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Abstract

Introduction. Modern development of exoskeletons opens new horizons for rehabilitation and improving the quality of
life of people with limited mobility. The relevance of the study on methods of optimal control of exoskeletons is due to
the growing demand in medicine and industry. However, there are numerous challenges related to the efficient control of
exoskeletons, especially in the context of the integration of elastic elements. Topics related to optimal control and tuning
of system parameters to reach maximum efficiency and user comfort remain insufficiently studied. The objective of this
study is to develop a method of optimal control of a lower limb exoskeleton (LLE) with elastic elements while optimizing
energy costs and accounting for external disturbances.

Materials and Methods. The LLE is represented by a simplified model of an inverted pendulum with elastic elements in
the feet. The dynamic model of the LLE was developed using Lagrange equations. The optimal control method was based
on the synthesis of a linear quadratic regulator designed to minimize energy costs. To account for the influence of external
disturbances, a Kalman filter was integrated into the control loop. The parameters of the mathematical model of the LLE
were obtained from published data. System simulation was performed in the Wolfram Mathematica environment.
Results. A method of optimal control of the LLE with elastic elements has been developed. This method optimizes energy
costs while maintaining vertical equilibrium. The system was modeled using optimal terminal control, followed
by optimal feedback control. During feedback control, key parameters affecting system stability were identified: spring
stiffness and damping coefficients. Integration of the Kalman filter enabled compensation for external disturbances.
Discussion. The use of terminal control within the developed method reduced energy costs by 98% within a specified
stabilization timeframe. Optimal values of spring stiffness and damping coefficients for obtaining the best system
response were identified. The use of the optimal control method of the LLE in combination with the Kalman filter
confirmed the effective compensation of external disturbances and noise, which provided the convergence of transient
processes with minimal energy consumption.

Conclusion. The proposed method for achieving optimal control while minimizing energy costs is a promising solution
in the field of control signal calculation required to ensure stability and determine the optimal energy cost function. This
is especially true for medical rehabilitation tasks. These results may be useful for further research and development in the
field of robotics and wearable devices.
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Opuzunaﬂbnoe amnupudeckoe ucciedosatnue

MeTtoa onTUMAJIBLHOIO YIIPABJIEHHS IK30CKeJIeTOM HHKHHUX
KOHEYHOCTell ¢ yIPYruMH 3JieMeHTaMu

J. Auo= <, 1.B. MepkypbeB

Hauunonanbuelit uccienoBarensckuil yausepeuter «MOU», r. Mocksa, Poccuiickas deneparust

X delshan2deeb@gmail.com

AHHOTANUA

Beedenue. CoBpeMEHHOE pa3BUTHE SK30CKEIETOB OTKPHIBAET HOBBIE TOPU30HTHI JUIsl PeaOMINTALlMK U MTOBBIIICHUS Ka-
YecTBa JKU3HU JIIOJIEH C OrpaHNUEHHON MOJBM)KHOCTBIO. AKTYyaJIbHOCTD MCCIIEIOBAHNS METOJI0B ONTHUMAIBHOIO YIIPaB-
JIEHUS 9K30CKENIeTaMu 00YCIIOBIIEHA PACTYIIUM CIIPOCOM B MEIHUIIMHE M MPOMBIIUIEHHOCTH. OJJHAKO CYIECTBYET MHO-
JKECTBO TPOOJIEM, CBA3aHHBIX C 3()()EKTHBHOCTHIO YNPABICHHUS HK30CKEIETaMH, OCOOCHHO B KOHTEKCTE MHTETpaluu
YOPYTUX 3JEMEHTOB. TeMbl, CBI3aHHBIC C ONTUMAIBHBIM YIPABICHUEM U HACTPOWKOM IMapaMeTpoB CUCTEM TSl JOCTH-
KESHUSI MaKCUMaITbHO 3P PeKTHBHOCTU U KOM]OPTa MOJI30BATENIS, OCTAIOTCS HEJIOCTATOYHO N3ydeHHBbIMHU. L{enbio nan-
HOTO HCCIICIOBAHUS SBJISETCSA pa3paboTKa METOAA ONTHMAIBHOTO YIIPABICHHS 3K30CKEICTOM HIDKHUX KOHEYHOCTEH
(BHK) ¢ ynpyrumu 3neMeHTamMu Py ONTUMH3ALMH 3HEPro3aTpar | yueTe BHEIIHINX BO3MYIIICHHH.

Mamepuanst u memoowst. JHK nipencraBieH ynpouieHHON MOAETHIO IEPEBEPHYTOTO MAATHUKA C YIIPYTHMH DJIEMEHTaMHU
B cromnax. JJunammueckas moaens OHK paspaborana ¢ ncrons3oBanueM ypaBHeHHH Jlarpamka. MeTox onTUMaIbHOTO
yTIpaBJIeHUS] OCHOBAH Ha CHHTE3€ JIMHEIHO-KBaAPATUIHOTO PETYJISITOpa, OPHEHTHPOBAHHOTO HA MUHUMH3ALIUIO SHEPTO-
3arpat. J{ns ydera BIUSHNS BHEITHUX BO3MYILICHUI B KOHTYp yIpaBiieHusl MHTerpupoBan uibTp Kanmana. ITapamerpst
Maremarndeckod mozenn DHK Obumm mosydeHbl M3 JUTEpaTypHBIX JTaHHBIX. MopennpoBaHue TPOBEIECHO B cpese
Wolfram Mathematica.

Peszynvmamut uccnedoganun. Pazpaboran Mero ontuMmaibHoro ynpasienus OHK ¢ ynpyrumu anemeHTamMu, KOTOPBIi
obecrieunBaeT ONTUMHU3AIMIO SHEPro3aTpar IPH JOCTHKEHUH BEPTUKAILHOTO MeTo1a paBHOBecHs. [IpoBeneno moaenu-
pPOBaHKE CUCTEMBI C UCIIOIb30BAaHUEM ONTHMAIBHOTO TEPMUHAIBHOTO YIPABICHHUS, a 3aT€M ONTUMAJIBHOTO YIPaBICHHS
¢ oOpatHOi1 cBs3bto. [Ipy ynpaBneHNH ¢ 0OpaTHOH CBA3BIO OBUTH ONpeesIeHb! KIFOUYeBbIe ITapaMeTphl, OKa3bIBAIOIIe
BJIMSHHE HAa YCTOHYMBOCTH CHCTEMBI: KO3()(HUIMEHTHI )KECTKOCTH NPYXKUHBI U AeMidupoBanus. HTerpamus Gpuistpa
Kanmana B cucTeMy 103BOJIHIIA YYUTHIBATH BIMSHIE BHEITHUX BO3MYIIICHUI.

Oébcyscoenue. TIpuMeHeHNE TEPMUHAIBHOTO YIIPABICHHUS B paMKax pa3pabOTaHHOTO METOJa ONTHMAIBHOTO yIpaB-
JICHUS MTO3BOJIMJIO CHU3UTH 9Hepro3atpaTsl Ha 98 % 3a ompeneneHHoe BpeMs crabuinn3anuy. HaliieHbl onTrManbHbIe
3HA4YCHHUS )KECTKOCTH MPYKHUH U KO3PHHUINEHTOB AeMI(GUPOBAHUS ISl JOCTIXKEHHS HAMITYUIIEro OTKIMKA CUCTEMBI.
Hcnonb3oBanue Merona ontumanbsHoro ynpasienuss JHK B coueranun ¢ punbrpom Kanmana nonreepamio sddex-
THUBHYIO KOMIICHCAIMIO BHEITHUX BO3MYILEHHH U IIYMOB, YTO 00ECIEUHIIO CXOAUMOCTh IEPEXOIHBIX NPOLECCOB MPHU
MUHHMAaJIbHBIX 3HEpro3arparax.

3akniouenue. TIpeyioxKeHHBII METOA JOCTIHKEHHS ONTHMAIBHOTO YIPABJICHHS IPH MUHUMH3AIMK SHEPro3arpar siBJis-
eTcsl IEPCIIEKTUBHBIM PEIICHNEM B 00JIacTH pacuéra yHnpaBiIAIOINX CUTHAIOB, HEOOXOIMMBIX [UIs 00ECTIEUCHUS YCTON-
YMBOCTH W OIIPEACICHIUS ONTUMATbHON (DYHKIIMU 3HEPro3arpar. OTo 0COOCHHO aKTyallbHO JUTA 331a4 MEIUIIMHCKOH pe-
abwmranuy. J[aHHbIE pe3ysIbTaThl MOTYT OBITh ITOJIC3HBI TS TABHEHIINX HCCIeJOBAaHUH 1 pa3paboToK B 00IacTH po-
OOTOTEXHUKH U HOCHUMBIX yCTPOWCTB.

KiroueBble c10Ba: K30CKeNET, MaTeMaTHUECKass MOJIENb, YIPYrHe JIEMEHThI, HCKYCCTBEHHAs CTOMNA, ONTUMAJIbHOE
ynpasienue, punbsTp Kanmana

BaaronapHoctn. ABTOpHI BBIpaXaroT 0OiaroJapHocTh COTpyAHUKaM Kadeapsl «PoOoToTexHHKa, MeXaTpOHHKa,
JUHAMUKa M TpoyHOcTh MamuH» HUY «MOW» 3a mommepkKy B MOATOTOBKE JAHHOW CTaThH. ABTOPHI TaKke
IIPU3HATENIbHbI PELICH3EHTAM 32 UX KOHCTPYKTUBHBIE 3aME€UaHUs U PEKOMEHJALMH, KOTOPbIE IIO3BOJIMIM CYILIECTBEHHO
yIY4IIUTh IPEACTABICHHYIO PaboTy.

Jas murupoBanus. 6 /1., MepkypeeB M.B. Meton onTUMaiIbHOTO YIIPaBIEHHMS SK30CKETETOM HIDKHHMX KOHEYHOCTEH C
yrpyramu  snemeHTamu.  Advanced Engineering Research (Rostov-on-Don). 2025;25(3):186—196. https://doi.org/10.23947/
2687-1653-2025-25-3-186-196

Introduction. Lower limb exoskeletons (LLE) are of increasing interest due to the need to address global health
issues, such as aging population and increase in neuromuscular injuries [1]. These devices are designed to provide
effective solutions to support and improve human motor functions, such as walking assistance [2], rehabilitation and
compensation for loss of balance [3], thereby increasing independence and quality of life.
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LLE are often designed without elastic elements due to the increased complexity of the stabilization during movement
and the influence of additional factors that arise when using elastic elements [4]. On the other hand, these exoskeletons
may require elastic elements that improve the ability of the structure to adapt to uneven surfaces. Elastic elements can be
installed in the ankle area [5] or used to completely replace it [6].

LLE control is a complex task. Various approaches to its solution have been proposed previously. The development
of an effective control method depends on numerous factors, maintaining the constant relevance of research in this area.
There are different methods for LLE control: adaptive control method [1, 7], robust (stable) methods [8, 9], and optimal
control method [10, 11]. Despite the efficiency of the first two methods, the third is the most successful. The optimal
control method takes into account not only the increase in the stability and efficiency of LLE control under dynamic and
unpredictable conditions, but also allows for reducing energy costs and the consumption of resources of the control system
[10, 11]. However, the integration of elastic elements into the LLE feet causes complications in their control. In addition,
taking into account external disturbances when controlling the LLE is accompanied by new problems in providing the
dynamic stability of the LLE control system.

Based on the above, it can be argued that there is a need to develop a method for optimal control of LLE with elastic
elements. Therefore, the objective of this study was to develop a method for optimal control of the lower limb exoskeleton
and elastic elements while optimizing energy costs and taking into account external disturbances. This method allows
minimizing the quadratic function of energy costs in the presence of elastic elements and external disturbances.

One of the factors that further complicates the solution to the issue of dynamic stability of LLE is the presence of
white noise, which is an interference to the control signal [12], which is investigated in this work.

To achieve the stated goal, the following tasks were set:

— development of a mathematical model of an inverted pendulum with elastic elements in the feet;

— development of a method for optimal control of LLE with elastic elements;

— accounting for the impact of external disturbances (Gaussian white noise);

— conducting numerical modeling in the Wolfram Mathematica environment for two types of controls: terminal
control and feedback control;

— analysis of the obtained results of the transient processes study on the key parameters of the dynamics of LLE with
elastic elements.

Materials. To develop a mathematical model of the LLE with elastic elements in the feet, its kinematic scheme is
considered. The foot is represented by elastic elements and is connected to the model by the type of an inverted
pendulum (Fig. 1). The model includes inertial properties, kinematic limitations of the joints, and external forces acting

on the system.

A=

Support Support
reaction reaction

a) b)

Fig. 1. Kinematic scheme of LLE: ¢ — biomechanical model of physiological “foot spring”';
b — simplified dynamic model of exoskeleton:
¢ — center of mass; 6 — angle of ankle joint; M — control moment

! Subbotin F. Biomechanics of the Foot. Part 1. Fidel Subbotin School; 2024. (In Russ.) URL: https://fs-school.ru/blog/988624 (accessed: 10.05.2025).
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The characteristics of the elastic elements and the parameters of the model are as follows: k,, k. — stiffness coefficients
of the horizontal and vertical springs, respectively. Their values — &, € [500, 1500] N/m [13], k. € [7000,20000] N/m [14].
¢y, c: — horizontal and vertical damping coefficients, respectively, ¢, € [30,200 N-s/m], ¢. € [500-2000 N-s/m] [15].
Jfém #° — moment of exoskeleton inertia relative to the center of mass, kg'm?; m = 70 — mass of exoskeleton with

patient, kg; 4 =1 — length of exoskeleton to the center of mass, m; p, = 0.7 and p. = 0 — friction coefficients; N, =0
and N. = m g — normal forces, N; g = 9.8 — acceleration of gravity, m/s2.
Methods. The dynamics of the LLE is described by the Lagrange equations of the second kind in general form?:

d( oL oL .

E(a—%j—f—Qi, (i=1...3), 1)
where L =T—-V — Lagrange function; 7 — kinetic energy of the system; V' — potential energy of the system;
O — generalized forces; g = (0, y», z5)7 — vector of generalized coordinates; 0 — rotary angle of exoskeleton link,
measured from horizontal surface (parallel to reference plane) in counterclockwise direction; ys, z, — horizontal and
vertical displacement of the base.

The coordinates of the center of mass of the pendulum are determined by the following equations:

Ve =Yy +hsin0;
z, =zp+hcos®. 2)

The kinetic energy of a pendulum is given by the formula:

1 1 .
T=—mv:+=J.0,, 3
5 5702 3)

. 2 . N2 . N2
where v — speed of the center of mass, it is equal to yi + zf = (yb+h cos 6 6) + (zb+h sin® 6) .

The potential energy of the systems is described by the following equation:
V =mgz, +%kzzb2 +%k},y§. 4)

The generalized damping forces applied through the Rayleigh dissipation function to simulate linear damping are
written as [15]:
oD 1 1
—; D=—c,y}+—c,z}. 5
g ) »Vb ) b (5

The Coulomb friction model is given by the following equations [15]:

" =—u N, tanh(o, );

" =—p_N._ tanh(oz, ),

demn __ __
; =

(6)

where a >> 1 — regularization parameter (for approximating the discontinuous function sign(v)), in this paper, a = 100
is selected.
After intermediate calculations, equations (2—6) take the form:
(mh2 + Jc)é+ mhcos(e)j}b —mhsin(e)éb —mgh sin(e) =M,
my, +mh cos(@)é—mh sin(@)é2 +k,y, ==,y —u,N, tanh(oc)'zb)+ Fy, @)
mz, —mhsin(0)0—mhcos(0)0% +k.z, =—c.z, —u.N. tanh(az, ) —mg + F,
where M, F}", F2" — external generalized forces.
In the vicinity of vertical equilibrium (6 = 0), assumptions are valid: sin 0 = 0, cos 0 = 1, z, = —mg/k.. Equations (7)
are linearized taking into account smallness (62, 62) ~ 0 and tanh (oy,) = o, at low speeds:
(mh? +.J . )6+ mhi, —mght = M;
myy, +mhé+kyyb =—c,Vp —1, N, oy, +F™; ®)
mfb +kZZb = _CZZ.b _MZNZ(X,Z.]) + erxt.
Under the assumptions of small angles, the vertical displacement of z becomes dynamically independent of
horizontal y and angular 0 states. Its behavior is reduced to a harmonic oscillator, which can be analyzed separately [12].

2 Lynch KM, Park FC. Modern Robotics: Mechanics, Planning, and Control: Video Supplements and Software. Cambridge University Press; 2017.
URL: http://hades.mech.northwestern.edu/index.php/Modern_Robotics (accessed: 10.05.2025).
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For control synthesis, we present the system in the canonical form of the state space, taking into account external
disturbances and measurement noise. Given the state vector [xl,xz,x3,x4]T =0, 6, ¥, y]T, we write the system in the
Cauchy form:

x(t) = Ax(t)+ Bu(t)+Dw(t);
y(t) = Cx(t) + v(t),

where 4 — state matrix; B — control matrix; u(f) — vector of control signals; D — matrix of disturbances; w(f) — vector

(€))

of external disturbances; C — matrix of measurements; v(f) — vector of external disturbances.

The main task of the regulator is to transfer the dynamic system from the initial state x(#) to the specified final state
x(#)) in a certain time ¢;.

Controllability Gramian W characterizes the ability of the system to reach arbitrary states in a finite time 7" and is
determined by the formula [12]:

W(tl,to)=JtlCD(tO,t)B(t)BT(t)CDT(tO,t)dt, (10)

to
where D(to, f) = ¢4~ — matrix exponent.
The system is fully controllable on [#, #] if and only if W(#, t) is invertible. If the Gramian is invertible, any state
xr € R” can be reached using the appropriate control u() [12].
The control that minimizes the quadratic function of energy consumption and transfers the system from state x(#) to
state x(t1), has the form [12]:

u(t)==B" (1)@ (1, )W (11, 10)[ x(to) ~@(t0. 1) x(1,) ]. an
After intermediate calculations, the quadratic function of energy consumption can be calculated using expression (12):
Jmin = x(ty) =@ (to,1,)x(1, )]T W (1, t)[ x(t0) — @ (10, 1) x (1)) ]- (12)

The control given by equation (11) is programmatic (open-loop) and time-dependent. To provide asymptotic
stabilization of the system at the origin of coordinates under arbitrary initial conditions, it is required to synthesize the
closed-loop control law based on real-time feedback. The control task is formulated in the form of minimizing the
quadratic function of energy consumption [12]:

J:]C.[XT (£)Ox(1)+x" (t)Rx(t)]dt. (13)

where R — positive definite matrix; O — positive semi-definite matrix.
Optimal control that minimizes energy costs can be implemented as a negative feedback with variable parameters:

u(t)=—k(t)x(¢), (14)
where k(f) = R"'BTP(f); k(f) — feedback coefficient matrix; P(f) — solution to the Riccati equation.
To find P(¢) as t — oo, it is required to solve the algebraic Riccati equation, which is given as follows:
—A"P—PA+PBR'BTP-0 =0, (15)
The system with control signal u(f) is described by the equation:
5(1) = Ax(t) - BKx (1) =[ - BK]x(1). (16)
In practice, measuring all states is impossible due to the limited number of sensors, noise and measurement errors [12].

To estimate the state vector from the inputs and outputs, an optimal Kalman filter is used.
The system with control signal u(f) and Kalman filter for determining the state vector has the following form [12]:

()= A3(r)+ Bu(r) + L v() - C3(1) ) (17)

where X — estimated state; Cx — observer output; L — Kalman gain matrix.

In the presence of external disturbances w(f) and measurement noise w(f) with zero mathematical expectations

M[v(#)] =0, M[w(f)] =0 and covariance matrices s,, and s,, respectively, gain matrix L is determined from the solution to

the algebraic Riccati equation (18), and, accordingly, stationary Kalman filter is found:
AP.+P. A" —P.C"s;'CP, + Ds,,D' =0;

L=PCTs;. (18)
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Control of a linear non-stationary system with external disturbances at the input and output is implemented using

linear feedback on the state estimate:

u(t) =~k (1) 7(1). (19)
The type of closed-loop system with feedback for estimating the state vector is determined by the formula:
d(x A-BK BK X D w
¥ _ o . (20)
dt X 2nx1 0 A-LC 2nx2n X 2nx1 L y

After developing the optimal control method for LLE with elastic elements and taking into account the impact of
external disturbances, it remains to perform numerical modeling and analysis of the obtained results of the study on
transient processes for the angle of deviation and displacement. For this purpose, at the first stage, the optimal control
method is focused on restoring equilibrium for a certain stabilization time without taking into account the intermediate
trajectory of motion. At the second stage, the optimal feedback control method is used to find the optimal intermediate
trajectory of motion both with and without the Kalman filter.

Research Results. The paper investigates the transient processes of the control moment, force, displacement and
angle during the transition of the LLE with elastic elements from an unstable position to a vertical equilibrium position.
The results of numerical modeling are shown in Figures 2—6 for three initial conditions: Y; = [1/10, 0, 0 ,0],
Y, =1[1/10, 0, 1/10 ,0], ¥3=[1/100 1/10 0 0 1/10 0 1/20 0].

The results of terminal control are calculated for a stabilization time of 0.6 s. Figure 2 shows the curves of the control
moments of the open-loop system under the initial conditions Y; and the target position in the vertical equilibrium state.
The blue curve corresponds to control moment M, the orange one — to control force F;.

400 T T T T T T T

200 -

(e}
|‘I

Moment, N-m
|
[3®]
S
=
;

—400

—600 i i i i i i i
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Time, s
F, —M

Fig. 2. Open-loop control signal curves

The values of the quadratic function of energy consumption for terminal control for different values of stabilization
time are calculated using equation (12) and are presented in Table 1. A decrease in the value of the function of energy

consumption with an increase in stabilization time can be noticed.

Table 1
Values of Quadratic Energy Consumption Function
Stabilization time, s 0.1 0.2 0.3 0.4
Value of quadratic function of
i 1,648.8 212.1 66.1 29.9
energy consumption (J)

Figure 3 shows the curves of transient processes of the key parameters of the dynamic LLE system (6, y») under the initial
conditions Y;. The blue curve represents the transient process of the deviation angle 0, and the orange curve — change in the
coordinate along the ordinate axis y, during the specified stabilization time of 0.6 s under terminal control.
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/
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)
)
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0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Fig. 3. Transient response curves

The simulation results in Figures 46 are obtained using the feedback control type, which allows searching for the
optimal intermediate trajectory of motion. To study the impact of the elastic elements’ stiffness (changes in spring
stiffness coefficient 4,) on the stability of the dynamic LLE system while minimizing energy costs, transient processes of
the key parameters of the dynamic LLE system (Fig. 4) were considered under the initial conditions Y and the following
parameters of the feedback system: ¢, = 100, k. = 20,000, O = eye(4) - 103, R = eye(2).

The orange line represents y, dependence, and the green line — 6. The following values of the stiffness coefficient
are selected: &, = [700, 1000, 1500] N/m. The transient processes are shown in Figure 4 a, b, c, respectively.

0.10
0.10 Vb
2 el
ol £ 0.05 0
< 0.05 <
g8 0 g
= 0.00 £ 0.00
Vb
-0.05 ~0.05
0 1 2 3 4 1 2 3 4
Time, s Time, s
= =0 —y5 =18
a) b)
0.10
T 005 0
=
=
£ 0.00 "
yh
-0.05
0 1 2 3 4
Time, s
—» — 0
¢

Fig. 4. Transients when changing the spring stiffness coefficient:
a— at ky =700 and ¢, = 100; b — at k, = 1000 and ¢, = 100;
¢ — at ky= 1500 and ¢, = 100
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To study the effect of damping of elastic elements (changes in damping coefficient ¢,) on the stability of the
dynamic LLE system while minimizing energy costs, transient processes of the key parameters of the dynamic LLE
system(8, y») (Fig. 5) are considered under the initial conditions Y> and &, =1000 with feedback. The orange line

represents the y;, dependence, and the green line — 6. The damping coefficient values are ¢, = [0, 50, 100] N-s/m, and
the transient processes are shown in Figure 5 a, b and c, respectively.

0.10 0.10
B 005 : £ 005 9
==} ==}
g g
- 0.00 .
N 3 0.00
Vb )
-0.05 . -0.05
0 1 2 3 4 1 2 3 4
Time, s Time, s
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Fig. 5. Transients of damping coefficient variation:
a— at ¢y = 0 and k, =1000; b — at ¢, = 0 and £, =1000;
¢ —at ¢y = 100 and £, =1,000

This research also takes into account the effect of noise through adding Kalman filter. Figure 6 shows the transient
response curves under the initial conditions ¥Y3=[1/1001/10 00 1/10 0 1/20 0] and the covariance matrices s,, = eye(1) and
sy = 0.1 eye(2). The orange line illustrates the transient response y;, and the green line — transient response 6.
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Fig. 6. Transient response curves using Kalman filter
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Discussion. To achieve the research objective, the previous section presented the simulation results obtained using
the proposed optimal control method to minimize energy costs during the transition of the studied LLE from an unstable
position to a vertical equilibrium position.

Table 1 shows that as the time required to reach the target stable state increases, energy costs decrease proportionally.
This dependence is consistent with the dynamics of control signals: as the permissible stabilization time increases, the
amplitudes of the control moments M and F, decrease, which, according to formulas (12)—(14), reduces the energy costs.
It can be concluded that an increase in the stabilization time (within 0.1-0.4 seconds) reduces energy costs by 98%.

The curves in Figure 3 demonstrate a transient process lasting 0.6 s before reaching the vertical equilibrium
position, which is consistent with the principles of terminal control (reaching the target stable state within a certain
stabilization time).

The curves in Figure 4 illustrate the effect of changing the stiffness coefficient on the transient processes of the key
parameters of the LLE dynamic system (6, y»). Changing the coordinate along the ordinate axis y; at a low value of the
stiffness coefficient is characterized by significant overshoot and slow stabilization, and an increase in the stiffness
coefficient eliminates overshoot and accelerates the stabilization of the system. On the contrary, changes in angle 6
demonstrate an inverse relationship: at a low value of the stiffness coefficient, a smooth transient process without
overshoot and a short stabilization time of the system are observed, while an increase in the stiffness coefficient to 1500
causes overshoot in the angle, despite accelerated stabilization. This contradiction emphasizes the competing dynamics
between y, and 0. At the stiffness coefficient k&, =1000 (Fig. 4 b), an optimal compromise is reached: minimization of
overshoot in the coordinate y;, maintaining the stability of angle 6 and fast convergence. This mode provides balanced
operation of the system.

The reliability of the results obtained is validated by the stability of the closed system, which is confirmed by the
negative real parts of its poles for all the studied values of the stiffness coefficient given in Table 2.

Table 2
Poles of a Closed System
Process option K, Poles of closed system
—2.2445 + 3.8530i
1 700 —2.2445 — 3.85301
—4.5071 —3.28071
—2.6133 + 5.4608i
2 1000 —2.6133 — 5.4608i

—3.6385 —3.1496i1
-2.7679 +7.5731i
3 1500 —2.7679 - 7.5731i
—3.2042 —3.0242i

The curves in Figure 5 show the effect of the damping coefficient. At a low value of the damping coefficient,
significant vibration of the system is observed before reaching the steady state, accompanied by overshoot. Increasing ¢,
reduces the amplitude of vibrations and eliminates overshoot, but results in a growth of energy costs. To provide a balance
between stability and the value of the quadratic function of energy costs, the value of coefficient ¢, = 100 is selected,
which guarantees the stability of the LLE control system with elastic elements.

From the image in Figure 6, it follows that the Kalman filter provides the convergence of transient processes to zero
values within three seconds when exposed to white noise, confirming its robust stabilizing properties.

The results obtained show the following picture. Firstly, the use of open control as a basic stage allows minimizing
energy costs at the stage of bringing the system from an unstable state to the target vertical equilibrium at a given
stabilization time. Secondly, the transition to closed loop control based on the state feedback provides asymptotic stability
and stability of transient modes through solving the Riccati equation and implementing an effective Kalman filter. Thirdly,
numerical modeling revealed an important effect of the parameters of elastic elements on the dynamics of the system:
increasing the spring stiffness reduces overshoot in angle 0 and accelerates stabilization, but it can cause difficulties on
the way to a stable trajectory; increasing damping reduces vibrations and reduces overshoot, but increases energy costs.
A balance between stability and energy costs is found, which is reached at specific values k, and ¢, (in the examples:
ky, = 1000 N/m, ¢, = 100 N-s/m).

Based on the previous discussion and analysis of the results obtained in the paper, it can be said that the developed
method of optimal control of the LLE with elastic elements has managed to provide the stability of the control system of
this exoskeleton for a certain stabilization time and with minimal energy consumption.
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Conclusion. A technique for optimal control of a lower limb exoskeleton (LLE) with elastic elements in the feet,
taking into account external disturbances and measurement noise, has been formulated and implemented. The main
approach is based on representing the LLE dynamics as a system of Lagrange equations, translating it into a canonical
form of the state space, and synthesizing the control law through optimization of quadratic functions of energy
consumption and system stability. A Kalman filter was used to assess the state, which allowed for correct operation under
conditions of a limited number of sensors and the presence of external disturbances.

The practical significance of the results consists in the development of a technique that allows adaptively selecting
the parameters of elastic elements and the control mode depending on the conditions of the task and objectives
(minimization of energy costs, acceleration of stabilization, minimization of overshoot). In terms of potential applications,
this can help improve the efficiency of rehabilitation technologies, reduce energy consumption in prosthetic and orthotic
systems, and improve the stability of movements on uneven surfaces. The prospects for the research include experimental
verification of the technique and its adaptation to variable loads and complex surfaces, which is a challenge for medical
rehabilitation and robotics.
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