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Abstract

Introduction. Published studies on the rigidity of consoles under load focus on the issues of their deformation and
destruction. Calculations of the inertia moment, fundamentally important characteristic of the strength of the rod, are
described. However, the problem of significant time consumption for such calculations has not been solved. The presented
study meets the lack. The objective of the work is to describe a new rapid method for analytical calculation of the shear
stress distribution in the section of the console corresponding to the action of an external applied force. For the first time,
tangential stresses are considered, and examples of calculating the inertia moment for two non-standard sections of the
console are given in this context.

Materials and Methods. To develop a new method, the console was presented as a pack of plates oriented parallel to the
vector of external force. The source calculations were based on the scheme of a console beam with a dedicated plate. The
deformation of the rod elements was modeled taking into account the effect of a uniform shear stress field in the plate
section. To validate the simplified calculation of the inertia moment of the sections, schemes of a square, ellipse, triangle,
hexagon, six-pointed star, and a figured cross were used. Analytical and mathematical research methods were applied,
specifically, the Huygens—Steiner theorem.

Results. A rapid valid method for calculating the inertia moment of the cross section of the console under loading has
been developed. Its difference is the rejection of calculations for each section, taking into account the shape and other
features. For any shape of the section, the beam is represented as a bundle of infinitely thin plates, their inertia moments
are integrated, and a well-known solution for deflection of a thin plate is used. The method allows us to unambiguously
show the distribution of tangential stresses at the end of the console, providing a given deflection, and tangential stresses
are used for such solutions for the first time. Their profiles are obtained depending on the direction of the external applied
force. Formulas for the inertia moments of complex sections — a six-pointed star and a figured cross — are derived for
the first time. Each section is correlated with the stress distribution curve and its maximum value. This data is visualized
in the form of diagrams. It is found that the inertia moment and the rigidity of the console do not change when the external
applied force is rotated by 30° for a star-shaped section and by 45° for a square and a figured cross. In general, the tangent
field depends on the geometry and on the orientation of the section relative to the external applied force.

Discussion and Conclusion. The proposed simplified approach to calculating the inertia moment of the cross sections of
the consoles makes it possible to uniquely determine the field of tangential stresses at the end, which provides the
appropriate value of the external applied force for the given deflection. Engineers and mechanics can use the results of
the presented work in the calculations and modeling of deformation of rod structural elements.
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AHHOTANUA

Beeoenue. Ony0nrKOBaHHBIE HCCIIEOBAHUS KECTKOCTH KOHCOJIEH MO/ HAarpy3Koi (hOKYCHPYIOTCS Ha BOIIPOCaX MX Je-
¢dopmaru 1 paspyuieHus. OnucaHbl pacueTbl MOMEHTa HHEPLMH — MPUHINIHAIEHO BAXHOW XapaKTEPUCTHKH ITPOU-
HocTH cTepkHs. OIHaKO He pelleHa MpodeMa 3HaYUTENIbHBIX 3aTPaT BPEMEHH JUIsl Takux BbhruncieHui. [Ipeacrabnen-
HOE HCCIIeI0OBaHKE BOCIIOJIHSET JaHHBIN 1Tpobeit. L{ens paboTsl — onncanne HOBOTO OBICTPOTO METO/1a aHAJTUTUYECKOTO
pacueTa pacipeneneHus HapsHKSHNS CIBATA B CEYEHUH KOHCOJIH, COOTBETCTBYIOIIETO JEHCTBUIO BHEITHEH MTPUI0KEH-
HOM criibl. BriepBble B TAKOM KOHTEKCTE PacCMaTPUBAIOTCS KacaTeIbHbIE HANPSDKEHHS ¥ IPUBOISTCS IIPUMEPHI pacyera
MOMEHTa MHEPLUH U IBYX HECTAHJAPTHBIX CEUEHUH KOHCOIH.

Mamepuanst u memoosl. J{11s co3naHnsi HOBOTO METOJa KOHCOJIb IIPEICTABMIIN KaK Ia4yKy INITACTUHOK, OPUEHTHPOBAH-
HBIX MTApajjIeIbHO BEKTOPY BHEIITHEH cuiibl. MIcXomHBIE pacyeThl CTPOMIIN MO0 CXeMe KOHCOJBHOM OaJIKu C BBIIEICHHON
TUTaCTHHKOH. JleopMannio CTep>KHEBBIX 3JIEMEHTOB MOJICIIMPOBAJIH C YYETOM JEHCTBHS OJJHOPOJIHOTO TI0JISt HAIIpsKe-
HUS CABHUTA B CEUCHHH IUTACTUHKH. [[711 000CHOBaHMS YIIPOIIEHHOTO pacyeTa MOMEHTa HHEPLIUHU CeUeHHUH 3a/1eHiCTBOBAIIN
CXEMBI KBaJpaTa, SJUIUIICA, TPEYTOJIbHIKA, IIECTHYTOJIbHUKA, IIIECTUKOHEYHOH 3Be3/1bl ¥ (pUrypHOTo Kpecra. Mcmosb3o-
BaJIM aHAJIMTUYECKUE U MaTEMaTUYECKHE METOIbl UCCIEN0BaHuUs, B 4aCTHOCTU TeopeMy [tolirenca—lllTeitnepa.
Peszynomamut uccnedosanus. Coznan ObICTPHIA YHUBEPCATIBHBIA METO]] BBIYNCICHUH MOMEHTa HHEPLMH TTOTIEPEYHOTO
CeUeHHs KOHCONIM MO Harpy3koi. Ero oTimume — oTKa3 OT pacyeToB I KaXKI0T0 CEUSHHS C yU4eToM (POPMBI U IPYTUX
ocobenHocteit. [Ipu moboii hopme ceueHus Oainka MPEACTABIIETCS KaK Mavyka OSCKOHEYHO TOHKUX IUIACTHHOK, MO-
MEHTHI UX MHEPIIUY HHTETPUPYIOTCS, U UCTIONB3YyeTCs M3BECTHOE PEIIeHUEe IS TPOruda TOHKOM IIIaCTUHKA. MeTo 1mo3-
BOJISIET OJJHO3HAYHO TOKa3aTh paclipeeeHie KacaTelIbHbIX HalpsDKEHUH Ha TOpIiEe KOHCOJIM, 00eCTIeUnBArOIINX 38 [aH-
HBIIA IPOTHO, IPUYeM BIEpPBBIC IS TAKUX PEIICHUH UCTIONB3YIOTCS KacaTelbHbIe HapspkeHus. [1omydenHs! ux mpoduiu
B 3aBHCUMOCTH OT HallpaBJIeHHs BHELIHEH MPWIOKEHHON critbl. BriepBbie BoIBeIeHBI ()OPMYJIBI JUII MOMEHTOB HHEPLIMU
CIIO’KHBIX CEYCHUI — IIECTUKOHEYHOM 3BE3/bI M PUTypHOTO KpecTa. Kaxknoe ceueHne COOTHECEHO ¢ KPUBOH pactipeie-
JICHUS! HANIPSDKEHUS ¥ €70 MaKCHUMAJIbHBIM 3HaYeHNEeM. DTH JaHHbIe BU3yJIN3UPOBAHBI B BUJIE AMAarpaMM. Y CTaHOBJICHO,
YTO MOMEHT WHEPIUHN U KECTKOCTh KOHCOJIM HE MEHSIOTCS MPH IMOBOPOTE BHEUIHEW MPHUIOKEHHOW CHiibl Ha 30° ms
cedyeHus B BUJIE 3Be3/bl M Ha 45° — st kBajpaTa U (UrypHoro kpecra. B obmiem cirydae mosie KacaTeabHBIX 3aBUCUT
OT reOMEeTPUYECKOM (POPMBI U OT OPUEHTAIMN CEYCHUsI OTHOCUTENBHO BHEUIHEH MTPUIIOKEHHON CHIIBI.

Oobcyacoenue u 3axniouenue. I1peioKeHHbIN YIPOIIEHHBIN NOAXO0A K pacue€Ty MOMEHTA MHEPLUU MONEPEYHBIX ceue-
HUH KOHCOJIEH AaeT BO3MOXXHOCTh OJJHO3HAYHO OIPEENUTh II0JIe KacaTeIbHBIX HANPsDKEHUH Ha TopIle, 00eceunBaio-
11ee Mpy 33aHHOM POrHOe COOTBETCTBYIOIIEE 3HAUEHHNE BHEIIHEW TPHIIOKEHHON crutbl. IH)KEHephl 1 MEXaHHKH MOTYT
UCIIOJIb30BaTh Pe3yJIbTaThl NPEICTABICHHON pa0boThl IPH pacueTax ¥ MOAEIMPOBAHUH Ae(OpMalHU CTEP)KHEBBIX dJIe-
MEHTOB KOHCTPYKLUH.

KioueBsble cioBa: nedopmaliys CTep)KHs, MOMEHT MHEPLHH IUIOCKON (DUTypbl, MOMEHT HHEPLUH CIO0XKHBIX CEYECHUH,
YIPYTHi TPOrud KOHCOH, pacipeeeHIe KacaTeIbHbIX HalPsSHDKEHUH

BaaronapuocTu. ABTOp 6JarogapuT pelakiiMOHHYI0 KOMaH Iy )KypHaia 1 aHOHUMHBIX PELIeH3EHTOB 32 KOMIIETEHTHYIO
9KCTEPTU3Y U LIEHHBIE PEKOMEHJANH 10 YIyYIIEHHIO CTAThH, KOTOPBHIE MO3BOJIIIH MTOBBICUTH €€ Ka4eCTBO.

duHaHcupoBaHue. Pabora BBIOJHEHA B paMKax TOCYNApCTBEHHOTO 3aJaHUs MUHHCTEPCTBA HAYKH M BBICIIETO
obpazoBanms Poccuiickoit @enepanun (Tema Ne FWRW-2021-0009. Ne ETUICY HUOKTP 121031100276-2).

Jusi uutuposanus. [eptorus E.E. YnpoleHHslld pacdeT MOMEHTa HWHEPLMH IIONEPEUYHOIO CEYECHHUs KOHCOJIM IIOJ
Harpy3kod. Advanced Engineering Research (Rostov-on-Don). 2024;24(2):159-169. https://doi.org/10.23947/2687-
1653-2024-24-2-159-169
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Introduction. Numerous building structures contain elements in the form of rods, which undergo elastic deformations
during manufacture or operation [1]. The bending strength of a rod or beam determines the bearing capacity of the
structure [2]. The ability of a beam to elastic deformation is characterized by stiffness, defined as the ratio of load P to
the elastic deflection of the beam A, : mx =P /A, [3]. As a rule, under laboratory conditions, stiffness is checked on a
console beam. One end of it is embedded in a rigid base, and an external force, directed perpendicular to the axis of the
beam, acts on the other one [4]. Modeling and calculations of deformation and fracture characteristics of rods, as a rule,
are associated with solving the problem of deflection of a console beam, or console, under the action of an external applied
force [5]. At the same time, there are no publications on simple and valid methods for determining the inertia moments
of complex sections relative to the action of an external applied force. The solution to this problem is described in the
presented article.

This work is aimed at the creation of a valid, rapid method for calculating the inertia moments of complex console
sections under the action of an external applied force. The new approach provides analytical determination of the shear
stress distribution in the section corresponding to the action of an external applied force. It should be noted that earlier,
tangential stresses were not taken into account in such calculations. In addition, for the first time, examples of calculating
the moment of inertia for complex figured sections are given.

Materials and Methods. In a number of works on the resistance of materials, e.g., in [6], a universal formula is given
for calculating the elastic deflection of console A.. According to this formula, the rigidity of the console is:

P/n, =3EI ]I, (1)
where £ — Young's modulus; L — length of the console; /. — inertia moment of the cross-section of the beam relative
to x-axis, passing through the center of gravity of the section perpendicular to the applied force P.

It follows from equation (1) that a fundamentally important characteristic of the console is the inertia moment of
section I, whose value depends on the geometry of the cross-section of the beam and the direction of x-axis [7]. It
should be emphasized that in equation (1), inertia moment /, refers to x-axis, which is perpendicular to the direction of
the external applied force P. Specifically, the inertia moment of rectangular section axb relative to the axis of symmetry
x is equal to [8]:

I =ab’/12. )

Here, a — thickness of the console, b — its width. Force P is directed parallel to side b of the rectangle.

Substituting (2) into (1), we obtain the well-known equation for the deflection of a rectangular console [9]:

4P(Lf
A =—| =] .
Ea\ b

The cross sections of console beams, or consoles, are different. Figure 1 shows a simple example of a square section
console under the action of external force P, directed along the diagonal of a square.

Fig. 1. Diagram of a console beam with a dedicated plate

The inertia moment of the section relative to x-axis is called the sum, or integral, of the products of elemental areas
ds = dxdy by the squares of distances y of the areas to x-axis: I, = [[ y*dxdy. [10]. The integrand function is virtually the

inertia moment of the elemental area dxdy relative to x-axis.

The console can be represented as a pack of extremely thin plates with thickness dx and length L, oriented parallel
to the force vector P. Under the action of P, all plates bend by the same amount A.. With a given orientation of the
console section, a separate plate is not affected by deformation of the rest of the volume. Then, the inertia moment of
the section of the console as a whole will be determined by the integral sum of the inertia moments of the sections of
all the plates in the pack.

The projection of the plate onto the plane of the console cross section is a rectangular strip with thickness dx and half-
length % (Fig. 1). The inertia moment of the section of a separate plate can be considered as the inertia moment of the
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console of rectangular section 24xdx. By definition, the equation of type (2) is applicable to each plate in a pack, where
a=dx and b =2h. According to this expression, the inertia moment of the strip is dI, = 2h*(x)dx/3. Thus, the inertia
moment of the console section can be determined through integrating the inertia moments of elementary strips rather than
elemental areas:

=2 [ heoas, 3)

where x varies from A4 to B.

The condition for the orientation of the plane of the plates parallel to the vector of the external applied force is
important, since it provides a unique association of the elastic deflection of console A, with the distribution of tangential
stresses in the cross section of the console. All the plates in the pack bend by the same value A.. according to (1),
dl, = 2h*(x)dx/3. This means that elementary force dP = 3LEdl./ L* = 2I.Eh’(x)dx / L* is required for a plate with thickness
dx. This force corresponds to the action of a uniform shear stress field in the plate section ds(x) = 2A(x)dx:

t=dP/ds=N\,ER*(x)/ L. 4)

It can be seen from (4) that the value of voltage A. in the coordinate system xy does not depend on coordinate y.

Equation (4) is convenient to be used when modeling the deformation of rod structural elements.

Integral (3) determines the inertia moment of section /. relative to x-axis, passing through the center of gravity of the
section. In the case of asymmetric and complex sections, it is convenient to first find the inertia moment of the section or
part of the section relative to the axis that does not pass through the center of gravity of the section. Then, you need to
move on to the inertia moment of section /. relative to the axis that passes through the center of gravity of the section. It
is known that the inertia moment of the section repeats the properties of the inertia moment of a solid and obeys the
Huygens—Steiner theorem [11]. The inertia moment of section /, relative to arbitrary x-axis is equal to the sum of the
inertia moment of this section /. relative to the axis passing through the center of gravity of the section parallel to x-axis,
and the product of the cross-sectional area S by the square of distance a between the axes: I, = I. + a>S. Therefore, in the
general case, we can write:

I, =§jfh(x)3dx+azs = I, +dS. (5)

If x-axis passes through the center of gravity of the section, then distance @ = 0 and equation (5) turns into (3).

Research Results. To create a simple, fast, valid calculation method, we abandon calculations for each section, taking
into account its shape and other features. This approach was implemented for the first time in the framework of this
research. No matter how complex the cross-section is, it is quite sufficient to use a well-known solution for deflecting a
thin plate, present the beam as a pack of infinitely thin plates, and integrate their inertia moments. In addition, the method
allows us to unambiguously show the distribution of tangential stresses at the end of the console, providing a given
deflection. It should be emphasized that tangential stresses are considered in this context for the first time.

Short-Cut Calculation of the Inertia Moment of Simple Sections. To validate the proposed method, we consider
the known sections of simple geometry. Next, instead of the expression “inertia moment of the cross section of the
console”, we use the term “inertia moment”. We assume that the external applied force is always directed perpendicular
to x-axis, relative to which the inertia moment of the section is determined.

Square. Equation (2) is obtained under the condition that the vector of force applied to the end of the console is
perpendicular to side a of the rectangle. For b = a, we obtain the inertia moment of the square section I. = a*/12.

Using the proposed method, we find the inertia moment of the square relative to x-axis, which is parallel not to the
side, but to the diagonal of the square (Fig. 2 a).

Y 1, MPa
{ 30
h
1 20
R
a 10
\ 0
-3 -2 -1 0 1 2 X, mm
a) b)

Fig. 2. Cross-section diagram in the form of a square:
a — cross-section; b — voltage distribution T along x-axis
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The half-length of the strip in Figure 1 is equal to # = x. From equation (3), we find:
2 a/«/g 4

I, =— Bav =L
3 —a/ﬁ 12

It can be seen that turning x-axis by 45° does not change the inertia moment of the square section. Consequently, when
the external applied force is rotated by 45°, the rigidity of the console does not change either (1).

Substituting x in place of / (4), we obtain a shear stress distribution in the section of the square console corresponding
to deflection A.:

(X)) =AXE/ L.

Figure 2 b shows distribution t (x) along the diagonal of the square at A. =2 mm and @ = 5 mm. According to (1), the
action of the shear stress t (x) on the end of the steel console (£ =200 GPa) with length L =50 mm corresponds to the
action of an external applied force P = 0.25E\.a*/L* = 500 N. Maximum voltage Tmax = 40 MPa is observed on the vertical
diagonal of the square. Under the deviating from the diagonal, voltage t decreases sharply to zero. As a result, a sharp
peak is formed in the system T (x).

Voltage t depends only on variable x; therefore, according to the graph in Figure 2 b, it is possible to determine value
T at any point of the square.

Obviously, when the force is oriented perpendicular to the sides of the square, T = P/a®> = 20 MPa (Fig. 2 b, dotted
line). As can be seen, stress distribution t(x) in the cross section corresponding to external force P significantly depends
on its direction.

Ellipse. Figure 3 a shows a diagram of an ellipse with semi-axes a and b. The origin of coordinates is in the center
of the ellipse.

\ 7, MPa
_T_ 60+
p N —— b=2a
l — b=a
a 40+
0 &
<—x—> 20,
/ 0 -2 -1 0 1 X, mm
a)

b)
Fig. 3. Section diagram in the form of ellipse with semi-axes a and b:

a — ellipse; b — distribution t along semi-axisa. | —a=b,2 —b=2a,a=2.5 mm

It follows from the canonical equation of ellipse [12] that the strip highlighted in Figure 3 has half-length
h = b(a® - x*)'"*/a. Substituting this value in (3) and integrating from —a to +a, we obtain the inertia moment of the
elliptical section:

21 3 2b3 a 2 2 32 TCab3
I.=—\| Wdx=—+ - dx = . 6
¢ 3J‘—a N 3a® —a|:a ¥ :| g 4 ©)

At a=b = r, we derive the inertia moment of the circular section: n7#/4, where » — radius of the circle.

Substituting value / corresponding to the ellipse in (4), we obtain the following distribution of shear stress in the
section of the elliptical console:

w(x)=Ab*(1 —x*/a®)E/ L.

Figure 3 b shows distribution 1(x) along semi-axis @ =2.5 mm at A. =2 mm, £ =200 GPa and L =50 mm. When
comparing it to distribution t(x)in Figure 2 b, for a square, a significant influence of the geometry of the console section
on the stress distribution is obvious. In the case of the elliptical section, there is no sharp peak on curve t(x). Maximum
voltage Tmax is observed along semi-axis b. Taking into account the requirement A. = const, it can be said about a rapid
growth of voltage Tmax With an increase in ratio b/a. When half-axis b is doubled, Tmax increases by 4 times (Fig. 3 b).
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Triangle. Consider the section in the form of an isosceles triangle (Fig. 4). x-axis is directed along the altitude of the
triangle (Fig. 4 a). At distance x from the base of the triangle, the half-length of the strip is equal to 2= b (a — x)/2a.

x | dx
a
) T T e X —>]
<
| S
e a > b
a) b)
Fig. 4. Section diagram in the form of isosceles triangle:
a — x-axis, force is directed parallel to the base;
b — force is directed perpendicular to the base
Integrating expression (4) over x from 0 to a determines the following value of the inertia moment:
b (e b’a
I, = 3J- (a—x ) dx="——. @)
12a° Jo 48

Consider the case when x-axis passes through the center of gravity and is parallel to the base of the triangle (Fig. 4 b).

The strip at distance x from the left corner of the triangle has half-length # = x/4a? / b? —1 /2 (Fig. 4 b). The center
of gravity of the strip is located at distance / from the base of the triangle (Fig. 4 b). Therefore, according to the Huygens—
Steiner theorem for the cross section, the inertia moment of the strip relative to the base of the triangle is:

dl, = Eh3a’x +2h3dx = §a—3x3dx.
3 3b°

Integrating the resulting expression over variable x from —b/2 to b/2 determines the inertia moment of the triangle
relative to the base:

I, =a’bh/12. ®)

The center of gravity of the triangle is located at distance a/3 from the base. According to the Huygens—Steiner
theorem [13], the inertia moment of a triangle relative to its own center of gravity is less than (8) by:

2 3
/- (zj 5=
3 18
where S = ab/2 — area of triangle.
In this manner, the inertia moment of the triangle relative to its own center of gravity is equal to:
a’b a’h a’b
@b @b b ©)
12 18 36
The result obtained corresponds exactly to the tabular value of the inertia moment of the section relative to the axis

through the center of gravity parallel to the base of the triangle.
Figure 5 shows the shear stress distributions in the triangular section at A. = 2 mm for cases where the deflection force

is directed along the base (a) and along the altitude of the triangle (b).

7, MPa 7, MPa
i g
101 20

51 10
00 2 4 X, mm 0

Fig. 5. Distributions t in the triangular section:
a — force is directed along the base; b — force is directed along the altitude of the triangle
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When the triangle is oriented as in Figure 4 a, voltage t(x) decreases gradually from Tmax at the base to 0 at the
apex (Fig. 5 ). With the orientation of the triangle as in Figure 4 b, distribution t(x) (Fig. 5 b) is similar to the distribution
for a square section when the force is oriented along the diagonal (Fig. 2 b).

Regular hexagon. Figure 6 shows two orientation of the hexagon relative to x-axis: parallel (a) and perpendicular ()
to its diagonal.

dx,,
y
OLX
a
a)

Fig. 6. Regular hexagon:
a — diagonal is perpendicular to the force vector;
b — diagonal is parallel to the force vector

The section of the hexagon in Figure 6 a consists of the following:

— rectangle with width ¢ and height a\3,

— two isosceles triangles with apex a/2 and base a\3.

Let us find the inertia moments of the specified parts of the section by (2) for the rectangle and by (7) for triangles.
For the rectangle in equation (2), b = a\3; therefore, its inertia moment is /,; = \3a*/4. For triangular parts in equation (7),
the base is b = a\3, and the altitude is a/2. Consequently, the inertia moment of the hexagon is:

I, =1,+1,=\3a*(1/14+1/16) = 5N3a*/16. (10)

If the applied force is directed along the diagonal of the hexagon (Fig. 6 b), then the half-length of the strip is equal
to a/2 — x/N3. Having made the appropriate substitutions in (4), we obtain:

7 pav3r2 X 5 \/5 a?
=53] .6 %/\B e ==T.

Comparing (10) and (11), we make sure that the rotation of the hexagon by 30° does not affect its inertia moment
relative to x-axis.

Consider the case of the hexagon orientation as in Figure 6 a. At A =2 mm and £ =200 GPa in the range from
—a/2 to +a/2, voltage 1(x) is constant and equal to Tmax = 15 MPa (Fig. 7 a). Under the same conditions and orientation of
the hexagon as in Figure 6 b, distribution T (x) is similar to the distribution for a square section (Fig. 2 b). However, here,
Tmax = 20 MPa and i, = 5 MPa (Fig. 7 b).

I (11)

T, MPaf 1, MPa
12t 16}
9t 12t
6 gl
3t 4f
00 10 20 30 xmm 00 10 20  xmm
a) b)

Fig. 7. Distribution 1(x) in the section of the regular hexagon:
a — diagonal is perpendicular to the force vector;
b — diagonal is parallel to the force vector

Examples of Simplified Calculation of the Inertia Moment of Complex Sections

Six-pointed star. Using the proposed method, we calculate the inertia moment of a non-standard section in the form
of a regular 6-pointed star with side a. To determine the inertia moment relative to the minor diagonal of the star, we use
the diagram in Figure 8 a. Let us highlight three zones in the diagram: zone I with width a/2, zone II for the rest of the
half-figure, and the adjacent auxiliary zone III in the form of a triangle.
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NG
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a) b)

Fig. 8. On calculating the inertia moment of the six-pointed star relative to ¢ — minor diagonal;
b — major diagonal

N

Half-length of the strip in zone I at distance x from the diagonal is A = V3(a — x). Using expression (3), for two zones I

in Figure 6 a, we obtain the inertia moment:
a/2 .
I= 2«/§I (a —x)3dx = %a“.
al/2

The inertia moment of zone II is equal to the inertia moment of a rectangle with height a3 and width a without the
inertia moment of triangle III. The half-length of the strip in the rectangle is equal to A =a V3/2. From equation (3), we
find the inertia moment of the rectangle:

B

I =—a
T+IT
4

The half-length of the strip in the triangle is equal to & = x\'3. According to (4), the inertia moment of the triangle is:

1 :£a4
m=osd

Hence, the inertia moment of zone II is equal to:

73,

Iy =Ty — I =3—2a .
The doubled sum of the inertia moments of zones I and II determine the inertia moment of the 6-pointed star:
1, = %a“. (12)

To determine the inertia moment of the star relative to the major diagonal, we use the diagram in Figure 8 b, where
two zones are highlighted. The half-length of the strip in zone I is /1 = a + x/A'3, in zone Il — /iy = a/2 — x/A'3. From (3),
the inertia moments of zones I (L = a*65V3/96) and II (L = a*\3/96) are calculated. It is seen that the doubled sum of
the inertia moments of zones I and II corresponds exactly to equation (12). Therefore, the inertia moment of the 6-pointed
star relative to the major and minor diagonals is the same.

Figure 9 a shows the shear stress distribution in the section of the 6-pointed star corresponding to A =2 mm and the orientation
of the external applied force according to Figure 8 a. Along the vertical axis of the star, the voltage takes on maximum value
Tmax = 37.5 MPa. With distance from the axis to the right, T drops quickly to the level T=9.375 MPa and remains constant in the
range 2 <x <4 mm. Then, t drops to zero. With distance away from the axis to the left, T changes similarly.

1, MPa 7, MPa
a=4 mm
L 25+
30 A=2mm
L =380 mm 20¢
201 15+
10 - a=4 mm
101 A=2mm
[ L =80mm
064 2 0 2 xnmm 0= 4 2 0 » xmm
a) b)

Fig. 9. Distributions t in the hex-shaped section: a — force is directed along the major diagonal;
b — force is directed along the minor diagonal
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When the star rotates by 30°, voltage distribution t changes significantly, acquiring the outlines of a dovetail (Fig. 9 b).
Two peaks are observed with value Tmax = 28.12 MPa. The distribution pattern is symmetrical. However, with distance from
the axis of symmetry, the voltage first increases from 12.5 to 28.12 MPa, and then drops to 3.125 MPa. In this regard, two
peaks are observed on dependence t(x). Further on, the voltage decreases rapidly to zero.

Figured cross. Consider a solution for the inertia moment of a non-standard section in the form of a figured
cross (Fig. 10), each side of which is the fourth part of the circle of radius R. The distance between the apices of the figure
is RN2. We first find the inertia moment of the cross relative to the major diagonal (Fig. 10 a).

R/ AN
- )

de |,
R h
L
||
a) b)

Fig. 10. Figured cross: a — force is directed along the diagonal of the cross;
b — force is directed at an angle of 45° to the diagonal of the cross

Half-length of strip 4 in Figure 10 a is equal to:

h=R-R*~(R-x).

Taking into account the symmetry and using equation (3), we obtain the following value of the inertia moment of the
section of the figured cross:

3
IngjR[R—Jx(zR—x)] dv=[4-5m/4]R*, (13)
0

We determine the inertia moment of the cross when it is rotated by 45° relative to x-axis (Fig. 10 b).

Figured cross fits into the circle of radius R. Figure 10 b shows that there are four figures in the form of an oval with
sharp corners around the cross. To determine the inertia moment of the cross, it is sufficient to subtract the inertia moments
of the four ovals from the inertia moment of the circle.

It follows from (6) that the inertia moment of the circle is equal to:

I, =mR*/4.
We determine the inertia moments of the ovals relative to the center of gravity of the cross.
The inertia moment of the oval on the right is equal to the inertia moment of the oval on the left. Half-height of the

strip at the oval on the left is:
hy=+R*—(R-x)*.

We take into account equation (3), as well as the symmetry of these parts and their location. By integrating from 0 to
R — RN2, the following value of the inertia moment of these two parts is obtained:

3 wR(1-1/42) 3 4
1, =3 [,/1_(1-;5/13)2} dx=R—[3—n-2] (14)
3 Jo 314

The centers of gravity of the ovals above and below the circle are located at distance @ = R//2 from the center of
gravity of the whole figure. The area of these two parts is equal to S = R*(m — 2).
By (4), we calculate the moment of inertia of this pair:
I, =a’S=R*[n/2-1].
Value 4 in (3), according to Figure 10 b, (oval at the bottom of the circle) is equal to 4 =+/2a? —x* —a. Therefore,
for a pair of ovals at the top and bottom of the circle, the inertia moment relative to their own centers of gravity can be

recorded as:
8 L[R2 2 IS 4
I, :—RI [ 1—(x/R) =1/ 2]d —R'[3n/4-7/3] 15
a=se[ -y v R[5/ 4-7/3] as)
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We determine the resulting inertia moment of the figured cross. To do this, we subtract the inertia moments of the

four ovals from inertia moment (13) of the circle:
loo—14—1,,—-215= [4—5n/4]R4.

Comparing the result obtained to result (13), we can see that the inertia moment of this cruciform section of the console
does not change when x-axis is rotated by 45°.

Figure 11 a shows the distribution of shear stress in the cross section of the figured cross, corresponding to A = 2 mm,
and the action of an external applied force along the axis of the cross (Fig. 10 @). A sharp voltage peak is observed on the
vertical axis of the cross, where Tmax = 80.0 MPa.

7, MPa

R=2mm

60

40

20

0 i i "
-3 2 -1 0 1 2x,mm

Fig. 11. Distributions t in the section of the figured cross:
a — force is directed along the diagonal of the cross,
b — force is directed at an angle of 45° to the diagonal of the cross

When the cross is rotated relative to the applied force by 45°, voltage distribution t changes significantly. As the axis
of symmetry deviates, voltage first gradually increases from t = 13.73 MPa to t max = 20.32 MPa. Then, voltage t drops
sharply to zero. Therefore, two symmetrical peaks (Fig. 11 b) are observed in distribution t at a distance of 2 mm from
the axis of symmetry.

Discussion and Conclusion. The proposed simplified calculation method provides for the rapid determination of the
inertia moments of complex cross sections of the console. In this case, the shear stress field in the sample section
corresponding to the action of an external applied force is uniquely determined. In addition, it is shown that the stress
distribution in the section qualitatively and quantitatively depends on the orientation of the section relative to the direction
of the external applied force.

To validate the method, the inertia moments were calculated not only for known sections of simple geometry (which
showed the absolute identity of the calculated and published results in the literature), but also for two new complex
sections in the form of a regular six-pointed star and a figured cross. It is shown that the rigidity of the console does not
change when an external force applied perpendicular to the axis of symmetry is rotated by 30° for a section in the form
of a 6-pointed star, and by 45° — for a square and a figured cross. The method and the solutions obtained can be used by
engineers and mechanics in modeling and calculating strength and stiffness of rod structural elements.
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