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Abstract

Introduction. Controllability analysis is a required stage for the correct formulation and solution of any optimal control
problem. This problem becomes specifically relevant in the context of optimizing systems with distributed parameters,
which are described by partial difference equations. Such problems include the considered problem of optimization of the
shape of the nozzle of a hydrocannon. The optimal nozzle should provide the maximum value of the functional expressed
through the average force of the impulse of the jet of a hydrocannon. The relevance of this research is due to the lack of
a unified approach to the analysis of controllability of systems with distributed parameters, which complicates the correct
formulation and solution of optimization problems. In particular, previous attempts to solve the problem of hydrocannon
nozzle optimization using classical variational calculus were unsuccessful due to ignoring aspects of controllability. The
objective of this research was to apply a new approach proposed by V.K. Tolstykh to controllability analysis to solve the
problem of optimal design of the shape of a hydrocannon nozzle.

Materials and Methods. The research method used was controllability analysis based on the Tikhonov conditional
correctness of the inverse problem. This approach allowed us to identify the conditions for the existence of the gradient
of the objective functional and construct a regularization of the solution to the inverse problem using adaptive gradient
methods. It was of current interest for multiextremal problems, including the problem of the optimum nozzle shape. It
was solved by a direct extreme approach in the form of direct maximization of the objective functional based on its
gradient. In the process of research, a nonlinear, quasi-one-dimensional mathematical model of isentropic water flow in
a hydrocannon nozzle was used. The flow was considered inviscid, compressible, and subsonic.

Results. As part of the research, controllability conditions were obtained that allowed us to radically simplify the problem
of optimizing the shape of the hydrocannon nozzle. It was found that in order to correctly determine the gradient of the
objective functional, it was required to narrow the solution area of the conjugate problem to a small rectangular area. The
use of adaptive gradient methods with satisfactory step factors provided for the regularization of the solution. For the first
time, two optimum shapes of the hydrocannon nozzle were found. The first shape provided a local maximum of the
objective functional, the second — a global maximum of the functional with a restriction on the expansion of the nozzle.
Discussion and Conclusion. The results obtained show that it is impossible to perform a directed search for an optimal
solution using the Frechet derivative without taking into account controllability conditions. The first proposed approach,
in combination with the desired adaptive gradient optimization methods, allowed us not only to correctly formulate the
optimization problem, but also to find optimal nozzle shapes that provided the maximum average pulse force of the
ultrajet. In some cases, for the stability of the solution, it was necessary to introduce expansion limitation of the nozzle
beyond the barrel of the hydrocannon. This made it possible to meet the requirements of the controllability theorem and
guaranteed the correctness of the results obtained. The theoretical relevance of the research is in the development of
controllability analysis methods for systems with distributed parameters, which creates new opportunities for solving
similar problems in other areas. The research results can be used to optimize devices operating on the basis of pulsed jets,
as well as for further study of more complex models of fluid flow.

© Tolstykh VK, Dmitruk YuV, 2025

Information Technology, Computer Science and Management

65


https://doi.org/10.23947/2687-1653-2025-25-1-65-76
mailto:mail@tolstykh.com
mailto:loktyushina.julia@yandex.ru
https://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=https://doi.org/10.23947/2687-1653-2025-25-1-65-76%20%20&domain=pdf&date_stamp=2025-03-30
https://orcid.org/0000-0001-9055-1102
https://orcid.org/0009-0009-6750-2068

https://vestnik-donstu.ru

66

Tolstykh VK, et al. Controllability Analysis and Optimization of Hydrocannon Nozzle Shape Based on Direct Extreme Approach

Keywords: nozzle shape, hydrocannon nozzle, jet impulse force, nozzle expansion limitation, maximization of objective
functional, gradient

Acknowledgements. The authors appreciate the scientific teams of the Departments of Computer Technology and
General Physics, Donetsk State University, and Donetsk Institute of State Fire Service, the RF Ministry for Civil Defense,
Emergencies and Elimination of Consequences of Natural Disasters, for fruitful discussions of the research materials.

Funding Information. The research is done at the Federal State Budgetary Educational Institution of Higher Education
“DONSU” with the financial support from the Azov-Black Sea Mathematical Center (Agreement No. 075-02-2025-
1608, dated 02.27.2025), as well as within the framework of the state-financed research “Development of Intelligent
Systems for Analyzing and Forecasting the Condition of Natural and Technical Facilities (FRRE-2023-0012)” (State
Registration No. 124012400344-1).

For Citation. Tolstykh VK, Dmitruk YuV. Controllability Analysis and Optimization of Hydrocannon Nozzle Shape
Based on Direct Extreme Approach. Advanced Engineering Research (Rostov-on-Don). 2025;25(1):65-76.
https://doi.org/10.23947/2687-1653-2025-25-1-65-76

OleZLlHa]leoe meopemu4deckoe uccnedosatue

AHaJIN3 yNPaBJIsieMOCTH U ONITUMH3ALMS (POPMBI COIIA THAPONYIIKH HA OCHOBE NPAMOI0
IKCTPEMAJIBHOI0 MoaAX0Aa
B.K. Tosctbix ', FO.B. Imutpyk = <

JoHeukuii rocynapcTBeHHBIN yHUBEpcuTeT, [oHenk, [lonenkas Haponnas PecrryOnuka
D mail@tolstykh.com, loktyushina.julia@yandex.ru

AHHOTAIUSA

Beeoenue. AHanu3 ynpaBiisieMOCTH SIBJISIETCSl HEOOXOIMMBIM 3TAIIOM JIsi KOPPEKTHOM MOCTAHOBKY U PElIIeHHs JIF00O0i 3a1auK
OIITUMAJIFHOTO YIIPABIICHHA. JTa MpobieMa CTAHOBUTCSI OCOOEHHO aKTyaIbHOH B paMKax ONTUMHU3AIMH CHCTEM C pacrpe/iesieH-
HBIMH [IapaMeTpaMu, KOTOPBIE OMUCHIBAIOTCS YPABHEHUSIMHU B YACTHBIX IPOM3BOAHBIX. K TakuM 3a1auaM OTHOCHTCSI paccMaTpH-
BaeMast 3a/1a4a OTITHMH3AIIH (POPMBI COTIIAa THAPOIYIIKH. ONTHMAaIEHOE COTIIO JOIDKHO 00ECTICUYNBATh MAKCHMAIEHOE 3HAYCHINE
(hyHKIIOHAJA, BRIPAYKaeMOT'0 Yepe3 CPEIHIOI CHITY MMITYJIBCA CTPYH THAPOITYIIKA. AKTYaTbHOCTD JaHHOTO HCCIEIOBAHS 00Y-
CIIOBJIEHA OTCYTCTBHEM €IMHOTO MOAXOJA K aHAIM3Y YIPABISIEMOCTH CHCTEM C PACpPENeNEHHBIMY TAPaMETPaMU, UTO 3aTpy/-
HSIET KOPPEKTHYIO IOCTAHOBKY U pELIEHHE 33/1a4 ONTUMU3aLMu. B yacTHOCTH, Ipebl Iy e TOMNBITKY PELLEHUS 3a0a41 OTITUMH-
3all1K COIUTA THAPOITYIIKH C UCTIOJIb30BAHUEM KIIACCHYECKOr0 BAPUALMOHHOTO UCUKCIIEHHS HE YBEHYAIUCh YCIIEXOM U3-3a UTHO-
PHMpPOBaHMS acTIeKTOB YIpapisieMocTH. Llenbio jaHHON paboThI SBISUIOCH IPUMEHEHHE HOBOTO MOIX0/a, TpeyiokeHHoro Tor-
ctbix B.K., k aHaimsy ynpasisieMoCTH [u1s pelieH s 3a/1a4i ONTHMAaJILHOTO Au3aifHa (hOpMBI COTLIA THAPOITYIIKH.
Mamepuanvt u memoowvi. B xauecTBe MeTO1a UCCIIEAOBAHUS HCIIOJIB30BAJICS aHANN3 YIIPABISIEMOCTH, OCHOBAaHHBIN Ha
YCIIOBHOHM KOPPEKTHOCTH 1m0 THXOHOBY 00paTHOM 3amaun. Takoi moaxo 1 MO3BOJUII BEISIBUTH YCIIOBHUS CYIIICCTBOBAHUS
rpajiieHTa 1eneBoro GyHKIMOHANA U TOCTPOUTh PETYJISIPU3ALIMIO PEIlICHHsT 0OpaTHOW 33/1a4n alallTUBHBIMU TPATUCHT-
HBIMH METOJaMH. DTO aKTyaJbHO JJIsi MHOTOAKCTPEMAIIbHBIX 3aJ[a4, B TOM YHUCIE Ul 33Ja4l ONTUMAlbHON (OpMBI
cormra. OHa pemanachk IPsIMBIM KCTPEMAJIBHBIM ITOIX0I0M B BH/I€ HETIOCPEACTBEHHON MAKCHMU3AIINH [IEIEBOTO (PYHK-
LIMOHAJIa Ha OCHOBE €ro rpaJueHTa. B mpouecce ncciaenoBaHus UCIOJIb30BajIach HEJIMHEHHAs, KBa3UOIHOMEpPHAsl MaTe-
MaTHU4eCcKasi MOAENb H303HTPOINYECKOr0 TEYEHUS BOJIBI B COILJIE TUAPOIYIIKHU. TeUeHre IPU 3TOM CUUTAIIOCh HEBSAZKUM,
C)KMMAEMBIM U JJ03BYKOBBIM.

Peszynomamut uccnedosanusn. B paMkax vccieoBaHus ObUIN MOJTYYEHBI YCIOBHS YIPaBIsEMOCTH, KOTOPBIE TTO3BOJIHIIH
paluKaIbHO YIIPOCTUTH 3a]ady ONTUMH3ALMH (OPMBI COTUIAa THAPOIYIIKA. Y CTaHOBIICHO, YTO JUISi KOPPEKTHOTO OIpe-
JIeJICHUs TPpajiveHTa 1iejeBoro (hyHKIHMOHaa HEOOXOAUMO CY3UTh 00JIaCTh PELICHUS CONPSDKEHHOW 3a/lauu JI0 MaJlon
MIPSMOYTOJIBHON obnacTu. Mcnonb30BaHue aganTHBHBIX IPAJNCHTHBIX METOJOB C YJOBJIETBOPUTEIbHBIMHU IArOBBIMU
MHOXKUTESIMU 00ECIIeUIIIO PEryJIsipru3aliiio penieHus. BriepBole Obln HalIeHbI JIBE ONTUMAaIbHBIE ()OPMBI COTLIA TH/I-
pomymiku. Ilepsas hopma obecrnedrBaeT JOKaIbHBIH MAKCUMYM II€JeBOr0 (hyHKIIMOHAJIA, BTOpas — II00ATbHbIH MaK-
cUMyM (YHKIIMOHAJA TIPH OTPaHHMYCHUH Ha PAaCIIMPEHHE COILIA.

Obcyrncoenue u 3akntouenue. 11oxydeHHbIe pe3yIbTaThl TOKA3bIBAIOT, YTO HAIPABICHHBINA TIOMCK ONTUMAJIBHOTO pellie-
HUSI HEBO3MOKHO OCYIIECTBUTH 10 IIpon3BogHON Dpemre 6e3 yuera ycaoBuil ynpaBisieMoCTH. BriepBrie npeniioKeHHbIN
MTOJIXO/, B COYCTAaHUH C HEOOXOIUMBIMHU aTalITHBHBIMH TPATUCHTHRIMA METOJJAMH ONTHMHU3AILINH, TIO3BOJII HE TOJIBKO
KOPPEKTHO MOCTAaBUTH 33a4y ONTHMHU3AIINH, HO U HAWNTH ONITUMANIbHBIE (DOPMBI COIIIIA, 0OECTICIMBAOIIIE MAKCHMAITb-
HYIO CPEIHIOI0 CHITy MMITYJIbca YIbTPAacTpyH. B HEKOTOPBIX ciydasx Juisi oOecredeHus] yCTOMYMBOCTH PEILeHUs TIOTpe-
6oBasIOCh BBEJICHUE OTPaHMYCHNUS Ha PACIIMPEHUE COILIA 3a MPEJEIIbl CTBOJIA THAPOITYIIKH. DTO ITO3BOJIMIO BHITOJIHHUTH
TpeOOoBaHUS TEOpPEeMBI 00 YIIPABIIEMOCTH M TapaHTHPOBAJIO KOPPEKTHOCTH MOIYYEHHBIX Pe3yJbTaToB. TeopeTrndeckas
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3HaYMMOCTh IIPUBEJCHHOTO HCCIIEIOBAHUS 3aKII0YaeTCs B Pa3BUTUH METOJIOB aHAIN3A YNPaBIIEMOCTH JUISl CUCTEM C
pachpeseneHHbIMU [TapaMeTpaMHt, YTO CO37aeT HOBBbIE BO3MOXKHOCTH Ul PELICHUS] CXOXKHX 337ad B IPYTUX 00JacTsX.
PesynbTraTsl paboThl MOTYT OBITH IPHMEHEHBI ULl ONTHUMHU3ALUH YCTPOWCTB, PabOTAIONIMX HAa OCHOBE HMITYJIGCHBIX
CTpYH, a TaKkKe s JaJbHEHIIero HCCIei0BaHus Ooee CI0KHBIX MOAENEH TeUeHHs )KUAKOCTH.

Kirouessble ciioBa: ¢opmMa comia, COIIIO THAPOMYIIKH, CHJIA MMITYyJIbCa CTPYH, OTPAaHUYEHHE HAa PACIIUpPEHHE COIIa,
MaKCHMH3aIHs IeIeBOro (GyHKIMOHANA, TPAJUCHT

BaarogapHocTi. ABTOPHI BEIpa)KalOT MPU3HATEIFHOCTD 3 IJIOJJ0TBOPHBIC 00CYK/IEHHS MaTepraoB paboThl HAYYHBIM
KOJUIEKTUBAaM Ka(eJp KOMIBIOTEPHBIX TEXHOJIOTHHA M oOmmielt ¢usnku JIoHenKkoro rocyAapcTBEHHOTO YHHBEPCUTETa U
JIoHemKoro MHCTUTYTa TOCYNApCTBEHHOH MPOTUBOIIOKAPHOW ciry>kObl MuHucTepcTBa Poccuiickoit deneparnuu 1o
JieJIaM TPaXKIaHCKOH 00OPOHBI, Ype3BBIUAIHBIM CUTYAIMSAM M JIMKBUIALMH TTOCIIEICTBUI CTUXUHHBIX O€JICTBHH.

®unancuposanue. VMccnenosanus nposoguwmick B ®T'BOY BO «JIOHI'Y» npu ¢unancoBoil momnepxkke A30Bo-
UYepromopckoro mMaremarndeckoro nenrpa (Cornmamenne ot 27.02.2025 Ne 075-02-2025-1608), a Takxke B paMmkax
rocOpKeTHOH TeMbl «Pa3paboTka MHTEIUIEKTYAIBHBIX CHCTEM aHaju3a M IPOTHO3MPOBAHMS COCTOSHHS IPHPOIHO-
texHrmyecknx 00bekToB (FRRE-2023-0012)» (Homep rocpeructpanmu 124012400344-1).

Jas uutupoBanus. Toncteix B.K., Imutpyk FO.B. Ananus ynpasisieMoCTH AJ1sl CUCTEMBI C pacpeeieHHIMU MapaMeTpamMu
B 3aJaye ONTUMAIBHOIO JW3aiiHa (OpMBI corula THAPONYIIKH. Advanced Engineering Research (Rostov-on-Don).
2025;25(1):65-76. https://doi.org/10.23947/2687-1653-2025-25-1-65-76

Introduction. Despite the significant amount of research on the control theory, there is still no unified approach to
the analysis of controllability for systems with distributed parameters. Existing studies are usually limited to
considering controllability as the possibility of transferring a system from an initial state to a given final state [1].
However, this approach turns out to be insufficient for optimization problems of spatially distributed systems described
by partial differential equations. Controllability by the final state does not guarantee controllability by the conditions
specified in the objective functional, which makes the analysis of such systems complex and non-obvious. In this
paper, the authors use the concept of controllability proposed by V.K. Tolstykh [2] and apply it to find the optimal
shape of the hydrocannon nozzle.

Hydraulic cannons designed to generate pulsed jets of high-pressure liquid are widely used, e.g., in the mining industry
to destroy rocks [3]. The efficiency of such devices largely depends on the shape of the nozzle [4], which makes the task of
its optimization urgent. Despite significant interest in this problem, existing papers, such as the works of Zuikova Z.G. [5],
Zubov V.I. [6], and Atanova G.A. [7], are primarily theoretical. These authors formulated the required conditions for
optimality, but the numerical results were not supported by evidence of their optimality. Moreover, as it is shown in this
research, the previously obtained “optimal” nozzle shapes are not such. Thus, despite multi-year research, the problem of
designing an optimal nozzle shape remains unsolved.

The solution to this complex problem is possible only through using a direct extreme approach with original adaptive
gradient methods described in the work of V.K. Tolstykh [8]. The objective of this work was to apply the new approach
proposed in [2] to the analysis of the controllability of a system with distributed parameters for the problem of optimal
design of the hydrocannon nozzle shape. Thus, the article is aimed at developing the controllability theory for systems
with distributed parameters and demonstrating its practical applicability using the example of optimizing the shape of a
hydrocannon nozzle.

Materials and Methods. The essence of the direct extreme approach is the direct maximization of some objective
functional using gradient methods:

J(u) :I I(v,u)dm—)max, ocQ,
provided that D(v,u)v=00nQ.

Here, the control (in our case — function of the nozzle shape along the length x) u(x) € U(S), S = (x4, x») — domain

b (1)

of control definition, U — admissible set of controls, v(x, f) € V(ﬁ ) — state of the nonstationary process of ultra-jet

formation on the closed space-time set {x, t} = Q. Operator D includes a specific type of differential equations of water
flow in a hydrocannon and acts on v. Objective function /(v, ) is defined on the set ®, and its value clearly depends on
the parameters v and u.
The direct approach does not use any intermediate conditions (e.g., required optimality conditions), but solves the
problem immediately:
Ux = arg maxJ(u), 2)

where u, — optimal control.
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The original problem with the equations of the distributed system (v, u)v = 0 is characterized by a direct mapping;:
U(s)-r(Q),s<q.

At the same time, optimization problem (1) is inverse. Such problems are usually ill-posed in the classical sense [9].
The solution to direct and inverse problems differs significantly. The latter require regularization of the solution to narrow
the set of possible solutions U to the compact of correctness U € U, which leads to conditional correctness according to
Tikhonov. In the direct extreme approach, regularization is performed by gradient methods.

According to the definition of controllability [2], the distributed system in problem (1) will be controllable
by u(x) € U(S) with respect to objective functional J, when the inverse problem of mapping the elements of space V(o)
of model states into element u, is correct according to Tikhonov, provided that max J:

V((D)ijﬂ,l* eU(S), ocQ.

Next, when solving problem (2), we will perform a controllability analysis and obtain controllability conditions that
can allow us to correctly formulate and solve the problem of optimizing the shape of the hydrocannon nozzle using
gradient methods [10].

Paper [8] describes in detail the formulation of the problem under consideration for subsonic, axisymmetric flows of
compressible fluid in smoothly changing channels. Let us recall it in the form required for further research. The isentropic
motion of water in the nozzle is described by a quasi-one-dimensional, quasi-linear hyperbolic system of equations [11]:

ov ov

Dv=—+A4—+F=0Ha Q. 3)
ot Ox
The state of the system is characterized by vector function v = {p, w} € W Q), where p — density of water, w —
wop
speed of water. Operator D = %+ A§+ F, its matrix A(v) =| ¢? and vector F(v,u)= [((l))} ¢ = pwud(x — x,),
x — w
p
. . . , Bnp"!
© — Dirac theta function, x, — beginning of the nozzle at the end of the barrel of hydrocannon, ¢* = ——— — square
Po
of the speed of sound in water, B and n — constants in the equation of state of water in theta form.
The control is described by the formula:
1 do(x)
u(x)= eU(S), S=(x,x). 4
( ) G( x) dx ( ) ( b) ( )
[ ule)dg

Here, 6 — nozzle cross-sectional area, 6(x) =0 e , X € [Xa, Xp], 04 = 0(x4). In the barrel of the hydrocannon,

when x < x,, there is no control u(x), and free term ¢ = 0.
Boundary and initial conditions of problem (3):

ﬂ+£[(£} —lijoan,
dt m,\\pg

p=poonly,y Uy,
v(x,20)=(po,wy) on T.
Here, m, — piston mass, po — density of water at atmospheric pressure, wy — speed of water and piston before it
starts flowing into the nozzle. The boundaries of process I' for domain Q, are shown in Figure 1. The type of Q) is important
for the controllability analysis.

&
15} I
Fhl
% B
T, Q
rhO
I, | R
Xpo Xp2 Xa Xp ;

Fig. 1. Area of water flow in the hydrocannon
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We specify Q. The origin of coordinates is aligned with the nozzle entrance x,, and # — time of the beginning of water
flow into the nozzle. On the one hand, the water is limited by the piston moving in the barrel of the hydrocannon along
the trajectory I, and on the other hand — by the free surface of the inflow I'y from # to # and the outflow I'y; from #
to #. The line of the initial state of system (3) is I'o, coordinates x,0 and x,, — initial and final positions of the piston. The

specified I'-lines for Q form the closure of Q . The domain of definition of the control § = P, (Q| ), 1.e., forx>x, S

xX>x,
is the projection of a part of domain Q onto x axis.

The optimization problem (optimal design of the nozzle shape) is formulated as follows: it is necessary to find the
control u(x) that delivers the maximum to the functional:

o[ T, -2 )

The objective functional is set at @ = [y, i.¢., at the nozzle exit of the hydrocannon, and determines the average force
of the jet on a possible obstacle [12].
The gradient algorithm for maximizing functional (5) has the form:
uk”(x):uk(x)+kaJ(uk;x), xeS, k=0,1..., (6)
where k — iteration number; b* — step multiplier that controls the rise to max J in the direction of gradient V.J*.
The gradient is the functional Frechet derivative J,, which can be found from the first variation of the objective

functional &J = <J,;,6u> Here, the angle brackets denote the scalar product, in this case, in the conjugate control

u(s) -
space U*(S). The superscript * denotes conjugacy.

It should be noted that sometimes the gradient of a functional on a Hilbert space is confused with the Frechet derivative
of this functional [13]. Derivative J,(u; x) may be insensitive to the control u(x) on the entire set S or on parts of S of
nonzero measure. Therefore, in the general case, J,(u; x) in (6) will not indicate a reliable direction of correction u* for
the directed search for the optimal solution u, (x). The gradient from the Frechet derivative can be obtained only when
the controllability conditions are realized.

Approaches to solving problems of hydrocannon nozzle optimization with the aim of maximizing the average jet
impulse force [5], the functional depending on the flow parameters [6], and maximizing the outflow velocity [7] were
mentioned earlier. In these papers, after varying 8/, a formal expression for derivative J, was obtained. It depends on the

solution f = (f;, ) € V*(Q) of the linear conjugate hyperbolic problem:

—g—ATal-i-FV'Tf:OonQ. @)
ot ox
The superscript 7 means transposition, F, — deriva F tive of the free term F with respect to v. Boundary and initial
(terminal on I'z) conditions:
i ( m pf 2

— |+ =0onl ,
dt Fapj Sip :

f1=00nrb0,

, , 2poC Wy,
Pofi+wpfo+1, =0, 1w|0J = ZPoT W o Ty,

L=t
fi=0,f,=00onT,.
Frechet derivative J,, is sometimes called the residual or gradient. It is more convenient to represent it in operator form:
Jo(;x)=Ug f(x,)=U"f(x,1)+xJ €U"(S). ®)
Here, the conjugate inhomogeneous operator Uy = U* + kJ, U— conjugate homogeneous operator, the dot denotes
the location of argument f'of the operators, kK — weight coefficient for equalizing the computational noise of the numerical
solution of the original and conjugate problems [8]. Expression (8) contains the value of the functional in the form of the
number J. This is the value of derivative /.
The heterogeneity of operator U7, is a consequence of the dependence of the objective function /(w, u) on the control u.

Such a dependence is a rare feature of optimization problems and can significantly complicate the calculation of the gradient.

The value of homogeneous operator U in derivative (8) has the form:
t t

U= Frfa={" pwha,

Tpo Lpo

where integration is performed from the lower nonlinear boundary I's (Fig. 1) when water flows into the nozzle.
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The meaning and objective of the conjugate problem is to map derivative /,, (sensitivity of J to w) from domain  to
domain S, where the gradient and control are defined. Such a mapping with the help of fis done using the intermediate
set Q < Q, which, according to controllability, specifies the correct domain 7*(€) of the definition of the homogeneous
operator U*, so that in expression (8) from J,, we obtain gradient V.J.

That is, the conjugate problem implements the mapping:

7 (@) -1 (Q).
Next, using operator U* : /*(€2) — U*(S), we can obtain the gradient from Frechet derivative .J,:
LU > Uhf], =V eU"(S).

Domain Q is determined from the controllability analysis.

Research Results. The requirements for controllability conditions within the framework of the direct extreme
approach are formulated in the following theorem (for the proof, see [2]).

Theorem. The mathematical model (v, #)v = 0 in problem (3) is controllable by u(x) on S with respect to functional J if:

1) there exists domain V*(2), Q — Q of a correct conjugate state, which is the domain of definition of operator U”
with its values in the gradient domain U*(S);

2) operator U* — non-degenerate;

3) algorithm (6) for u® € U uses satisfactory regularization parameters b,

We start with the first and most difficult requirement of the theorem. First, it is necessary to verify the classical correctness
of the original and conjugate problems. Original (3) and conjugate (7) systems are of the hyperbolic type. The eigenvalues
of the matrices 4 and AT are the same. Therefore, in both systems, the characteristics &; » will be the same — as the trajectories
de,»

of the propagation of disturbances in the plane (x, ) along the characteristic directions =wzc . The conjugate waves

generated by derivative I, » €V (w) at the nozzle exit I'n = o, will move with the same characteristics as the original

ones, but in the opposite direction. The initial condition for the conjugate problem is specified on the terminal line I'.

All characteristics in domain Q emerge from the boundary sections dQ with known solutions given by the boundary
conditions. In the case of shock-free wave flows (it is precisely such flows that are considered in this research), the
characteristics of the same family do not intersect, and at the intersection of two characteristics of a different family &;
and & at any point Q , a solution to the hyperbolic system of two equations [14] can be found in the form of two-
dimensional vector functions v and f.

To find the domain of operator U”, it is necessary to conduct an analysis and identify the existence of the following
sequence of mappings, starting from the control u € U(S) and ending with gradient V.J € U"(S):

'
[W|w

The problem under discussion can be described more simply. First, objective functional J(u), specified on «, must be

uniquely uniquely

U(S)su flg €V (@) —F—U"(S).

sensitive to the control defined on S (sensitivity is characterized by derivative 7, | ). Second, from the set of conjugate

solutions on the entire €, it is necessary to select such a subset Q, where the conjugate solutions f | o Will uniquely
depend on the values of the objective functional in the form 7, | . There may not be such a dependence on the entire

domain Q . Thirdly, the set @ must provide operator U* with the ability to map the conjugate states /' | o Into U*(S). This

mapping is represented by the last branch, where operator U" from the obtained domain of definition V*(€) can produce

a mapping into the domain of values U’(S). where there is gradient AJ = U}, f | o

From the correctness of the original direct problem, it follows that any functions u(x) € U(S) will uniquely affect the
value of the derivative of the objective function 7, on @ = 'y through the characteristics &, if at least one of them has
passed through the entire nozzle. The loss of such effect is possible in the presence of dissipation in the system, but this
is not the case with isentropic flows. That is, there is a left branch of mappings in (9):

U(S) BM%IM(D.

Let us proceed to identifying the set Q, required for domain V*(€2) of the definition of operator U*. Term "4,|® in the
boundary condition of conjugate problem (7) causes perturbations of the conjugate solution f- They propagate in the form of
waves along the characteristics of the first family &, in the reverse time direction from the nozzle exit toward the piston (Fig. 2).
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Fig. 2. Space-time diagram of domain © with redundant domain ®

These disturbances propagate along the entire nozzle and transfer information about the objective functional from the
points w to the points on S = (x4, x5). On the piston, the waves described by the characteristics of the first family &, are

reflected and, changing the direction of their propagation, continue to transfer information received from &; about

disturbances I, ,,» adding new information about the piston motion. This process of wave reflections from the piston and

from the inner part of the nozzle continues until the moment #.

Starting from the moment #; and below, two conjugate waves &; and &, generated by different values of 7, and with
unnecessary information (noise), at a minimum, will arrive at the same point of some sections of the set S from the piston.
And below the characteristic &;, which came out of the nozzle below ¢/, unnecessary information from the nozzle will be

added. This information is not needed, since it does not contain information about the optimization goal from 7, | .

Figure 2 shows an example of a possible set € (the entire area shaded with different densities under the upper
characteristic & from x, to x3). In this case, Q corresponds to the Frechet derivative J,. In domain €, under characteristic
& (reflection &;, which came out at #,) and under &; (which came out at ¢#;), a light area of ambiguous influence of the

values of function 7 "4,|m on the conjugate state f'is formed. Obviously, that it is pointless to solve the conjugate problem

and calculate the gradient in such a domain Q.

It is reasonable to limit ourselves to considering (Fig. 2) the conjugate state of f'on the part of 2, enclosed in the rectangle:

Q= (x,,%,)x(t,5).

In this case, rectangle Q,; should be considered too large if the piston is relatively close to the beginning of the nozzle,
affecting the conjugate state.

In this rectangle Q, the set Q (shaded with different density in Figure 2 from ¢, to ;) will correspond to the redundant
set o. That is, in the objective functional J, the interval (#;, ) will be redundant. At the same time, in the considered
domain Q, there may be unacceptable interference on the left (low density of shading in Q;) for calculating gradient V.J.

Redundancy o is eliminated by further reducing Q; to £ = ¢, i.e., when # corresponds to the start of the outflow (Fig. 3 a).
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Fig. 3. Space-time diagrams of correct domains € for determining the gradient:
a — Q in domain Q2; b — Q in domain Q3

In this case, the entire domain of a sufficient solution to the conjugate problem is narrowed to an even smaller

rectangle:
Qz :(xa, xh)x(t3 =t1, tz)

Here, the piston will not “interfere” with the display 7|, —umiquely lo -

If the technical conditions for designing a hydrocannon allow for an even greater reduction in the flow time # — #,
then the solution rectangle of the conjugate problem can be reduced even further, to rectangle Q3 with a corresponding
triangular domain Q (Fig. 3 b):

Q, :(xa, xb)x(tl, tz).
Here there is a minimally sufficient set @, to form the domain of definition ¥*(€2) of operator U*.
It is in the obtained domains €, located inside £, and Q; (Fig. 3), that there is a domain of definition *(€2) of operator

U* with a unique mapping of the derivatives 7,, , by means of finto the domain of values of gradient U“(S).

Conjugate problem (7) and its solution in the rectangles Q, 3 become significantly simpler:
—dl—AT£+Fv/Tf =0on Q,,,
dt dx '
f=0onl,uUl,, (10)

Pofi+wyfo+1,=00nT,.
Here, I'; = x4 % (t1, t2). Now there is no impact of the piston from line I',, and there is no flow into the nozzle at the

boundary I's.
Formula (8) for calculating the gradient of the objective functional also takes a simplified form (there is no nonlinear

integration boundary I'):
t
VJ(u;x):U*@f:.[zpwfldH-KJ, xe(x,,x). (11)
4
The resulting set Q © Q,; will correctly define domain V() of the definition of operator U*(2) with the range of

values in U*(S). The corresponding expression for the time required to form such © depends on the characteristics of the

first family &; and has the form:

b dx
>t +J- , 42t (12)
X, W+c

That is, firstly, the upper characteristic &; must pass through the entire nozzle from x; to x,. Secondly, the start of the
outflow #; should not be less than the moment #; of the start of the entry of waves reflected from the piston into the nozzle.
This expression is the controllability condition in the problem under consideration. In this case, the remaining branches

of the mappings are fulfilled (9):

I’ uniquely;\f|Q U* U* (S)

Wio
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Now we discuss requirement 2) in the theorem on the nondegeneracy of operator U”. Let us start with operator Up,,

which defines gradient (8). If the objective function 7 did not depend explicitly on the control u, then U =U" and the
set of conjugate states in the kernel fir = {f: U'f=0 on S} would be zero for an unbounded optimal control u,. In our
case, for Uj;, the values of the elements of the kernel f;. will not be zero, i.e., the optimal control will correspond to
non-zero conjugate states. The subscript & means the absence of a zero kernel. Obviously, if U* was nondegenerate,
then operator U, will also be nondegenerate. The nonhomogeneity of operator U in our problem leads only to a shift

in the zero kernel of the homogeneous operator U".
We estimate the possible degeneracy of the homogeneous operator U™, It is obvious that for any values of p and w, the

)
result of integration in U™ f = I pwf,dt can become zero on S only when f; = 0 on Q. This means that operator U is
41

nondegenerate, and therefore, Uf; is also nondegenerate.

The last requirement of the theorem remains. Regularization in the direct extreme approach is provided by:

— selection of the initial approximation #° € U;

— subsequent steps of algorithms of type (6) with a satisfactory regularization parameter, i.e., with parameter 4%, that
does not take the control #*'! beyond the compact set U.

Paper [8] describes the required regularizing gradient methods for algorithm (6) in the problem under consideration.

Thus, all the requirements of the theorem for providing controllability are met. The distributed system (3) is
controllable by u(x) on S according to functional J (5) under condition (12).

Results of Using Controllability Conditions for a Hydrocannon. The parameters of the experimental setup were
borrowed from the research of A.N. Semko [15]:

— origin x, = 0;

—nozzle length x;, = 0.253 m;

— initial position of the piston with the left boundary of water x,0 = —0.28 m;

— piston mass m, = 2.25 kg;

— initial velocity of the piston and water m¢ = 76.2 m/s;

— water density at atmospheric pressure po = 10° kg/m?;

— hydrocannon barrel radius R, =33 - 10> m;

— start of water flow into the nozzle 7 = 0.

The original problem was solved in a complex closed domain Q , and conjugate problem — on a small rectangle
Q ) = [xa, X, ] X [tl, tz] . Two spatial grids were constructed, each containing 50 steps. The first grid was movable and was
used to calculate the water flow from the piston to the nozzle exit section, while the second grid was stationary and was

designed to describe the nozzle shape. The number of layers over time was variable and reached 103. The exact value
depended on the nozzle shape and was determined by the final time . The original and conjugate problems were solved

by the method of characteristics on identical movable grids in € and in Q, , respectively.

The start of the jet flow from the nozzle was observed at #; = 2.7 - 10 s. The average value of the impulse force of
the obtained jet was estimated by objective functional J(u) in the interval & —# =3 -10*s. This interval was

dx

approximately 2 ' . In this case, the begin time of the flow #; > #3, i.e., the piston did not affect the flow. Thus, the

x, WHC
specified time #, satisfied the controllability condition (12).

In [8], the required adaptive computational extremal algorithms were implemented taking into account the
controllability conditions described here. And the optimal nozzle shapes obtained for the first time were presented.

In Figure 4, nozzle 1 corresponds to the internal local maximum of functional J(u), and nozzle 2 — to the edge
maximum under the constraint on nozzle expansion: u(x) < 0, Vx € S. The first nozzle practically has the shape of a cone,
while the second one provides that the objective functional reaches a global maximum, whose value J is approximately
three times greater than the value obtained for the first nozzle.
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Fig. 4. Optimal shapes of hydrocannon nozzles

The initial approximation #°(x) was set in the form of a pipe — as a continuation of the cannon barrel. At the first
iterations of nozzle narrowing, functional J(u) grew with its convexity (growth of the norm V.J). Then, the convexity
changed to concavity (decrease of the norm V.J), at the end of which there were very small regions of maximum (minimum
norm VJ with concavity of the functional) with a subsequent convex minimum. Nozzle 1 was obtained in the local
maximum. The transition through these local extrema was further accompanied by unlimited convex growth of J(u). Only
adding a constraint on the control made it possible to stop the uncontrolled expansion of the nozzle on the boundary with
reasonable shape 2.

Recall that attempts were previously made to obtain a satisfactory solution using the classical calculus of variations. To

do this, the authors [5] and [7] used relaxation methods to find root . from the required optimality condition J,;(u; x)=0

(the Frechet derivative J, on the incorrect © from Figure 2). However, this approach did not give the desired results.
Moreover, it requires an additional restriction on the nozzle exit area to prevent its collapse. Such collapse also confirms the
incorrectness of using J, (u; x) for the directed search for u,(x) without isolating the controllability domain € inside Q, 5. In
other words, instead of the Frechet derivative, it is required to obtain a gradient with the justification.

Discussion and Conclusion. The research results show that the application of the controllability analysis proposed in [2]
made it possible to identify the key controllability conditions (12) required for the correct formulation and solution of the
problem of optimizing the shape of the hydrocannon nozzle.

According to the controllability conditions, the optimization problem must be set and solved in a small rectangular
domain Q, or even Q3, and not in a large and complex domain Q. This is due to the fact that the nozzle shape optimization
problem with a statement in Q does not reduce the Frechet derivative J, to gradient V.J, which makes it impossible to
search for the optimal solution. It was this circumstance that caused failures of the previous studies, where the optimality
of solutions was not proven.

Our recommendations are as follows: first, perform a controllability analysis until the correct controllability domain € is
identified, and then, for the resulting Q, identify the solution region of the conjugate problem (in our case, it is €, or {3) and

find the variation &J = <J " 8u> . Next, you can continue the controllability analysis and obtain gradient V.J from derivative

U*(s)
J,.. It is with the help of € inside €, 3, that you can find the value of gradient V.J(u; x), which is distributed along the entire
nozzle and uniquely corresponds to the objective functional of the problem J(u). And then, you can purposefully search for the
optimal nozzle shape.

The major advantage of the proposed approach is the use of a direct extreme method, which allows for direct
maximizing the objective functional using gradient algorithms. This provides not only for the clarity of the controllability
analysis, but also the possibility of obtaining numerically confirmed optimal solutions.

The theoretical value of the research is in the development of controllability analysis methods for distributed parameter
systems, which opens up new prospects for solving similar problems in other areas. Further research can be aimed at
expanding the method for more complex fluid flow models, as well as optimizing other devices operating on the basis of
pulsed jets.
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