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Abstract  
Introduction. Accurate reconstruction of the human body model is required when visualizing digital avatars in virtual 
simulators and rehabilitation systems. However, the use of exoskeleton systems can cause overlapping and shielding of 
sensors, making it difficult for tracking systems to operate. This underlines the urgency of the task of reconstructing a 
human body model based on a limited set of data on arm movements, both in the field of rehabilitation and in sports 
training. Existing studies focus on either large-scale IMU networks or full video monitoring, without considering the issue 
of reconstructing a body model based on arm motion data. The objective of this research is to develop and test machine 
learning methods aimed at reconstructing body model coordinates using limited data, such as arm position information. 
Materials and Methods. To conduct the study, a virtual simulation environment was created in which a virtual avatar 
performed various movements. These movements were recorded by cameras with a first-person and side view. The 
positions of the keypoints of the body model relative to the back point were saved as reference data. The regression task 
considered was to reconstruct the user's arm positions in a full body model in five different variations, including keypoint 
coordinates extracted from a video and a virtual scene. The task also involved comparing different regression models, 
including linear models, decision trees, ensembles, and three deep neural networks (DenseNN, CNN-GRU, Transformer). 
The accuracy was estimated using MAE and the mean Euclidean deviation of body segments. Experimental studies were 
conducted on five datasets, whose size varied from 25 to 180 thousand frames.  
Results. The experiments showed that ensembles (LightGBM) were best-performing in most situations. Among neural 
network models, the CNN-GRU-based model provided the lowest error. Training models on a sequence of 20 frames did 
not provide significant improvement. Using the inverse kinematics module on a number of scenarios allowed reducing 
the error to 3%, but in some cases worsened the final result. 
Discussion. The analysis of the results obtained showed low reconstruction accuracy when using computer vision 
datasets, as well as the lack of superiority of complex models over simpler ensembles and linear models. However, the 
trained models allowed, with some error, for the reconstruction of the position of the user's legs for a more reliable display 
of the digital model of his body.   
Conclusion. The data obtained showed the complexity of solving the problem of reconstructing a human body model 
using a limited amount of data, as well as a large error in a number of machine learning models. The comparison of 
models on different datasets proved low applicability of first-person data that did not contain information on the distance 
to the arm s. On the other part, using absolute values of arm positions as input information provided for the reconstruction 
of the body model with significantly less error. 
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Аннотация 
Введение. Точная реконструкция модели тела человека крайне важна для визуализации цифровых аватаров в 
виртуальных тренажерах и реабилитационных системах. Однако использование экзоскелетных систем может 
привести к перекрытию и экранированию датчиков, что затрудняет работу систем отслеживания. Это 
подчеркивает актуальность задачи реконструкции модели тела человека на основе ограниченного набора данных 
о движениях рук, как в сфере реабилитации, так и в спортивной подготовке. Существующие исследования 
сосредоточены либо на масштабных IMU-сетях, либо на полном видеоконтроле, не рассматривая вопрос 
реконструкции модели тела на основе данных о движениях рук. Цель данной работы заключается в разработке и 
тестировании методов машинного обучения, направленных на восстановление координат модели тела с 
использованием ограниченных данных, например, информации о положении рук. 
Материалы и методы. Для проведения исследования была сформирована виртуальная имитационная среда, в 
которой виртуальный аватар выполнял различные движения. Эти движения фиксировались камерами с видом от 
первого лица и боковой. В качестве эталонных данных сохранялись положения ключевых точек модели тела 
относительно точки спины. Рассматривалась задача регрессии, целью которой было восстановление положения 
рук пользователя в полной модели его тела в пяти различных вариациях, включающих координаты ключевых 
точек, извлеченные из видео и виртуальной сцены. Задача также подразумевала сравнение различных моделей 
регрессии, среди которых были линейные модели, деревья решений, ансамбли, а также три глубокие нейронные 
сети (DenseNN, CNN-GRU, Transformer). Точность оценивалась с использованием MAE и среднего Евклидова 
отклонения сегментов тела. Проведены экспериментальные исследования на пяти наборах данных, размер 
которых варьировался от 25 до 180 тысяч кадров. 
Результаты исследования. Эксперименты показали, что ансамбли (LightGBM) наиболее эффективны в 
большинстве ситуаций. Среди нейросетевых моделей наименьшую погрешность обеспечила модель на базе 
CNN-GRU. Обучение моделей на последовательности из 20 кадров не дало значительного улучшения. 
Применение модуля инверсной кинематики на ряде сценариев позволяет снизить погрешность до 3 %, но в ряде 
случаев ухудшает итоговый результат.  
Обсуждение. Анализ полученных результатов показал низкую точность реконструкции при использовании 
наборов данных от компьютерного зрения, а также отсутствие превосходства сложных моделей перед более 
простыми ансамблями и линейными моделями. Тем не менее, обученные модели позволяют с некоторой 
погрешностью восстанавливать положение ног пользователя для более достоверного отображения цифровой 
модели его тела.   
Заключение. Полученные данные показывают сложность решения задачи реконструкции модели тела человека 
при использовании ограниченного объема данных, а также большую погрешность у ряда моделей машинного 
обучения. Сравнение моделей на различных наборах данных показало низкую применимость данных от первого 
лица, не содержащих информацию о расстоянии до рук. С другой стороны, использование в качестве входной 
информации абсолютных значений положения рук позволяет осуществить реконструкцию модели тела со 
значительно меньшей погрешностью.  

Ключевые слова: реконструкция модели тела человека, машинное обучение, виртуальные тренажеры, 
ограниченные данные 
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Introduction. Virtual simulators integrated with controlled exoskeletons allow simulating physical activity and 
rehabilitation exercises in a controlled environment [1]. To achieve the maximum immersion effect, precise tracking of 
the user's entire body kinematics is required to form a virtual avatar that corresponds to real human movements. However, 
upper exoskeletons can block sensors that demand direct visual control (e.g., HTC Vive Tracker), as well as create 
electromagnetic interference and limit the view of external cameras, which requires the use of additional markers [2]. In 
these cases, traditional tracking systems, such as infrared markers and multiple capture cameras, cannot consistently 
provide a complete set of position data for all body segments [3]. Thus, researchers are faced with the task of 
reconstructing a full body model based on limited information, such as arm or hand position data. 

One of the possible solutions is to use wearable sensors such as inertial measurement units (IMU). However, a sufficient 
number of sensors (at least 11, and often up to 18 elements) are required to fully reconstruct the body model [4]. As the 
number of sensors reduces, the accuracy of the data decreases sharply. At the same time, computer vision technologies are 
actively developing and are increasingly used in virtual reality systems to track hands and fingers, which makes the task of 
reconstructing a body model from limited data obtained only from the user's hands particularly topical [5].  

The task of reconstructing a full human skeletal model from a limited set of visual data (e.g., arm movements) has a 
considerable practical and scientific value. Classic marker-based motion capture systems used infrared cameras and joint 
markers, while computer vision-based algorithms are being developed and successfully implemented for markerless 
solutions. Modern convolutional neural networks, such as OpenPose, BlazePose, and MediaPipe Pose, are capable of 
detecting 2D positions of body keypoints without additional labels [6]. These methods effectively detect visible points 
(arms, shoulders, pelvis, etc.), but without depth information from a single camera, the distance to the body is not restored, 
which complicates the full 3D reconstruction of the body model. A solution to this problem can be found by means of 
stereo cameras and triangulation methods [7]. Using such approaches, modern models (e.g., MediaPipe Pose) can track 
up to 33 keypoints with an error of about 1–2 cm. Under real conditions, that allows obtaining 3D coordinates of major 
joints (e.g., hands, elbows, knees) through combining data from several cameras and minimizing projection error. 
However, such tracking systems often prove unsuitable if the cameras only see the hands, and it is necessary to estimate 
the rest of the skeleton based on the movements of the hands without direct visual control. This is a hot issue in virtual 
reality systems, where cameras are present only on the headset and record only the user's hands in the working area. In 
this regard, it is required to consider existing approaches to solving this problem. 

The main area of work on this task involves the use of regression-based methods or neural networks that are able to 
complement the pose relying only on partial data [4]. For example, regression models trained on video pairs with partially 
masked bodies and arms can reconstruct missing body parts under complex conditions [8, 9]. This indicates that modern 
models are indeed able to display full body pose from partial visual information about the arms. Other studies use neural 
network architectures that focus on motion sequences, such as recurrent networks (LSTM/GRU) and specifically 
Transformer [10, 11]. For example, paper [12] describes AvatarPoser, a Transformer-based model that predicts a full 3D 
pose of the body (including legs and torso) from the position of the head and arms. This system extracts deep features 
from incoming motion signals and separates global body movement and local joint orientations. For accurate pose 
matching, limb optimization is also performed by the inverse kinematics method [12]. Furthermore, the idea of improving 
the robustness of predictions in the absence of visibility is implemented in the EgoPoser model, which also relies on the 
Transformer mechanisms to account for intermittent arm motion data, ensuring stable predictions [13]. It is worth noting 
that training these models requires marking full poses, which leads to the need to use large datasets, such as Human3.6M, 
CMU MoCap/AMASS, MPI-INF-3DHP and others, where there is synchronized video and a 3D skeleton [14, 15]. 
However, existing datasets that compare the first-person view with a full body model are insufficient, which makes the 
task of collecting and comparing such data hot issues. The formation of such a dataset can be organized by recreating 
human movements in a virtual scene, where you can flexibly adjust the position of virtual cameras for recording video, 
and obtain accurate coordinates of body points with the required frequency [4]. 

In this study, the main subject for the implementation of the obtained scientific results is a virtual simulator system 
based on an upper controlled exoskeleton. Modern models of VR-headsets are focused on positioning by cameras, 
assuming that the main source of information on arm movement comes from the built-in headset camera used to recognize 
arms. In addition, to expand the experimental base and identify patterns in human movements, it is assumed that there is 
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an external frame-by-frame capture system that records the user's body position as a whole. The objective of this research 
is to develop and test machine learning methods for reconstructing body coordinates based on partial arm position data. 
In conclusion of the study, it is planned to compare both classical regression models and neural network models, including 
modern architectures based on attention mechanisms, which will allow us to evaluate the advantages of each approach in 
various experimental scenarios. 

Materials and Methods. First, the procedure for collecting and primary processing the data was considered. The data was 
collected in a virtual environment, where the process of using a VR-headset with a camera was imitated. All data (first-person view, 
side camera view) were tracked by virtual cameras. Then, the videos were processed by MediaPipe library models, which allowed 
for hand detection to isolate 21 keypoints of the palm, as well as extracting data on 33 key points of the body model from the side 
virtual camera. In parallel, the true metric coordinates of all body segments (18 key points of the standard digital avatar model 
specified in the Unity game engine), including hand position points, were recorded in the virtual space. These real coordinates 
(reference) formed the target Y set for most scenarios. Using a virtual camera made it possible to bypass the limitations of physical 
sensors and obtain reference information about the body pose. MediaPipe was selected as the main hand tracking framework due 
to its modular processing graph system and ready-made ML models (palm detector and full body model). We introduced the 
abbreviation “CV” for the data obtained during processing by computer vision and MediaPipe models (denoted as cxi, cyi, czi), and 
the “reference” was understood as the metric coordinates of body points (denoted as vxi, vyi, vzi), recorded in the virtual scene 
relative to the user's back.  

Next, we considered the data preparation procedure for various regression scenarios. To analyze the machine learning 
models and their capabilities, 5 datasets (experiments) were formed, differing in which features X were used and which 
target variables Y were predicted: 

1) Set 1 “Arms (first-person view) → Arms (reference)”: X = {(cxi, cyi, czi)} ∈ ℝ63, i = 1–21 — coordinates of keypoints of 
arms in FPV (63 values), Y = {(vxi, vyi, vzi)} ∈ ℝ18, i = 1–6 – metric coordinates of the same points of arms (18 values).  

2) Set 2 “Arms (first-person view) → Body (reference)”: X = {(cxi, cyi, czi)} ∈ ℝ63, i = 1–21 – coordinates of the arms 
(obtained from FPV, 63 values), Y = {(vxi, vyi, vzi)} ∈ ℝ54, i = 1–18 — metric coordinates of all points of the body (54 values). 
This way, a complete reconstruction of the body is performed on the basis of the arms data. 

3) Set 3 “Arms (first person view) → Body (CV)”: X = {(cxi, cyi, czi)} ∈ ℝ63, i = 1–21 – coordinates of arms (FPV based 
on CV, 63 values), Y = {(vxi, vyi, vzi)} ∈ ℝ99, i = 1–33 — coordinates of 33 body points from an additional side view video 
(99 values). It differs from the previous task in that regressions are performed exclusively on CV data.  

4) Set 4 “Body (CV) → Body (reference)”: X = {(cxi, cyi, czi)} ∈ ℝ99, i = 1–33 — coordinates of body points (side camera 
view, 99 values), Y = {(vxi, vyi, vzi)} ∈ ℝ54, i = 1–18 — metric coordinates of all body points (54 values). The task is to check 
the accuracy of direct data conversion from CV to metric values of 18 keypoints. 

5) Set 5 “Arms (reference) → Body (reference)”: X = {(vxi, vyi, vzi)} ∈ ℝ18, i = 1–6 — metric coordinates of arm 
points (18 values), Y = {(vxi, vyi, vzi)} ∈ ℝ54, i = 1–18 — metric coordinates of the entire body (54 values). It differs 
from set 2 in that only reference data are used. Thus, the very fact of reconstructing movement based on a limited set 
of points is verified. 

Next, we consider the models used to solve the five regression problems mentioned above. The architectures of all the 
models in different problems are similar; the differences for each set are only in the input and output dimensions. In total, 
two classes of models are considered: classic regression models from the Scikit-Learn library (as well as XGBoost and 
LightGBM models) and neural network models based on the Keras framework [16, 17]. 

Classical models include: LinearRegression, ElasticNet (with L1/L2 regularization), ensembles of trees 
(RandomForestRegressor, HistGradientBoostingRegressor), boosting (XGBRegressor, LightGBMRegressor), and 
KNN regressor. Since the target variable includes multiple outputs (point coordinates), the models are wrapped in a 
MultiOutputRegressor, which allows predicting all parameters simultaneously. All tree-type models are configured with 
100 trees and a depth of 5, while boosted models have learning_rate = 0.05. 

Next, we consider neural network architectures.  
A Fully Connected Network (we denote it as DenseNN). The input layer corresponds to the feature dimension 

X (from now on, it depends on the dataset), followed by 4 fully connected layers: 256, 512, 1024, and 128 neurons 
with ReLU activation and Dropout sparsification layers (25%). The model ends with an output layer of dimension 
Y (also depends on the dataset). Batch normalization (BatchNorm) and the Adam optimizer (lr = 1e–3) with the MSE 
loss function are used. 

Convolutional Recurrent Network (CNN-GRU). After the input layer, 1D convolution (128 filters, kernel = 3) and 
BatchNormalization are applied. This is followed by a GRU layer (128 units) with sequence return. The attention 
mechanism is implemented: a dense layer with tanh activation above the GRU output produces frame weights, which 
are then multiplied with the GRU output using softmax and summed. Then there is a fully connected layer  
of 128 neurons with activation of ReLU and Dropout (30%), after which the output layer comes. Adam optimizer (lr = 1e–3) 
with MSE loss function. 
  

https://vestnik-donstu.ru/


Advanced Engineering Research (Rostov-on-Don). 2025;25(3):221–232. eISSN 2687−1653 
 

 

In
fo

rm
at

io
n 

Te
ch

no
lo

gy
, C

om
pu

te
r S

ci
en

ce
 a

nd
 M

an
ag

em
en

t 

225 

Transformer. First, several 1D convolutions (kernel = 3, dilation_rate 1, 2 and 4) are applied to create local context. 
Then, a Squeeze-and-Excite layer is added for adaptive filtering of channels [18]. Furthermore, trainable positional 
embeddings and 3 encoder blocks of the transformer are introduced, each implementing MultiHeadAttention (4 heads, 
key in 64/4 size), subsequent summation and normalization, and then — a two-layer dense network (size 256, 64) with 
Dropout — again summation and normalization. After the encoders, GlobalAveragePooling1D is performed, then — a 
fully connected layer of 128 neurons with ReLU activation and Dropout (25%), followed by a linear output. Adam 
optimizer (lr = 1e–3) with MSE loss function. 

Based on the conducted review and the existing experience in this area, we can propose an approach to solving the 
regression problems under consideration. A dataset of animation of typical human movements is formed, which is 
applied to a virtual avatar in a simulation scene. The movements are recorded using several virtual cameras: one of 
them is located at the avatar's eye level (FPV), and the second watches it from the side (side camera), covering its 
entire height. Additionally, metric values of 18 points of the body model are recorded. The final data view for each 
source is shown in Figure 1. 

   
a) b) c) 

Fig. 1. Source data: a — frame from first-person camera; b — frame from side camera;  
c — skeleton constructed using reference data 

Video data is processed by the corresponding models (MediaPipe Pose/Hands), after which the point coordinates are 
saved in arrays. Then, within the framework of the proposed approach, machine learning models are trained, which, based 
on the initial data alone (e.g., information about the arms), form a complete 3D configuration of the body. After predicting 
the pose, the elbow and knee joints can be further adjusted so that the segment lengths and limb positions better match 
the arm signatures. Also, to assess the contribution of the temporal context to the accuracy of the reconstruction problem, 
it is proposed to conduct an additional experiment to solve the regression problem for each set not based on the data of 
one frame, but on a certain sequence of N-frames. 

In this paper, there is no focus on correcting the body model after reconstruction according to the inverse kinematics 
rules. The major objective is to train and compare a set of regressors (linear, tree-type, KNN models) and neural networks 
(DenseNN, CNN-GRU and Transformer) to determine the most accurate model. The selection is based on the metrics of 
the mean absolute error (MAE), the total deviation (Euclidean distance) for all points of the model from the reference 
ones, as well as on assessing the computational complexity (prediction time). This solves the problem of reconstructing 
a body model based on a limited set of information about arm movements. In addition, other regression options are 
considered within the experimental section. The calculation is made using the following formulas: 

1

1 ˆ ,
N

i i
i

MAE y y
N =

= −∑∣ ∣ 

2 2 2
, ,

1 1

1 ˆ ,  ,
M J

n j n j x y z
n j

y y v v v v
M J = =

∆ = − = + +∑∑     

where yi — true value; y�i — model prediction, N — number of compared values, M — number of frames; J — number of 
joints (keypoints), yn, j, y�i ∈ ℝ3 — true and predicted 3-D position vector of j-th joint in n-th frame. 

Research Results. In accordance with the described methodology, data was collected on 11 types of various complex 
animations, including body movements, jumps and active movements. Nine types were used for training, and two — for 
validation (data from them were not used in the training process). The total volume was 239968 records, but at each stage, 
filtering and selection of records was performed in the event that one of the sources did not return correct values (most 
often, this involved obtaining arm coordinates using computer vision). Thus, for sets 1–3, 25 and 8 thousand records were 
selected for training and validation, for sets 4 and 5 — 183 and 56 thousand, respectively. During the learning process, 
the training sample was further divided in the ratio 75/25. The dimension of the data for each experiment was indicated 
above when describing the corresponding sets. Figure 2 shows the comparative results of all models for all data sets using 
the MAE metric. Figure 3 shows the total deviation metric. And Figure 4 shows a comparison of models based on the 
calculation time of one forecast. Next, we compare the results obtained.  
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Fig. 2. Comparison of models by MAE metric 

 
Fig. 3. Comparison of models by total deviation 
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Fig. 4. Comparison of models by performance  

The analysis of the data obtained shows the heterogeneity of the behavior of the models when changing the source of 
input information and on various metrics. In most scenarios, gradient ensembles (HistGBR, LightGBM, XGBoost, and 
randomForest) demonstrate the lowest MAE error. Neural network models perform worse, especially when complex tasks 
of reconstructing a body based on arm data (CV) are considered. Nevertheless, if we evaluate all models according to 
MAE, then it is not possible to single out a clear leader. On the other hand, the total deviation of all points (Fig. 3) clarifies 
significantly the situation when solving three regression problems. Ensembles are superior, as in the previous case, but 
CNN-GRU is the best among neural network models. The obtained values of the total deviation, ranging from 1.4 to 3.5 
meters, indicate low efficiency of solving the regression problem by all models, especially on the set of “Arms (FPV) → 
Body (reference)”. When evaluating the performance of models by computation time, it can be noted that classical 
machine learning models (linear and ensembles) have sufficient performance for real-time use. At the same time, CNN-
GRU, Transformer and specifically Random Forest, are extremely computation-consuming, which makes them applicable 
only in offline (not real-time) systems. For DenseNN, long calculations are often observed at the first call of the model.  

Given our experience in body reconstruction tasks, it is important to evaluate models not only by the specified metrics, 
but also visually. For this purpose, we reconstruct body skeletons for sets 2, 4, and 5 using the LightGBM and CNN-GRU 
models. This comparison (Fig. 5) allows us to evaluate how the most accurate architecture (LightGBM) differs visually 
from the more complex one (CNN-GRU). 

   
a) b) c) 

Fig. 5. Visual comparison of CNN-GRU and LightGBM models: 
a — on the set “Arms (FPV) → Body (reference)”; b — on the set  

“Body (CV) → Body (reference)”; c — on the set “Arms (reference) → Body (reference)” 
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Visual comparison shows that there is a noticeable difference between the CV data and the real position, since the 
first-person camera is not able to accurately determine the real depth and distance to the arms. This results in an 
approximate position of the upper body (first graph — Fig. 5). When using the full-body CV data, there is also a significant 
error, although the pose matches to some extent. The third set, based on the arms from the reference (which can be 
obtained by extracting coordinates from the VR controllers or absolute position sensors), shows that the upper body is 
reconstructed quite accurately, while the legs are only approximately reconstructed, with a large error. Thus, for all three 
sets and both models, we can talk only about an approximate reconstruction, which generally corresponds to the results 
of the total deviation metrics in Figure 3. 

Next, an experiment was conducted to train the listed models not on a single frame, but on a sequence of 20 frames. 
This allowed us to identify some dynamic characteristics and increase the volume of initial information. As a visual 
comparison showed, since the determining metric was the total deviation, we considered only it (Fig. 6). In general, the 
use of a frame sequence slightly reduced the total deviation; some models showed even worse results. From a visual point 
of view (Fig. 7), there was a certain improvement for the LightGBM model, where the reconstruction quality increased 
significantly, even when reconstructing the body based on arm data (FPV). This also concerned the other two datasets. 
However, for the neural network model as a whole, no significant improvements were found. 

 
Fig. 6. Comparison of models by total deviation  

(trained on a sequence of frames)  

   
a) b) c) 

Fig. 7. Visual comparison of CNN-GRU and LightGBM models (trained on a sequence of frames):  
a — on set “Arms (FPV) → Body (reference)”; b — on set “Body (CV) → Body (reference)”; 

 c — on set “Arms (reference) → Body (reference)”.  

At the end of the experiment, a test was conducted on the implementation of point correction based on the inverse 
kinematics (IK) model. For this, after predicting body points using machine learning models, the developed IK module 
was used, which first corrected the end links (hands and feet) using the FABRIK method [19, 20], taking into account the 
angular limitations of the elbows and knees. Then, the module redistributed the resulting displacements between the pelvis 
and the thoracic region, automatically aligning the spinal axis. The results of this module are presented in Figure 8. 
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a) b) 

  

 
c) d) 

Fig. 8. Visual comparison of models with and without inverse kinematics correction (indicating total deviation before and after 
correction) on “Arms (FPV) → Body (reference)” dataset: a — CNN-GRU (before = 3.511, after = 3.436 m);  

b — LightGBM (before = 3.183, after = 3.112 m); c — CNN-GRU on a sequence of frames (before = 2.952, after = 2.991 m);  
d — LightGBM on a sequence of frames (before = 3.261, after = 3.306 m)  

The resulting visualizations and numerical evaluations demonstrate that the implementation of the proposed two-pass 
inverse kinematics generally reduces the total Euclidean deviation of joints from the reference for single frames, but the 
effect varies depending on the model type and body position. In the first experiment, for the CNN-GRU model, the total 
deviation decreased from 3.511 to 3.436 meters, and for LightGBM — from 3.183 to 3.112 meters, which corresponded 
to an improvement of about 2–3%. Graphically, this is manifested in a more natural head alignment and a reduction in 
the “bends” in the elbows and knees. A different picture is observed in the second experiment, based on 20 frames and a 
different animation: for CNN-GRU, the error increased from 2.952 to 2.991 meters, and for LightGBM — from 3.261 to 
3.306 meters. It is noted that the correction procedure tends to straighten the skeleton, which in this case only worsens 
the situation. This indicates that geometric constraints applied post factum can improve static anatomical plausibility, but 
in complex animations, worsen the current pose. 

Discussion. The conducted research has revealed several patterns. First, reconstructing a full body model from a 
limited dataset is possible, especially, when the input and output data are from the same source. This was evidenced by 
the high-quality reconstruction of the body model based on the arm position. However, significant problems were 
identified in reconstructing the user's leg position, as there was insufficient information about arm movements to predict 
complex animation. Third, using arm positions from a first-person video stream obtained through computer vision to 
reconstruct a full body model resulted in high errors due to the lack of distance data to the arms, having only their position 
relative to the user's eyes. Pre-processing of data simulated in a virtual environment also showed difficulties in recognizing 
arms in complex animations, which negatively affected the learning process.   

When comparing different machine learning architectures for this task, it is worth noting that simpler linear models 
show good results in predicting the position of body segments, since there are clear dependences between the input and 
output data that can be approximated by these models. Complex neural network models also solve a similar problem, 
showing greater flexibility in working with complex input data, but they are not characterized by high performance, and 
the process of their training is expensive. In a visual comparison, neural network models did not show high efficiency, 
demonstrating results comparable or even worse. 

The experiment shows that the use of a data source with a very limited information value (information about the position 
of the arms from the computer vision system is just such a source) causes a significant error in solving the regression problem. 
Firstly, the tracking object often goes out of sight and is not recognized by the model (this is clearly seen in the reduction in 
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the volume of training data in sets 1 and 2). Secondly, the lack of correct data about the depth, i.e., the distance to the arms, 
complicates their absolute positioning. In VR systems, this aspect is mitigated by triangulation using data from multiple 
cameras, but in the simulations conducted, the neural network model for arm recognition did not reflect the correct 
coordinates along Z axis. A potential solution to the problem and the topic of further research could be obtaining data directly 
from VR-headsets equipped with integrated cameras. This would expand the training set with natural motion data and provide 
better quality arm capture in the virtual frame, as the headset's capture system could return metric space coordinates to the 
digital model, providing a type 5 set (“Arms (reference) → Body (reference)”). 

When analyzing the topicality of the study within the subject area, it should be compared to existing works. The main 
difference is the limitation on the use of arm movement data, since a more accurate approach is considered to be the use 
of at least 5 body points for further reconstruction [21]. This is proved by our previous studies [4], in which the optimal 
number of points for reconstruction is indicated as at least 5–7, obtained using a reference tracking system. 

It is important to note that many VR applications and games implement a tracking system based only on controllers 
and a headset, followed by reconstruction of a simplified body position using IK algorithms, which allows the arm 
movements to be extended to the entire body. As the authors [21] emphasize, in such systems, the same readings from 
sensors located on the arms can correspond to numerous different full poses. This points to the need for additional tuning 
of inverse kinematics to avoid artifacts, and trained models should select a plausible option. Therefore, the complexity of 
the task without additional sources of information about the position of the legs or torso remains high. The conducted 
study highlights this problem, indicating the need to search for and collect additional sources of information to achieve, 
at a minimum, the mapping of “Arms (reference) → Body (reference)”, and ideally — to recognize the entire trajectory 
of movement, which will help to more accurately predict the position of other body parts. A promising direction here may 
be the use of not only pre-trained neural networks (e.g., MediaPipe), but also the capture of all information about the 
surrounding world, which will allow for better segmentation of the user's arms, and perhaps, the torso and legs. 

Another limitation of the study is the lack of an assessment of the impact of the training sample size on the quality of 
the models. In this paper, data from 11 different animation types were collected, two additional types were used for 
validation, but given the volumes and variability of movements, the set should be significantly larger. However, the study 
aimed at comparing models within a given task, which demonstrated the ambiguity of their efficiency compared to classic 
linear models and ensembles. This also indicates the need for further improvement of the model architecture. 

Finally, the stage of body model correction based on the kinematic model, implemented through the imposition of 
anatomical constraints and re-evaluation of the pose, gave ambiguous results — in one pose, it reduced the total deviation, 
and in another, on the contrary, it increased it. On the other hand, it should be taken into account that the IK module 
should work with already distorted data on the arms and head in the case of set 1. Therefore, the transition to a higher-
quality dataset can reduce the error in the kinematics module. 

Conclusion. Thus, as a result of the conducted research, an approach to predicting the body model based on a limited 
set of points was developed, including the stages of data processing, solving regression problems and using the IK module 
to correct the body model. The corresponding experimental studies were conducted, which showed that LightGBM-type 
models (among ensembles) and CNN-GRU with an attention mechanism (among neural network models) demonstrated 
the best results for the selected metrics. The comparison also showed low accuracy of the body model reconstruction 
when using models (ElasticNet, KNN, DenseNN), which indicated their weak generalization ability. During the visual 
comparison, contradictions were revealed in the quality of skeleton reconstruction when performing complex animation, 
since the position of the arms was insufficient to determine the position of the legs and head. In addition, the use of 
correction based on inverse kinematics is not always justified for complex poses, since the imposition of anatomical 
constraints and overestimation of the pose can cause additional distortions. 

Comparison of the developed models also allows us to draw conclusions about the degree of their applicability: models 
trained on a first-person data set do not provide reliable reconstruction of the body model, showing a high visual error, 
which limits their use to only theoretical comparison; while models trained on real arm positions (set 5) show more 
reliable predictions of body position, which may be in demand in virtual simulators without a sufficient set of sensors. 
Since the models trained on set 5 work with absolute arm positions, this provides their versatility when selecting a tracking 
system, because arm position data can be obtained not only using a computer vision system, but also virtual reality 
controllers or inertial sensors that track arm position. 

This study forms several directions for further research within the framework of the body model reconstruction task. 
The conducted comparative experiments of machine learning models have shown that in order to successfully solve the 
task, it is required to collect more information about human movements, expand the dataset, and implement more effective 
learning models with greater generalization ability.  
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