOCTPOEHHBIX C UCIOJIb30BAHUEM HEJIMHEHHOTo ypaBHeHUs1 MakcBenna-I'ypeBuua. BxoaHbIMu napameTpamMu Mozenei
BBICTYIIANIN BEJMYMHA JehopMaluy, IIpu KOTOPOH MPOU3BOAMIICS HKCIIEPUMEHT, HaYaIbHOE HANpPSDKCHUE, HANPSHKEHHE
B KOHIIE IIpOLIECcCa PENlaKCallly, BPEMs pENlaKCalliy M YyCIOBHOE BPeMsl OKOHUAHHMS Npoliecca. BrIxomHble mapaMeTps:
MOIYJlb CKOPOCTH M KOI(Q(UIMEHT HadalbHOM pENaKCallMOHHON BS3KOCTH. Mozenn pa3paboTaHsl B cpene
Jupyter Notebook na si3p1ke Python.

Peszynomamut uccnedosanusn. ITocTpoeHs! HOBbIE IPOTHO3HBIE MOAEIH UL ONPEIEICHUS] PEOJIOTHIECKUX TapaMeTpOB
MOJIMMEPOB HAa OCHOBE METOZOB MHCKYCCTBEHHOTO HHTeUIeKTa. [IpemnokeHHbIe Mozenn oOecreunBaroT BBICOKOE
KauecTBO MPOrHO3MPOBaHMs. MeTpuku KkadecTBa Moaenu B amroputme SVR cocraBmstor: MAE — 1,67 u 0,72;
MSE —5,75u 1,21; RMSE — 1,67 u 1,1; MAPE — 8,92 u 7,3 nns nmapameTpoB HaualbHON peJaKCalMOHHOMN BSI3KOCTH
1 MOJIyJIsl CKOPOCTH COOTBETCTBEHHO ¢ Kod(dupenTom nerepmunanuu R2 — 0,98, PaspaGoTaHHbIE MOJENHN ITOKA3AIN
CPelHIOI a0COJIOTHYIO IIPOLCHTHYI0 oOmMOKy B auanazoHe 5,9-8,9 %. IloMHMO CHHTETHYECKMX JaHHBIX,
pa3paboTaHHbIE MOAEIH TaKKe apOOMPOBAIACH Ha PEATbHBIX YKCIIEPUMEHTAIBHBIX JAHHBIX JUIA TONIMBUHIIXIOPHIA B
muarazoHe temreparyp ot 20 mo 60 °C.

Obcyrncoenue u 3axnrouenue. Atnpodamus pa3pabOTaHHBIX MOJENEH Ha pPeaJbHBIX SKCIEPUMEHTAIbHBIX KPHUBBIX
MIO0Ka3aja BBICOKOE Ka4eCTBO WX ANNPOKCHMAIIMH, COTTIOCTABUMOE C JPYTMMH MeTojaMH. TakuMm o0pa3oM, ajrOpHUTMBbI
k-Onmxaiimmx coceneid 1 SVM MOTYT HCHOB30BATHCS JUIsl HPOTHO3UPOBAHMS PEOJIOTMYECKUX TapaMETPOB HOINMEPOB
KaK ajJbTepPHATHBA MCKYCCTBEHHBIM HEHpPOHHBIM ceTsiM M anropurmy CatBoost, TpeOyromass MEHBIIMX YCHIMH MO
MIpeABapUTENLHOM HacTpoiike. [Ipn 3TOM B JTaHHOM McCieI0BaHUU HanOosIee MPEANOYTHTEBHBIM METOJOM MAIIUHHOTO
o0yuenust okazaiucs Mmero] SVM, Tak kak oH Oosee 3¢ pekTuBeH B 00paboTKe OOIBIIOT0 YHCIIA IIPU3HAKOB.

KioueBble cjioBa: peosiorusi, MOJUMEpPbl, UCKYCCTBEHHBIH MHTEIUIEKT, MAIIMHHOE O0y4eHHe, k-OnKailine coceu,
OTIOpHAas BEKTOPHAs perpeccus

BbaaroaapHocTu. ABTOPHI BEIPaKAIOT 0JIaroJapHOCTh PEAAKIINY U PEIICH3eHTaM 3a BHUMATEIbHOE OTHOIIEHHE K CTaThe
Y YKa3aHHBIE 3aMEYaHus, KOTOPHIE TI03BOJIMIIN TIOBBICUTE €€ Ka4eCTBO.

Jas uurtupoBanus. Kouapatsesa T.H., Uenmypuenko A.C. [IporanozupoBanne peooTHIECKUX MapaMeTPOB MOJIMMEPOB
METOJaMH MaIlIMHHOTO oO0ydeHus. Advanced Engineering Research (Rostov-on-Don). 2024;24(1):36—47.
https://doi.org/10.23947/2687-1653-2024-24-1-36-47

Introduction. Polymers are used in various industries, including the production of plastics, textiles, packaging
materials, and more. Accurate prediction of the rheological parameters of polymers is a complex task that is important
for optimizing production processes and creating products with desired properties.

Today, machine learning methods have gained great popularity in various fields, including chemistry and materials
science, due to their ability to efficiently process and analyze large amounts of data. These methods make it possible to
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predict the properties of materials. In [1], a platform based on machine learning was described, and the integration of
metrological support in the context of digital transformation was proposed. In [2], the local distribution of deformation,
the development of plastic anisotropy, and fracture in additively manufactured alloys were predicted. The problems of
developing measuring control regulators on digital platforms were formulated in [3]. An intelligent model for controlling
the parameters of overlap joint welding was built in [4]. However, the issues of using machine learning methods to predict
the rheological properties of polymers remain insufficiently investigated. This is caused by both technical and
methodological difficulties, such as the heterogeneity of the polymer structure, their sensitivity to external conditions,
and complex interactions between molecules during deformation.

Research in the field of rheological properties of polymers and composites using machine learning methods has great
prospects in the construction industry [S]. For numerous polymers, the experimental data are well described by the
generalized nonlinear Maxwell-Gurevich equation [6], which has the form for a uniaxial stress state [7]:

o _f”
ot n*”
fr=6-E.z", (1)
11 |f*
ST ep |
n"ome m

where ¢* — creep deformation, f~ — stress function, G — stress, E. — module of high elasticity, no — initial
relaxation viscosity, m" — velocity module.

Various intelligent machine learning models can be used to determine the rheological parameters of polymers, such
as the initial relaxation viscosity (hereinafter just “viscosity”’) and the velocity module [8, 9]. For example, one such
model is a neural network that can be trained on generated datasets to determine optimal polymer parameters [10].

Prediction based on synthesized data is a fairly common practice, including for nonlinear optimization
methods [11, 12]. One of the ways to generate data is the use of Rosenbrock, Himmelblau, and Booth functions [13],
which are effectively applied to test optimization methods such as gradient descent methods, genetic algorithms, and the
Newton method. This approach was applied in [14], where a data set based on theoretical stress relaxation curves using
the nonlinear Maxwell-Gurevich equation was generated to test the efficiency of various optimization methods.

In [15], several machine learning approaches were given to predict the durability of a reinforced concrete beam, such
as a neural network of back propagation, linear and ridge regression, a decision tree, and a random forest. The input
parameters of the study were both various characteristics of the material and their properties, depending on the
environment (temperature, humidity). Finally, according to the results of the study, the back propagation model
determined a more accurate forecast (85%), the average values (MAE) and MAPE were 1.13% and 14.5%, respectively.

Another approach to solving inverse problems of creep theory using the neural network method is based on training a
model on large amounts of experimental data. In [16], a neural network model was developed, which was trained on data
obtained as a result of long-term experiments on polymer materials, and successfully predicted the viscoelastic behavior
of these materials. The data obtained from experiments on samples of various materials were used for the study.

Unlike the above-mentioned papers, the presented research is intended to promote the development of more accurate
and reliable methods for predicting polymer properties, such as the k-nearest neighbor method and the support vector
machine, which is important for various industries and science.

The research objective was to develop a predictive model based on artificial intelligence methods for analyzing the
rheological properties of polymers. Previously, the authors had already used a machine learning algorithm based on
gradient boosting CatBoost to process stress relaxation curves [17, 18]. CatBoost is one of the most powerful machine
learning algorithms applicable to solving not only regression problems, but also classification and ranking problems [19].

The CatBoost method can be useful for solving some tasks, but it also has its limitations and disadvantages. In this
regard, there is an interest in using other algorithms mentioned earlier [20] to solve the problem.

Materials and Methods. The generated data array is partially presented in Table 1. This array was formed on the
basis of theoretical stress relaxation curves described by the Maxwell-Gurevich equation, according to the technique
presented in [14]. The variation ranges of the velocity modulus and the initial relaxation viscosity in the generated array
correspond to the real ranges for polyvinyl chloride in the temperature interval from 20° to 60°C. The total number of
numerical experiments (n) was 30,000.
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Table 1
Table of initial data for training the model
) Strefss ?tt ¢ | Stressatthe Relaxation | Conditional end | Velocity | Yiscosity
Deformation, beginning of end of the . . £ 1ne
No time time of the module No, 10°,
% the process 6o, | process Ow, fh ) i h . MPa
MPa MPa " process fs, ) MPas
1 1.000 10.000 0.909 0.277 1.484 6.000 3.000
2 2.000 20.000 1.818 0.109 1.003 6.000 3.000
3 3.000 30.000 2.727 0.046 0.820 6.000 3.000
4 1.000 10.000 0.909 0.861 4.615 6.000 9.333
5 2.000 20.000 1.818 0.339 3.122 6.000 9.333
6 3.000 30.000 2.727 0.142 2.552 6.000 9.333
7 1.000 10.000 0.909 1.445 7.747 6.000 15.667
29997 3 45 37.5 0.285 2.476 15 53.666
29998 1 15 12.5 1.003 4.255 15 60
29999 2 30 25 0.558 3.371 15 60
30000 3 45 37.5 0.319 2.769 15 60

The data set consisted of five input variables and two output variables. Input variables (unit measure):
deformation — ¢ (%); stress at the beginning of the process — o (MPa); stress at the end of the process — 6. (MPa);
relaxation time — ¢, (h); conditional end time of the process — #s (h). Output variables (unit measure): velocity

module — m" (MPa); initial relaxation viscosity — Mo (in Table 1 and further, simply “viscosity”) (10° MPa-s).

Values ©y,, G, , ty, and fos are schematically shown on the typical stress relaxation curve (Fig. 1).
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Fig. 1. Typical stress relaxation curve

The k-nearest neighbor (k-NN) algorithm is based on the similarity analysis of nearby objects. The £-NN method is in

great demand for solving various types of machine learning tasks.
Formula (2) represents the general form of the algorithm, where w(i, x) — weight function evaluating the importance
of the i-th neighbor.

Mechanics
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F(x)=argmax ey Zil[xi;x =y]w(i x). @)

The maximum total weight can be achieved for several objects at the same time. The entropy of this process can be
adjusted using nonlinear sequence w(i, x) = [i < k]q' (exponentially weighted k-nearest neighbor method) provided that
0<¢g<0.5.

Representing a fairly simple machine learning algorithm, A~-NN is well applicable to solving classification and
regression problems. The advantages of this method are ease of implementation, no need for pre-training of the model. It
is used for all types of data, including categorical and numeric. Disadvantages: a tendency to over-training (provided that
k is too small), poor performance with large amounts of data, it is not possible to take into account the relationship between
the signs.

The support vector algorithm — support vector regression (SVR) — solves the problem of minimizing the sum of the
mean absolute error. SVR is more resistant to outliers, unlike the least squares method, due to the regularization
coefficient (C) and the “epsilon-insensitive tube” (g). In this case, € determines the width of the tube in which errors are
ignored. Stochastic gradient descent is used to find the minimum of the function.

The support vector machine learning algorithm is function F(x) of approximation and regularization of empirical risk,
which converts training and test samples into output data for each object of the corresponding sample. Formula (3)
represents the general form of the algorithm, (4) is a linearly separable sample, (5) is a linearly inseparable sample, where
C — regularization coefficient, M(w, wy) — scalar product of vectors (feature and support vector), w,— weight
coefficients.

! Iy 2 .
F(x)—Czizl(l—M,-(w,wo ))+5||w|| —)mmF(x). 3)

w,Wo

Ly g2 . .
Sl = min £ (x); @)
Mi(wowo)21,i={1:1}.

%”w"2 +Cz;g,- N TZ,ZF(X)’ .
Mi(wowo)=1—g;,i={1:1}; ®)

g 20,i={1:1}.
Function X (x,x’) is a function of a pair of objects (x,x’), , I representable as a scalar product in some space H, for

which transformation y:X — H takes place. Function K:XxX —>R — kernel if K (x,x')=(y(x),y(x')),,

provided that K is symmetric: K (x,x') = K (x,x') and nonnegative definite: IjK(x,x’)g(x)g(x’)dxdx '"Vg:X >R

The regularization coefficient is determined by the sliding mode control method.

Advantages of the SVM method are as follows: high accuracy in classification problems in nonlinear spaces; ability
to work with a large number of features (including categorical and numerical), generalize data (which provides
applying the model to new data), work with data that are not linearly separable due to the use of kernel functions.

Disadvantages of the SVM method include inefficiency of working with large amounts of data; low interpretability
of the model; the requirement to configure numerous parameters, such as the type of kernel (its parameters,
regularization parameters), etc.

In this research, algorithms are developed in the Jupyter Notebook intelligent computing environment using
machine learning methods.

m
i=

As a learning algorithm, function F(x) is considered. It transforms training sample {x,-} L EX " and test

sample {x; '}le e X' into output data when training { yi};, € X" and testing {y; ’}izl e X' for each object of the
corresponding selection. The training of the vector of parameters w; € W is embedded inside the algorithm.

Under the conditions of the presented problem: { y,-} — actual values of viscosity ny (at the beginning of the

m
i=1

relaxation process) and velocity module m"; { Vi ’}:’il — predicted values of viscosity mj (at the beginning of the

relaxation process) and velocity module m”.
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The selection of such a parameter as the number of neighbors affects the generalizing ability of the developed
model and is important for its correct operation. The most suitable algorithm for calculating distance based on data is
Distance, in which the weights of objects are inversely proportional to their distance. Accordingly, in the case of closer
neighbors of the query object, they have more influence than their neighbors located at a greater distance from the
object.

The data set was divided into training and test samples in a ratio of 75/25. In turn, 20% of the training sample
became validation. The sample size was: training — X4in = 20,400; test — x5 = 6,000; validation — x.,a; = 3,600. For
variables Viain, Viests Veval, the data were distributed in a similar way.

To build the k-nearest neighbor model, the following parameters were selected: number of neighbors, sheet size,
interval, and weight function. The range and functionality of the values for the configurable parameters are shown in
Table 2.

Table 2
Parameter table for £-NN model
No Parameter Value Functional
1 Number of neighbors (k) 3,5,7,9 Determines optimal number of neighbors for query
Determi f i i fi
) Sheet size (n) 15,20, 30 etermines speed o quejrylng and required memory for
storing the tree
3 Interval (p) 1(11),2 (12) Defines power parameter (Minkowski metric)
4 Weight function (w) "uniform', 'distance’ Predicting weights

To build the SVR model, the following parameters were selected: kernel type, kernel order, regularization
coefficient (quadratic regularizer), €. The range and functional values for the adjustable parameters are presented in
Table 3.

Table 3
Parameter table for SVR model
No Parameter Value Functional
1 Kernel type 'linear'; 'poly"; 'rbf'; 'sigmoid' Defines type of hyperplane (linear/nonlinear)
2 Kernel order 1,2,3,4,5,7 Defines degree of polynomial function of kernel

Solves problems of vector multicollinearity

3 Quadratic regularizer (C) 2:3:4;5;7;10 and model retraining

Determines deviation of the object (proximity

4 € 0.1;02;0.5;1;1.5;2;3
measure)

Research Results

Figure 2 shows the correlations between the variables.

The following types of linear correlations between individual input and output variables of the model can be noted:

- strong enough — between the variables “Deformation” and “Stress at the beginning” ps, = 0.93; “Relaxation
time” and “End time of the process” py,; = 0.93;

- average — between the variables “Deformation” and “Stress at the end” ps,. =0.71; “Stress at the beginning”
and “Stress at the end” psys,, =0.75;

- weak — between the variables “End time of the process” and “Viscosity” pyq.es =0.58; “Viscosity” and
“Relaxation time” py.; = 0.46.

The presence of a moderate correlation between variables or its absence indicates only the absence of a linear
relationship; therefore, it is possible to have a nonlinear relationship between variables.

Mechanics
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Fig. 2. Correlation matrix
Table 4 shows the statistical characteristics of the original data set.
Table 4
Statistical characteristics of the original data set
Parameter € o O t tos m" ns
Unit measure % MPa MPa h h MPa 10°MPa-s
count 30,000.00 | 30,000.00 | 30,000.00 | 30,000.00 | 30,000.00 | 30,000.00 30,000.00
mean 2.00 25.00 15.78 0.75 441 10.50 31.50
std 0.82 10.77 9.10 0.94 4.40 2.87 18.19
min 1.00 10.00 091 0.00 0.07 6.00 3.00
max 3.00 45.00 37.50 10.04 38.02 15.00 60.00

The best parameters for the k-nearest neighbor model were determined as a result of 5-block cross-validation (Table 5).

Table 5
Best £-NN model parameters
Parameter Number of neighbors (k) Sheet size (n) Interval (p) Weight function (w)
ng 3 15 2 'distance’
m" 5 15 2 'distance’
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The best parameters of the SVR model for viscosity parameters m (at the beginning of the relaxation process) and

velocity module m* were obtained empirically (Table 6).

Table 6
Best parameters of SVR model
Parameter Kernel type Kernel order Quadratic regularizer €
ns 'tbf' 2 5 0.3
m" 'tbf’ 3 6 0.3

The ratio between the real and predicted values for the ~-NN model in terms of the parameters “Viscosity” and
“Velocity modulus” is shown in Figures 3, 4.
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Fig. 3. Diagrams of prediction errors of k&-NN, “Viscosity”
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Fig. 4. Diagrams of prediction errors of &-NN, “Velocity module”
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The ratio between the real and predicted values for the SVR model according to the parameters “Viscosity” and

“Velocity module” is shown in Figures 5, 6.
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The metrics of the developed models of k-nearest neighbors and support vectors are presented in Tables 7 and 8§,
respectively.

Table 7
Metrics of the developed A-NN models
Parameter MAE MSE RMSE MAPE (%) R2train R?test
ns 1.8 6.8 2.6 5.9 1.00 0.98
m" 0.7 0.8 0.9 6.9 0.99 0.98
Table 8
Metrics of the developed SVR models
Parameter MAE MSE RMSE MAPE (%) R?train R®test
ns 1.67 5.75 1.67 8.92 0.98 0.97
m" 0.72 1.21 1.1 7.3 0.89 0.87

In addition to synthetic data, the developed models were also tested on real experimental data presented in [13].
Experimental relaxation curves of polyvinyl chloride were used for various temperatures in the range from 20° to 60°C.
In Figure 7, the experimental stress values at different temperatures at different points in time are marked with felt-tip
pens, and solid lines show stress relaxation curves based on values m” and n; predicted by the models.
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Fig. 7. Results of testing the model on experimental data

Discussion and Conclusion. Figure 5 shows that the quality of prediction based on experimental data is quite high,
specifically, for temperatures of 30°C, 50°C and 60°C. For other temperatures, the prediction quality is somewhat lower,
which is due to the quality of the experimental curves themselves. It was necessary to extend the experiment time and
wait for the curves to reach the horizontal asymptote.

In this research, the most preferred method is the support vector machine (SVM). This is due to the fact that SVM can
process data with a large number of features, which is important for the analysis of rheological parameters of materials.
In addition, SVM works with nonlinear dependences between features, it is applicable to solve the regression problem,
which is required to determine the rheological parameters of materials.

However, the CatBoost method can also be effective in this task, especially, if there are categorical features in the data. In
addition, CatBoost can process missing data, which can be important for analyzing rheological parameters of materials.

The k-nearest neighbor method is less preferable in this task due to its low efficiency in processing a large number of
features, as well as the presence of problems with high data dimensionality.

In the course of the investigation, it has been shown that the use of machine learning methods makes it possible to
effectively analyze and process large amounts of data, including information about the characteristics of polymers and
their rheological properties. The model developed on the basis of such an analysis maintains high accuracy in predicting
the rheological parameters of polyvinyl chloride, which is confirmed by the results of cross-validation and comparison to
experimental data.
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One of the key advantages of this approach is the ability to automate the process of predicting the rheological
parameters of polymers, which reduces the time and cost of research and development of new materials. In addition, the
model can be easily adapted to analyze other types of polymers and predict their properties.

As aresult of this research, a predictive model has been developed to evaluate the rheological parameters of polyvinyl
chloride using artificial intelligence methods based on data of its characteristics and rheological properties. The model
demonstrates high prediction accuracy and can be used to optimize the production and development of new polymer-
based materials.
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AHTOH Cepreesuu YenypHeHKO, JOKTOpP TEXHHYECKHX HAyK, IOIEHT, mpodeccop Kadeapsl CONpOTHBIICHHE
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Tarpsina Hwukonaesna KonaparbeBa, KaHAuaaT TEXHUYECKMX HAyK, JIOLEHT KadeIpbl MaTeMaTHKH
u uHpopMmatuku JIOHCKOTO TOCYHapCTBEHHOro TexHH4eckoro yHuBepcutera (344003, P®D, r.PocroB-Ha-/lony,
1. ['arapuna, 1), SPIN-kox: 7794-2841, ORCID, ktn618@yandex.ru

3asenennviii 6k1A0 A8MOPO8:

A.C. YenypHEHKO — Hay4yHOE PyKOBOJICTBO, aHAINU3 PE3Y/IbTAaTOB HCCIIEA0BAHUMH, JOPabOTKA TEKCTa, KOPPEKTUPOBKA
BBIBOJIOB.

T.H. KorgpatseBa — (popMupoBaHe OCHOBHON KOHIICTIIINH, SN U 3aa4H HCCIIeJOBaHUs, IPOBEICHNE PACUETOB,
MIOJTOTOBKA TEKCTA, ()OPMUPOBAHIE BHIBOJIOB.

Kongpnuxm unmepecog: aBTOpHI 3asBISIOT 00 OTCYTCTBHUH KOH(INKTa HHTEPECOB.
Bce aemopul npouumanu u 0006puiu 0OKOHYAMeENbHBII 6APUAHI PYKONUCHU.
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IMocTynuia nocse peuensupoBanus 24.01.2024
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