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Abstract

Introduction. Accurate reconstruction of the human body model is required when visualizing digital avatars in virtual
simulators and rehabilitation systems. However, the use of exoskeleton systems can cause overlapping and shielding of
sensors, making it difficult for tracking systems to operate. This underlines the urgency of the task of reconstructing a
human body model based on a limited set of data on arm movements, both in the field of rehabilitation and in sports
training. Existing studies focus on either large-scale IMU networks or full video monitoring, without considering the issue
of reconstructing a body model based on arm motion data. The objective of this research is to develop and test machine
learning methods aimed at reconstructing body model coordinates using limited data, such as arm position information.
Materials and Methods. To conduct the study, a virtual simulation environment was created in which a virtual avatar
performed various movements. These movements were recorded by cameras with a first-person and side view. The
positions of the keypoints of the body model relative to the back point were saved as reference data. The regression task
considered was to reconstruct the user's arm positions in a full body model in five different variations, including keypoint
coordinates extracted from a video and a virtual scene. The task also involved comparing different regression models,
including linear models, decision trees, ensembles, and three deep neural networks (DenseNN, CNN-GRU, Transformer).
The accuracy was estimated using MAE and the mean Euclidean deviation of body segments. Experimental studies were
conducted on five datasets, whose size varied from 25 to 180 thousand frames.

Results. The experiments showed that ensembles (LightGBM) were best-performing in most situations. Among neural
network models, the CNN-GRU-based model provided the lowest error. Training models on a sequence of 20 frames did
not provide significant improvement. Using the inverse kinematics module on a number of scenarios allowed reducing
the error to 3%, but in some cases worsened the final result.

Discussion. The analysis of the results obtained showed low reconstruction accuracy when using computer vision
datasets, as well as the lack of superiority of complex models over simpler ensembles and linear models. However, the
trained models allowed, with some error, for the reconstruction of the position of the user's legs for a more reliable display
of the digital model of his body.

Conclusion. The data obtained showed the complexity of solving the problem of reconstructing a human body model
using a limited amount of data, as well as a large error in a number of machine learning models. The comparison of
models on different datasets proved low applicability of first-person data that did not contain information on the distance
to the arm s. On the other part, using absolute values of arm positions as input information provided for the reconstruction
of the body model with significantly less error.
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Opueuﬁaﬂbﬂoe amnupudeckoe uccnedosatue

HO}IXOI{ K PCKOHCTPYKIIMHU MOJ1€JIM TE€JIa HA OCHOBE€ OTPAHUYCHHOI'0 Haﬁopa TJAaHHBIX
0 ABMIaTeJbHON AKTUBHOCTH PYK
A.Jl. O0yxoB "= 1<, /I.B. TeceaxkuH

TamOoBcKHil roCyJapCTBEHHBII TEXHHYECKHI YHIUBEPCHTET, T. Tam00B, Poccuiickas ®enepanms
4 obuhov.art@gmail.com

AHHOTaNUs

Beeoenue. TouHast peKOHCTPYKIMS MOJIETH Tella YelloBeKa KpaifHe BaKHA ISl BU3yalM3alWH LU(PPOBBIX aBaTapoB B
BUPTYaIbHBIX TpEeHa)Kepax M peabMIINTaIMOHHBIX cucTeMax. OHAKO HCIIOIb30BAHHUE IK30CKEJIETHBIX CHCTEM MOXET
IIPUBECTU K IEPEKPHITUI0 M 3KPAHUPOBAHHUIO JATYUKOB, 4YTO 3aTPyAHSET pabOTy CHCTEM OTCIEKHMBAaHHUA. ITO
MI0JJYEPKUBAET aKTyalIbHOCTb 33/1a491 PEKOHCTPYKIIMU MOJIENH Tella YeJIOBeKa Ha OCHOBE OIPaHNYEHHOT0 Habopa JaHHBIX
0 JBWXCHUSX PYK, Kak B cdepe peadMiauTanuy, TaK U B CHOPTUBHOHM moaroroBke. CyIIECTBYIONIME HCCIIEAOBAHUS
cocpenoTroueHsl 160 Ha MmacmTabHbIx IMU-ceTsix, 1100 Ha MOJHOM BHIEOKOHTPOJE, HE PAaccMaTpuBas BOIPOC
PEKOHCTPYKIIMH MOJIEJNIU TeJla HA OCHOBE JIAHHBIX O ABMXEHUsIX pyK. Llenb nanHoW paboThl 3aKitouaeTcs B pa3paboTke 1
TECTUPOBAHNHM METOJOB MAIIMHHOTO OOYYEHWs, HAIpaBICHHBIX Ha BOCCTAHOBJICHHE KOOPAWHAT MOJENN Tena ¢
HCIIOJIb30BAHUEM OTPAHUYEHHBIX JaHHBIX, HAPUMEp, HHYOPMALIUH O OI0KEHUHU PYK.

Mamepuanst u memoowi. J{j11 NpoBeIeHUs HCCIeI0BaHMA ObUIa c(hOpMHUPOBaHA BUPTyallbHAs MMUTAlUOHHAS Cpefa, B
KOTOpPOW BUPTYaJIbHBIN aBaTap BBIIOIHSI PA3IMYHbIC IB)KCHHS. DTH ABHKECHUS (PUKCHPOBAIICH KAMEPaMH C BUIOM OT
TIEpBOTO JIMIa U OOKOBOW. B KauecTBe 3TaJIOHHBIX JAHHBIX COXPAHSUINCH MOJIOXEHHS KIFOUEBBIX TOYEK MOJIEIH Tesa
OTHOCHTEJIPHO TOYKH CIMHBI. PaccmarpuBanack 3afada perpeccu, HeIbio KOTOPOH ObUIO BOCCTAHOBIICHUE TIOJIOKEHUS
PYK TOJIB30BaTellsl B MOJHOW MOJIENHN €ro Tella B ISITH Pa3iNYHbIX BapHAIMsIX, BKIIOYAIONIMX KOOPIMHATHI KIFOUEBBIX
TOYEK, U3BJICUCHHBIC U3 BHICO M BUPTYAJIbHOH CLEHBI. 3a/ada Tarkke MoApa3syMeBaa CPABHEHHE PA3IMYHBIX MOJEICH
perpeccuu, cpeiv KOTOPBIX ObLIM JINHEHHBIE MOJICIIH, IEPEBbs PELICHUI, aHCAMOITH, a TaKkKe TPH TIIyOOKHe HEWPOHHbIC
cetu (DenseNN, CNN-GRU, Transformer). TouHocTh onieHnBanach ¢ ucrnons3zoBanueM MAE u cpennero EBknmnnosa
OTKJIOHEHUsI CErMEHTOB Tena. [IpoBeieHbl 3KCIIepUMEHTabHBIE HCCIIEOBAHUS Ha IIATH HAaOOpax JaHHBIX, pa3Mmep
KOTOPBIX BapbupoBajcs oT 25 1o 180 Teicad KaapoB.

Pesynoemamut uccnedoeanun. IJKCUepuMeHTH Tokazanu, 4yro aHcamOmm (LightGBM) HamGonee >¢pQexkTuBHBI B
OospmmHCTBEe cuTyanuil. Cpean HeHpoceTeBBIX Mojesell HaMMEHBUIYIO MOTPEIIHOCTh oOecredmia MoJesb Ha 0ase
CNN-GRU. OO6yuenme wmopeneit Ha mocienoBaTenbHOCTH W3 20 KagpoB HE [al0 3HAYMUTEIHFHOTO YIIyYIICHHUS.
[IpumMeHeHre MOy sl MHBEPCHOM KMHEMATHKH Ha psfie CIICHapHeB MO3BOJISET CHU3UTh MOIPEIIHOCTh A0 3 %, HO B psize
CllyJaeB yXyALIaeT UTOTOBBIM pe3yJbTar.

Oébcysycoenue. AHann3 TNOTyYEHHBIX PE3yJIbTATOB IOKA3al HU3KYIO TOYHOCTh PEKOHCTPYKIHH MPU HCIOIb30BAaHUU
HaOOPOB JaHHBIX OT KOMIIBIOTEPHOTO 3pEHHs, a TaKKe OTCYTCTBHE IPEBOCXOJICTBA CIIOXKHBIX MOJeiel mepen Oonee
MIPOCTBHIMU AaHCaMOJSIMU W JIMHEHHBIMH MonessiMH. TeM He MeHee, 0Oy4eHHBIE MOJENH IT03BOJISIIOT C HEKOTOPOU
MIOTPEITHOCTHI0 BOCCTAaHABIMBATh IIOJIOKEHHE HOT TIOJIB30BATENS AJIsl O0Jiee JOCTOBEPHOTO OTOOpaxeHUs IH(pPOBOH
MOJIEJIH €ro Tena.

3aknouenue. IloydeHHbIC TaHHBIE TOKA3BIBAIOT CJIOXHOCTh PEIICHMS 33/1a41 PEKOHCTPYKIIMH MOJICIH Teja YeJIoBeKa
IIPY MCHOJIb30BaHUU OTPAHHMYEHHOTO 00BbEMa JTaHHBIX, a TAK)KE OOJBLIYIO MOTPEIIHOCTD Y PsAAa MOAENEH MallHHHOTO
o0yuenusi. CpaBHEHHE MoJIesIel Ha pa3lIMuHbIX HA0Opax JaHHbBIX T0Ka3aJl0 HU3KYIO IPUMEHUMOCTD JIaHHBIX OT MEPBOTrO
JIMIa, He coepKalux HH(opManuio o paccTossHuM 10 pyk. C Ipyroil CTOpOHBI, NCIIONB30BaHNE B KAUECTBE BXOIHOM
nHpOpManKy aOCOJIOTHBIX 3HAUYCHHH IOJIOKEHHUS PYK MO3BOJIIET OCYMIECTBHTh PEKOHCTPYKIMIO MOJICNIH Tela CO
3HAYUTEIIFHO MEHBIIICH MOTPECIIHOCTBIO.

KiroueBble cjI0Ba: pPEKOHCTPYKIMS MOJEIM Teja YEJOBEKa, MAlIMHHOE OOYyYeHWE, BUPTYaJIbHBIE TPEHAXKEPHI,
OTpaHUYCHHBIC JJAHHBIC

BaarogapHocT. ABTOpPHI OnarogapsAT pykoBoauTels HaydHoro mpoekta M.H. KpacHsSHCKOTrO, TOKTOpa TEXHHYECKUX
HayK, mpodeccopa, pekropa TaMOOBCKOTO TOCYJapCTBCHHOTO TEXHUYECKOTO YHHBEPCHTETA 32 OPTaHU3AIUI0 HAYIHO-
HCCIIEOBATEILCKOTO TIpoIiecca.
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®una"cupoBaHue. PaboTa BrIoTHEHA IpH GUHAHCOBOH MoepkKe MHUHHCTEPCTBAa HAYKH W BBICIIEr0 00pa30BaHUs
P® B pamkax mpoekrta «Pa3paboTka MMMEPCHBHOW CHCTEMBI B3aUMOJEHCTBHSI C BHUPTYaJbHOW pEabHOCTBIO LIS
IpodecCHOHATBHON TTOATOTOBKHM Ha OCHOBE BCEHAIpaBiIeHHOH maTtdopmen» (124102100628-3).

Jnas uutupoBanus. O6yxoB A.Jl., Tecenkun 1.B. Tlogxox K peKOHCTPYKIIMHA MOJETH Tella Ha OCHOBE OTPaHUYCHHOTO
Habopa TaHHBIX O IBUTATEIbHON aKTHBHOCTH PyK. Advanced Engineering Research (Rostov-on-Don). 2025;25(3):221-232.
https://doi.org/10.23947/2687-1653-2025-25-3-221-232

Introduction. Virtual simulators integrated with controlled exoskeletons allow simulating physical activity and
rehabilitation exercises in a controlled environment [1]. To achieve the maximum immersion effect, precise tracking of
the user's entire body kinematics is required to form a virtual avatar that corresponds to real human movements. However,
upper exoskeletons can block sensors that demand direct visual control (e.g., HTC Vive Tracker), as well as create
electromagnetic interference and limit the view of external cameras, which requires the use of additional markers [2]. In
these cases, traditional tracking systems, such as infrared markers and multiple capture cameras, cannot consistently
provide a complete set of position data for all body segments [3]. Thus, researchers are faced with the task of
reconstructing a full body model based on limited information, such as arm or hand position data.

One of the possible solutions is to use wearable sensors such as inertial measurement units (IMU). However, a sufficient
number of sensors (at least 11, and often up to 18 elements) are required to fully reconstruct the body model [4]. As the
number of sensors reduces, the accuracy of the data decreases sharply. At the same time, computer vision technologies are
actively developing and are increasingly used in virtual reality systems to track hands and fingers, which makes the task of
reconstructing a body model from limited data obtained only from the user's hands particularly topical [5].

The task of reconstructing a full human skeletal model from a limited set of visual data (e.g., arm movements) has a
considerable practical and scientific value. Classic marker-based motion capture systems used infrared cameras and joint
markers, while computer vision-based algorithms are being developed and successfully implemented for markerless
solutions. Modern convolutional neural networks, such as OpenPose, BlazePose, and MediaPipe Pose, are capable of
detecting 2D positions of body keypoints without additional labels [6]. These methods effectively detect visible points
(arms, shoulders, pelvis, etc.), but without depth information from a single camera, the distance to the body is not restored,
which complicates the full 3D reconstruction of the body model. A solution to this problem can be found by means of
stereo cameras and triangulation methods [7]. Using such approaches, modern models (e.g., MediaPipe Pose) can track
up to 33 keypoints with an error of about 1-2 cm. Under real conditions, that allows obtaining 3D coordinates of major
joints (e.g., hands, elbows, knees) through combining data from several cameras and minimizing projection error.
However, such tracking systems often prove unsuitable if the cameras only see the hands, and it is necessary to estimate
the rest of the skeleton based on the movements of the hands without direct visual control. This is a hot issue in virtual
reality systems, where cameras are present only on the headset and record only the user's hands in the working area. In
this regard, it is required to consider existing approaches to solving this problem.

The main area of work on this task involves the use of regression-based methods or neural networks that are able to
complement the pose relying only on partial data [4]. For example, regression models trained on video pairs with partially
masked bodies and arms can reconstruct missing body parts under complex conditions [8, 9]. This indicates that modern
models are indeed able to display full body pose from partial visual information about the arms. Other studies use neural
network architectures that focus on motion sequences, such as recurrent networks (LSTM/GRU) and specifically
Transformer [10, 11]. For example, paper [12] describes AvatarPoser, a Transformer-based model that predicts a full 3D
pose of the body (including legs and torso) from the position of the head and arms. This system extracts deep features
from incoming motion signals and separates global body movement and local joint orientations. For accurate pose
matching, limb optimization is also performed by the inverse kinematics method [12]. Furthermore, the idea of improving
the robustness of predictions in the absence of visibility is implemented in the EgoPoser model, which also relies on the
Transformer mechanisms to account for intermittent arm motion data, ensuring stable predictions [13]. It is worth noting
that training these models requires marking full poses, which leads to the need to use large datasets, such as Human3.6M,
CMU MoCap/AMASS, MPI-INF-3DHP and others, where there is synchronized video and a 3D skeleton [14, 15].
However, existing datasets that compare the first-person view with a full body model are insufficient, which makes the
task of collecting and comparing such data hot issues. The formation of such a dataset can be organized by recreating
human movements in a virtual scene, where you can flexibly adjust the position of virtual cameras for recording video,
and obtain accurate coordinates of body points with the required frequency [4].

In this study, the main subject for the implementation of the obtained scientific results is a virtual simulator system
based on an upper controlled exoskeleton. Modern models of VR-headsets are focused on positioning by cameras,
assuming that the main source of information on arm movement comes from the built-in headset camera used to recognize
arms. In addition, to expand the experimental base and identify patterns in human movements, it is assumed that there is
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an external frame-by-frame capture system that records the user's body position as a whole. The objective of this research
is to develop and test machine learning methods for reconstructing body coordinates based on partial arm position data.
In conclusion of the study, it is planned to compare both classical regression models and neural network models, including
modern architectures based on attention mechanisms, which will allow us to evaluate the advantages of each approach in
various experimental scenarios.

Materials and Methods. First, the procedure for collecting and primary processing the data was considered. The data was
collected in a virtual environment, where the process of using a VR-headset with a camera was imitated. All data (first-person view,
side camera view) were tracked by virtual cameras. Then, the videos were processed by MediaPipe library models, which allowed
for hand detection to isolate 21 keypoints of the palm, as well as extracting data on 33 key points of the body model from the side
virtual camera. In parallel, the true metric coordinates of all body segments (18 key points of the standard digital avatar model
specified in the Unity game engine), including hand position points, were recorded in the virtual space. These real coordinates
(reference) formed the target Y set for most scenarios. Using a virtual camera made it possible to bypass the limitations of physical
sensors and obtain reference information about the body pose. MediaPipe was selected as the main hand tracking framework due
to its modular processing graph system and ready-made ML models (palm detector and full body model). We introduced the
abbreviation “CV” for the data obtained during processing by computer vision and MediaPipe models (denoted as cx;, cy;, ¢z;), and
the “reference” was understood as the metric coordinates of body points (denoted as vx;, vy;, vz;), recorded in the virtual scene
relative to the user's back.

Next, we considered the data preparation procedure for various regression scenarios. To analyze the machine learning
models and their capabilities, 5 datasets (experiments) were formed, differing in which features X were used and which
target variables Y were predicted:

1) Set 1 “Arms (first-person view) — Arms (reference)”: X = {(cx;, cyi, czi)} € R%, i = 1-21 — coordinates of keypoints of
arms in FPV (63 values), Y = {(vx;, W, vz))} € R', i = 1-6 —metric coordinates of the same points of arms (18 values).

2) Set 2 “Arms (first-person view) — Body (reference)”: X = {(cx;, cyi, cz))} € R®, i =1-21 — coordinates of the arms
(obtained from FPV, 63 values), Y = {(vx;, vy;, vz;)} € R**, i = 1-18 — metric coordinates of all points of the body (54 values).
This way, a complete reconstruction of the body is performed on the basis of the arms data.

3) Set 3 “Arms (first person view) — Body (CV)”: X = {(cx;, ¢y;, czi)} € R®, i =1-21 — coordinates of arms (FPV based
on CV, 63 values), Y = {(vx;, wi, vz))} € R®, i = 1-33 — coordinates of 33 body points from an additional side view video
(99 values). It differs from the previous task in that regressions are performed exclusively on CV data.

4) Set 4 “Body (CV) — Body (reference)”: X= {(cx;, cyi, cz))} € R”,i=1-33 — coordinates of body points (side camera
view, 99 values), Y= {(vx;, v, vz;)} € R® i=1-18 — metric coordinates of all body points (54 values). The task is to check
the accuracy of direct data conversion from CV to metric values of 18 keypoints.

5) Set 5 “Arms (reference) — Body (reference)”: X = {(vx;, vy, vz;)} € R!3, i = 1-6 — metric coordinates of arm
points (18 values), Y= {(vx;, vy, vz;)} € R®, i = 1-18 — metric coordinates of the entire body (54 values). It differs
from set 2 in that only reference data are used. Thus, the very fact of reconstructing movement based on a limited set
of points is verified.

Next, we consider the models used to solve the five regression problems mentioned above. The architectures of all the
models in different problems are similar; the differences for each set are only in the input and output dimensions. In total,
two classes of models are considered: classic regression models from the Scikit-Learn library (as well as XGBoost and
LightGBM models) and neural network models based on the Keras framework [16, 17].

Classical models include: LinearRegression, ElasticNet (with L1/L2 regularization), ensembles of trees
(RandomForestRegressor, HistGradientBoostingRegressor), boosting (XGBRegressor, LightGBMRegressor), and
KNN regressor. Since the target variable includes multiple outputs (point coordinates), the models are wrapped in a
MultiOutputRegressor, which allows predicting all parameters simultaneously. All tree-type models are configured with
100 trees and a depth of 5, while boosted models have learning_rate = 0.05.

Next, we consider neural network architectures.

A Fully Connected Network (we denote it as DenseNN). The input layer corresponds to the feature dimension
X (from now on, it depends on the dataset), followed by 4 fully connected layers: 256, 512, 1024, and 128 neurons
with ReLU activation and Dropout sparsification layers (25%). The model ends with an output layer of dimension
Y (also depends on the dataset). Batch normalization (BatchNorm) and the Adam optimizer (Ir = 1e-3) with the MSE
loss function are used.

Convolutional Recurrent Network (CNN-GRU). After the input layer, 1D convolution (128 filters, kernel = 3) and
BatchNormalization are applied. This is followed by a GRU layer (128 units) with sequence return. The attention
mechanism is implemented: a dense layer with tanh activation above the GRU output produces frame weights, which
are then multiplied with the GRU output using softmax and summed. Then there is a fully connected layer
of 128 neurons with activation of ReLU and Dropout (30%), after which the output layer comes. Adam optimizer (/r = 1e-3)
with MSE loss function.
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Transformer. First, several 1D convolutions (kernel = 3, dilation_rate 1, 2 and 4) are applied to create local context.
Then, a Squeeze-and-Excite layer is added for adaptive filtering of channels [18]. Furthermore, trainable positional
embeddings and 3 encoder blocks of the transformer are introduced, each implementing MultiHeadAttention (4 heads,
key in 64/4 size), subsequent summation and normalization, and then — a two-layer dense network (size 256, 64) with
Dropout — again summation and normalization. After the encoders, GlobalAveragePooling1D is performed, then — a
fully connected layer of 128 neurons with ReLU activation and Dropout (25%), followed by a linear output. Adam
optimizer (/r = 1e—3) with MSE loss function.

Based on the conducted review and the existing experience in this area, we can propose an approach to solving the
regression problems under consideration. A dataset of animation of typical human movements is formed, which is
applied to a virtual avatar in a simulation scene. The movements are recorded using several virtual cameras: one of
them is located at the avatar's eye level (FPV), and the second watches it from the side (side camera), covering its
entire height. Additionally, metric values of 18 points of the body model are recorded. The final data view for each
source is shown in Figure 1.

a) b) 9]

Fig. 1. Source data: a — frame from first-person camera; b — frame from side camera;
¢ — skeleton constructed using reference data

Video data is processed by the corresponding models (MediaPipe Pose/Hands), after which the point coordinates are
saved in arrays. Then, within the framework of the proposed approach, machine learning models are trained, which, based
on the initial data alone (e.g., information about the arms), form a complete 3D configuration of the body. After predicting
the pose, the elbow and knee joints can be further adjusted so that the segment lengths and limb positions better match
the arm signatures. Also, to assess the contribution of the temporal context to the accuracy of the reconstruction problem,
it is proposed to conduct an additional experiment to solve the regression problem for each set not based on the data of
one frame, but on a certain sequence of N-frames.

In this paper, there is no focus on correcting the body model after reconstruction according to the inverse kinematics
rules. The major objective is to train and compare a set of regressors (linear, tree-type, KNN models) and neural networks
(DenseNN, CNN-GRU and Transformer) to determine the most accurate model. The selection is based on the metrics of
the mean absolute error (MAE), the total deviation (Euclidean distance) for all points of the model from the reference
ones, as well as on assessing the computational complexity (prediction time). This solves the problem of reconstructing
a body model based on a limited set of information about arm movements. In addition, other regression options are
considered within the experimental section. The calculation is made using the following formulas:

1 N
MAE =—) . -,
N;y, P |

1 M J

A:M—JZZuyn,,-—ﬁn,,- I IvIl= v+ 42,

n=l j=1
where y;— true value; , — model prediction, N — number of compared values, M — number of frames; J— number of
joints (keypoints), y,, 9, € R> — true and predicted 3-D position vector of j-th joint in n-th frame.

Research Results. In accordance with the described methodology, data was collected on 11 types of various complex
animations, including body movements, jumps and active movements. Nine types were used for training, and two — for
validation (data from them were not used in the training process). The total volume was 239968 records, but at each stage,
filtering and selection of records was performed in the event that one of the sources did not return correct values (most
often, this involved obtaining arm coordinates using computer vision). Thus, for sets 1-3, 25 and 8 thousand records were
selected for training and validation, for sets 4 and 5 — 183 and 56 thousand, respectively. During the learning process,
the training sample was further divided in the ratio 75/25. The dimension of the data for each experiment was indicated
above when describing the corresponding sets. Figure 2 shows the comparative results of all models for all data sets using
the MAE metric. Figure 3 shows the total deviation metric. And Figure 4 shows a comparison of models based on the
calculation time of one forecast. Next, we compare the results obtained.
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Fig. 4. Comparison of models by performance

The analysis of the data obtained shows the heterogeneity of the behavior of the models when changing the source of
input information and on various metrics. In most scenarios, gradient ensembles (HistGBR, LightGBM, XGBoost, and
randomForest) demonstrate the lowest MAE error. Neural network models perform worse, especially when complex tasks
of reconstructing a body based on arm data (CV) are considered. Nevertheless, if we evaluate all models according to
MAE, then it is not possible to single out a clear leader. On the other hand, the total deviation of all points (Fig. 3) clarifies
significantly the situation when solving three regression problems. Ensembles are superior, as in the previous case, but
CNN-GRU is the best among neural network models. The obtained values of the total deviation, ranging from 1.4 to 3.5
meters, indicate low efficiency of solving the regression problem by all models, especially on the set of “Arms (FPV) —
Body (reference)”. When evaluating the performance of models by computation time, it can be noted that classical
machine learning models (linear and ensembles) have sufficient performance for real-time use. At the same time, CNN-
GRU, Transformer and specifically Random Forest, are extremely computation-consuming, which makes them applicable
only in offline (not real-time) systems. For DenseNN, long calculations are often observed at the first call of the model.

Given our experience in body reconstruction tasks, it is important to evaluate models not only by the specified metrics,
but also visually. For this purpose, we reconstruct body skeletons for sets 2, 4, and 5 using the LightGBM and CNN-GRU
models. This comparison (Fig. 5) allows us to evaluate how the most accurate architecture (LightGBM) differs visually
from the more complex one (CNN-GRU).

—-e-True  -eo- CNN-GRU - -LightGBM
a) b) c)

Fig. 5. Visual comparison of CNN-GRU and LightGBM models:
a — on the set “Arms (FPV) — Body (reference)”; b — on the set
“Body (CV) — Body (reference)”’; ¢ — on the set “Arms (reference) — Body (reference)”

Information Technology, Computer Science and Management

227



https://vestnik-donstu.ru

228

Obukhov AD, et al. Reconstructing a Full-body Model from a Limited Set of Upper-Limb Motion Data

Visual comparison shows that there is a noticeable difference between the CV data and the real position, since the
first-person camera is not able to accurately determine the real depth and distance to the arms. This results in an
approximate position of the upper body (first graph — Fig. 5). When using the full-body CV data, there is also a significant
error, although the pose matches to some extent. The third set, based on the arms from the reference (which can be
obtained by extracting coordinates from the VR controllers or absolute position sensors), shows that the upper body is
reconstructed quite accurately, while the legs are only approximately reconstructed, with a large error. Thus, for all three
sets and both models, we can talk only about an approximate reconstruction, which generally corresponds to the results
of the total deviation metrics in Figure 3.

Next, an experiment was conducted to train the listed models not on a single frame, but on a sequence of 20 frames.
This allowed us to identify some dynamic characteristics and increase the volume of initial information. As a visual
comparison showed, since the determining metric was the total deviation, we considered only it (Fig. 6). In general, the
use of a frame sequence slightly reduced the total deviation; some models showed even worse results. From a visual point
of view (Fig. 7), there was a certain improvement for the LightGBM model, where the reconstruction quality increased
significantly, even when reconstructing the body based on arm data (FPV). This also concerned the other two datasets.
However, for the neural network model as a whole, no significant improvements were found.

by
=

3.056
3.527
3.070

2.858
2916
2.934
2.967

Total deviation, m
N W
= =

—
(=]

<o
=)

Arms (FPV) — Body (reference) Body (side camera) — Body Arms (reference) — Body
(reference) (reference)

Experiment set

= CNN-GRU = DenseNN ElasticNet m HistGBR KNN
= LightGBM H Linear ® RandomForest B Transformer m XGBoots

Fig. 6. Comparison of models by total deviation
(trained on a sequence of frames)
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- True -e- CNN-GRU -+ -LightGBM
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Fig. 7. Visual comparison of CNN-GRU and LightGBM models (trained on a sequence of frames):

a— on set “Arms (FPV) — Body (reference)”; b — on set “Body (CV) — Body (reference)”;
¢ — on set “Arms (reference) — Body (reference)”.

At the end of the experiment, a test was conducted on the implementation of point correction based on the inverse
kinematics (IK) model. For this, after predicting body points using machine learning models, the developed IK module
was used, which first corrected the end links (hands and feet) using the FABRIK method [19, 20], taking into account the
angular limitations of the elbows and knees. Then, the module redistributed the resulting displacements between the pelvis
and the thoracic region, automatically aligning the spinal axis. The results of this module are presented in Figure 8.
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Fig. 8. Visual comparison of models with and without inverse kinematics correction (indicating total deviation before and after
correction) on “Arms (FPV) — Body (reference)” dataset: « — CNN-GRU (before = 3.511, after = 3.436 m);
b — LightGBM (before = 3.183, after = 3.112 m); c — CNN-GRU on a sequence of frames (before = 2.952, after = 2.991 m);
d — LightGBM on a sequence of frames (before = 3.261, after = 3.306 m)

The resulting visualizations and numerical evaluations demonstrate that the implementation of the proposed two-pass
inverse kinematics generally reduces the total Euclidean deviation of joints from the reference for single frames, but the
effect varies depending on the model type and body position. In the first experiment, for the CNN-GRU model, the total
deviation decreased from 3.511 to 3.436 meters, and for LightGBM — from 3.183 to 3.112 meters, which corresponded
to an improvement of about 2—3%. Graphically, this is manifested in a more natural head alignment and a reduction in
the “bends” in the elbows and knees. A different picture is observed in the second experiment, based on 20 frames and a
different animation: for CNN-GRU, the error increased from 2.952 to 2.991 meters, and for LightGBM — from 3.261 to
3.306 meters. It is noted that the correction procedure tends to straighten the skeleton, which in this case only worsens
the situation. This indicates that geometric constraints applied post factum can improve static anatomical plausibility, but
in complex animations, worsen the current pose.

Discussion. The conducted research has revealed several patterns. First, reconstructing a full body model from a
limited dataset is possible, especially, when the input and output data are from the same source. This was evidenced by
the high-quality reconstruction of the body model based on the arm position. However, significant problems were
identified in reconstructing the user's leg position, as there was insufficient information about arm movements to predict
complex animation. Third, using arm positions from a first-person video stream obtained through computer vision to
reconstruct a full body model resulted in high errors due to the lack of distance data to the arms, having only their position
relative to the user's eyes. Pre-processing of data simulated in a virtual environment also showed difficulties in recognizing
arms in complex animations, which negatively affected the learning process.

When comparing different machine learning architectures for this task, it is worth noting that simpler linear models
show good results in predicting the position of body segments, since there are clear dependences between the input and
output data that can be approximated by these models. Complex neural network models also solve a similar problem,
showing greater flexibility in working with complex input data, but they are not characterized by high performance, and
the process of their training is expensive. In a visual comparison, neural network models did not show high efficiency,
demonstrating results comparable or even worse.

The experiment shows that the use of a data source with a very limited information value (information about the position
of the arms from the computer vision system is just such a source) causes a significant error in solving the regression problem.
Firstly, the tracking object often goes out of sight and is not recognized by the model (this is clearly seen in the reduction in
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the volume of training data in sets 1 and 2). Secondly, the lack of correct data about the depth, i.e., the distance to the arms,
complicates their absolute positioning. In VR systems, this aspect is mitigated by triangulation using data from multiple
cameras, but in the simulations conducted, the neural network model for arm recognition did not reflect the correct
coordinates along Z axis. A potential solution to the problem and the topic of further research could be obtaining data directly
from VR-headsets equipped with integrated cameras. This would expand the training set with natural motion data and provide
better quality arm capture in the virtual frame, as the headset's capture system could return metric space coordinates to the
digital model, providing a type 5 set (“Arms (reference) — Body (reference)”).

When analyzing the topicality of the study within the subject area, it should be compared to existing works. The main
difference is the limitation on the use of arm movement data, since a more accurate approach is considered to be the use
of at least 5 body points for further reconstruction [21]. This is proved by our previous studies [4], in which the optimal
number of points for reconstruction is indicated as at least 5—7, obtained using a reference tracking system.

It is important to note that many VR applications and games implement a tracking system based only on controllers
and a headset, followed by reconstruction of a simplified body position using IK algorithms, which allows the arm
movements to be extended to the entire body. As the authors [21] emphasize, in such systems, the same readings from
sensors located on the arms can correspond to numerous different full poses. This points to the need for additional tuning
of inverse kinematics to avoid artifacts, and trained models should select a plausible option. Therefore, the complexity of
the task without additional sources of information about the position of the legs or torso remains high. The conducted
study highlights this problem, indicating the need to search for and collect additional sources of information to achieve,
at a minimum, the mapping of “Arms (reference) — Body (reference)”, and ideally — to recognize the entire trajectory
of movement, which will help to more accurately predict the position of other body parts. A promising direction here may
be the use of not only pre-trained neural networks (e.g., MediaPipe), but also the capture of all information about the
surrounding world, which will allow for better segmentation of the user's arms, and perhaps, the torso and legs.

Another limitation of the study is the lack of an assessment of the impact of the training sample size on the quality of
the models. In this paper, data from 11 different animation types were collected, two additional types were used for
validation, but given the volumes and variability of movements, the set should be significantly larger. However, the study
aimed at comparing models within a given task, which demonstrated the ambiguity of their efficiency compared to classic
linear models and ensembles. This also indicates the need for further improvement of the model architecture.

Finally, the stage of body model correction based on the kinematic model, implemented through the imposition of
anatomical constraints and re-evaluation of the pose, gave ambiguous results — in one pose, it reduced the total deviation,
and in another, on the contrary, it increased it. On the other hand, it should be taken into account that the IK module
should work with already distorted data on the arms and head in the case of set 1. Therefore, the transition to a higher-
quality dataset can reduce the error in the kinematics module.

Conclusion. Thus, as a result of the conducted research, an approach to predicting the body model based on a limited
set of points was developed, including the stages of data processing, solving regression problems and using the IK module
to correct the body model. The corresponding experimental studies were conducted, which showed that LightGBM-type
models (among ensembles) and CNN-GRU with an attention mechanism (among neural network models) demonstrated
the best results for the selected metrics. The comparison also showed low accuracy of the body model reconstruction
when using models (ElasticNet, KNN, DenseNN), which indicated their weak generalization ability. During the visual
comparison, contradictions were revealed in the quality of skeleton reconstruction when performing complex animation,
since the position of the arms was insufficient to determine the position of the legs and head. In addition, the use of
correction based on inverse kinematics is not always justified for complex poses, since the imposition of anatomical
constraints and overestimation of the pose can cause additional distortions.

Comparison of the developed models also allows us to draw conclusions about the degree of their applicability: models
trained on a first-person data set do not provide reliable reconstruction of the body model, showing a high visual error,
which limits their use to only theoretical comparison; while models trained on real arm positions (set 5) show more
reliable predictions of body position, which may be in demand in virtual simulators without a sufficient set of sensors.
Since the models trained on set 5 work with absolute arm positions, this provides their versatility when selecting a tracking
system, because arm position data can be obtained not only using a computer vision system, but also virtual reality
controllers or inertial sensors that track arm position.

This study forms several directions for further research within the framework of the body model reconstruction task.
The conducted comparative experiments of machine learning models have shown that in order to successfully solve the
task, it is required to collect more information about human movements, expand the dataset, and implement more effective
learning models with greater generalization ability.
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