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Abstract

Introduction. Modern trends in construction, related to the optimization of weight and materials, require accurate methods
for calculating the stress-strain state, particularly of beams with variable stiffness. Analytical calculation of the stress-
strain state for such beams is fraught with considerable difficulties, limiting its practical application. Numerical methods,
specifically the Finite Element Method (FEM), are widely used to solve these problems, where the law of stiffness change
is typically approximated by a piecewise (discrete) function. This study is aimed at the development of an approach based
on piecewise-linear approximation of stiffness. Linear stiffness approximation suggests an optimal balance of accuracy
and computational resources. This approach provides significantly higher accuracy compared to the traditional discrete
approximation with similar computational complexity, allowing for adequate modeling of both smooth stiffness gradients
and its violent changes.

Materials and Methods. A first-approximation stiffness matrix for a one-dimensional beam finite element with linearly
varying flexural stiffness was derived on the basis of a variational formulation of the problem. An exact stiffness matrix
was obtained by direct integration of the differential equation for beam bending. In the calculation examples, an exact
solution was obtained using the Maple software package. The numerical solution using FEM was implemented in the
author's program written in Python.

Results. During the study, approximate and exact stiffness matrices of the beam finite element were obtained, as well as
the vector of nodal reactions (loads) from distributed loads. The efficiency of the proposed approach was demonstrated
by numerical examples. The results obtained by the FEM were verified using analytical calculations. Based on the
performed calculations, recommendations and criteria for using the exact or approximate stiffness matrix were developed.
Discussion. Finite elements that account for linear change of stiffness along the length make it possible to increase the
accuracy of the results and reduce the degree of discretization of the computational scheme by more than two times. The
approximate matrix shows good convergence with a smooth change in stiffness along the length. In such cases, discrete
approximation is also acceptable. The exact matrix allows for calculating cases where the stiffness within the beam
changes by orders of magnitude with low error. The classical discrete approximation in this case does not ensure high
accuracy of the calculation results.

Conclusion. The paper presents stiffness matrices for finite elements that account for linear change of stiffness along the
length. Their derivation is performed by two methods: on the basis of a variational formulation of the problem, and by
direct integration of the differential equation of bending. The resulting matrices enable more accurate stress-strain analysis
of beams with variable stiffness. They have an analytical format that simplifies their integration into existing software
systems. Further research will be directed towards applying the obtained matrices to the calculation of reinforced concrete
beams, considering physical nonlinearity, as well as to solving problems of stability and dynamics of beams with variable
stiffness.
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0pu2uHClﬂbH0€ meopemuiecKkoe uccneodosanue

TouyHnast 1 NpUOIMIKEHHAS] MATPHU LA KECTKOCTH M BEKTOP Y3J10BbIX HATPY30K 0aJI04YHOT0
KOHEYHOI0 3JIEMEeHTA C JIUHEHHBbIM 3aKOHOM M3MEeHEHHU KeCTKOCTH 110 JJINHe

H.IO. lIs10un

HanvonanbHbli HccnenoBaTeabCkuii MOCKOBCKUI rOCy1apCTBEHHBIN CTPOUTENbHBIN YHIBEpCUTET, I. Mocksa, Poccuiickas
denepauns

X science@nikitatsybin.ru

AHHOTaNHUA

Beedenue. CoBpeMeHHBIC TCHICHIUN B CTPOUTEILCTBE, CBSI3aHHBIC C ONTHUMH3AIMCH MacChl H MaTepPHalioB, TPEOYIOT
TOYHBIX METOZOB pacuéTa HanpsHkEHHO-Ie(HOPMUPOBAHHOTO COCTOSHHUS, B YACTHOCTH I 0aJOK MEePEMEHHON JKECTKO-
CTH. AHAJIUTHYECKUN pacyéT HaNpsHKEHHO-Ie(POPMUPOBAHHOTO COCTOSHUS TaKHX OAJIOK COMPSDKEH CO 3HAYUTEIEHBIMU
TPYZHOCTSIMH, 9TO OTPAaHUYMBACT €ro MPaKTHIeCKoe MpuMeHeHne. [l pereHus mogqo0HbIX 3a1ad IIHPOKO HUCIIONB3Y-
FOTCSI YUCIICHHBIC METOJIBI, B YaCTHOCTH METOJ KOHEUHBIX 31eMeHTOB (MKD), mpu 3TOM 3aKOH M3MEHEHHS KECTKOCTH
OOBITHO aNMPOKCUMUPYETCS CTyIeH4YaTol (auckperHoi) ¢pyHnkuuei. Llens HacTosmel paboTel — pa3padboTaTh MOAXOM
Ha OCHOBE KYCOYHO-JTMHEHHOH aImmpoKCUMaInH KECTKOCTH. JIMHEHHAs armpoKCHMAITUs KECTKOCTH 00eCIIeunBaeT OITH-
MaJIbHOE COOTHOIIICHHE TOYHOCTH, CIIOKHOCTH M BEIYUCITUTEIBHBIX pecypcoB. [IpeanaraeMerii moaxoa 00eCIieunBacT Cy-
IIECTBEHHO 00JIee BEICOKYIO TOYHOCTh IO CPABHEHUIO C TPAIUIMOHHOW TUCKPETHOM ammpoOKCUMAaNuei Ipu COMOCTABH-
MO BBIYHCIUTEIBHOM CIOKHOCTH — 3TO TO3BOJISIET aA€KBATHO MOJIEIMPOBATh KaK IIABHBIE TPAJANEHTHI KECTKOCTH, TaK
U pe3KUe €€ U3MCHECHUS.

Mamepuanst u memoost. B mepBoM NpUONIIKCHUN MaTPHIIA KECTKOCTH OJHOMEPHOTO 0aI0YHOTO KOHCYHOTO 3JICMEHTA
C JINHEHHO M3MEHSIOIEHCsT M3THOHOM KECTKOCTHIO MOJyUIeHa Ha OCHOBE BapHAIIMOHHOH (popMymupoBKH 3anaun. TouHas
MaTpHIa )KeCTKOCTH — METOIOM HETOCPEICTBEHHOTO HHTETPUPOBaHIA AU hepeHIHaIbHOTO YpaBHEHHS N3rnba OaikH.
TouHbIe pemIeHHs B IPUMEPax pacyeTa MOIyYeHBI C MPUMEHEHHEM MPOrpaMMHOT0 koMiuiekca Maple. UucienHoe permie-
HHUE, C UCIOJIH30BAHMNEM METOJa KOHEUHBIX 3JIIEMEHTOB, PEAIM30BaHO B pa3pabOTaHHON aBTOPOM IPOrpaMMe Ha S3BIKE
nporpammupoBanus Python.

Pesynomamut uccnedosanusn. B xone viccneqoBaHusl OBUTH TOJYYEHBI MPHOIMKEHHAS] M TOYHAS MATPUIIBI KECTKOCTH
0aJIOYHOTO KOHEYHOTO 3JICMEHTA, a TAKXKE BEKTOP Y3JIOBBIX peakiui (Harpy30K) OT pachpeAeiICHHBIX Harpy30K. Jddek-
THBHOCTB TPEIJIOKEHHOTO MMOIX0a MPOAESMOHCTPUPOBAHA Ha MPUMEPaxX YUCICHHOIrO pacuyera. [Ipu 3TOM pe3ysIbTarhl,
MOJYYCHHBIC METOOM KOHEYHBIX JJIEMEHTOB, BEPUDHUIIMPOBAHBI TIOCPEICTBOM aHAUTHICCKUX BeIYrcIcHUH. [To uToram
MIPOBENEHHBIX PAacUETOB OBUIH BRIPAOOTAHBI PEKOMEHIANHY U KPUTESPHH JUTS UCIIONB30BAHUS TOYHOM WK MPHOTMKEHHON
MaTpHUIbI KECTKOCTH.

Oobcyrycoenue. KoHeuHbIC DJICMEHTBI, YIUTHIBAIONIUE THHEHHOE U3MCHEHHUE KECTKOCTH 110 UTHHE, TTO3BOJISIOT IIOBBICUTH
TOYHOCTb TIOJTy4AEMBIX PE3YJIETaTOB U CHU3UTH CTEIIEHb AUCKPETU3AUU PACUCTHOM cXeMbl Oojiee 4yeM B JiBa pasa. [Ipu-
OJYDKCHHAS. MaTPHIIA JEMOHCTPUPYET XOPOIIYIO CXOAMMOCTb IPH IJIABHOM H3MEHEHHUH JKECTKOCTH IO JUTHHE. B 1mom00-
HBIX CIIy4asX TakKe JOIYyCTUMO IPUMEHATh AUCKPETHYIO allpoKcUManuioo. TouHas mMarpuua IO3BOJSET C MajoW Io-
IPEIIHOCTBIO PACCUUTHIBATH CUTYAIIMH, B KOTOPBIX JKECTKOCTh B Ipejesiax OalKi U3MEHSETCS Ha HECKOIBKO MOPSIKOB.
Krnaccryeckast IUCKpeTHAs alllPOKCUMAIIHS B TAKUX CIyYasx HE 00eCIIeYrBaeT BEICOKOI TOYHOCTH PE3YIIbTaTOB pacyeTa.
3akniouenue. B nanHoii padbote ObLIM MOJyYEHBI MATPHUIIBI JKECTKOCTH KOHEYHBIX JIEMEHTOB C YYETOM JIMHEHHOTO H3-
MECHCHUS ) KECTKOCTH 110 JJINHE. Nx BBIBOJ OCYHIECTBJICH ABYMS METOAAMM: HA OCHOBE BapI/IaHPIOHHOﬁ IIOCTAaHOBKHU 3a/1a4n
U IyTEM HETOCPEACTBEHHOTO HHTEeTprupoBanus auddepeHmansaoro ypapaeHus n3ruda. [lomydeHHbIe MaTPHIIBI TO3BO-
JISIOT BBINOJIHATE 0OJIee TOYHBIH aHAIHM3 HANPSKEHHO-IE(POPMUPOBAHHOTO COCTOSHUS OAJIOK MEPEeMEHHON JKECTKOCTH.
OHI/I OGHa}Ia}OT AHAJIMTUYCCKUM BHUIOM, YTO YIPOINACT MX BHCAPCHHUC B CYIICCTBYIOIIUC IMPOTPAMMHBIC KOMIIICKCHI.
JlanpHeiinme uccienoBanus OyIyT HapaBJICHBI HA IPUMEHEHUE ITHX MATPUII K PacuETy jKeIe300eTOHHBIX 0aJIOK C yde-
TOM (U3MUYECCKOI HEIMHEIHOCTH, a TAK)KE Ha PEIICHUE 3a]]a9 yCTOMYMBOCTH M JHHAMUKH 0aJIOK IEPEMEHHOM )KECTKOCTH.

KiroueBsble ciioBa: METO/J] KOHCYHBIX SJIEMCHTOB, MaTpHUIla )KECTKOCTH, 0aJIOUHBII OJIEMEHT, NIEPEMEHHAA KCCTKOCTh

BaarogapHocTb. ABTOp BhIpakaeT 0J1arogapHOCTh PEJaKIMy U PEIICH3EHTaM 32 BHIMATEIbHOE OTHOIIICHHE K CTAaThe U
YKa3aHHbIE 3aMeUaHusl, KOTOPbIC TTO3BOJIWIH MTOBBICUTH €€ KaueCTBO.
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Introduction. In modern engineering practice, specifically in the context of sustainable development and resource
optimization, structures with variable stiffness — for example, beams with variable cross-sections — are widely used [1].
Such solutions significantly reduce the material consumption and dead weight of structures, which directly improves their
cost-effectiveness and environmental friendliness by reducing material consumption [2]. In addition, the mathematical
model of a beam of variable stiffness serves as a tool for the qualitative description of the stress-strain state of reinforced
concrete elements, in which the change in stiffness occurs due to the nonlinear behavior of the material [3, 4] and the
formation of cracks [5, 6].

In statically indeterminate beams, which are common in structural mechanics, the distribution of internal forces
depends on the stiffness ratio of the elements. Neglecting the variable nature of stiffness can cause significant errors in
determining internal forces and, consequently, the incorrect cross-section selection, which compromises both the
reliability and economic viability of the project. Figure 1 shows a clear example: taking into account variable stiffness in
a beam (Fig. 1 b) has led to a radical change in the bending moment diagram compared to the calculation model of
constant stiffness (Fig. 1 a).

323 75758 6715

a) b)

Fig. 1. Results of calculation of statically indeterminate beam:
a — fragment of statically indeterminate beam of constant stiffness and diagram
of bending moments in it; b — the same for beam of variable stiffness

The analysis of beams with variable cross-sections is traditionally performed using numerical methods, in particular,
the finite element method (FEM). Despite the existence of analytical solutions [7], they are often represented as complex
series [8] or special functions [9], which complicates their practical implementation in engineering software. Moreover,
such solutions often lack universality for arbitrary laws of stiffness change and boundary conditions [10, 11].

The stress-strain state of beams with variable cross-sections has been studied by various authors for a long time. In the
context of numerical calculations using FEM, some of the first works [12, 13] can be mentioned. The most common approach
to accounting for variable stiffness is a discrete approximation using finite elements of constant stiffness (Fig. 1 »), whose
value is taken equal to the average in the section [14, 15]. Despite its simplicity, this approach does not always ensure the
required accuracy of calculations.

More accurate results are obtained by using a linear approximation of the stiffness within the finite element. This
approach is described in this article. At the same time, classical methods for constructing stiffness matrices for elements
with variable parameters [16], based on variational approaches [17] or approximations [18], may not provide the exact
fulfillment of the differential equations of equilibrium and boundary conditions. This causes errors with significant
changes in stiffness along the length of the element or in extreme cases, for example, when modeling zones with a sharp
drop in stiffness (formation of cracks, plastic hinge).

Thus, the relevance of this study is determined by the need to develop an efficient and more accurate method for
calculating beams with variable stiffness.

The objective of this study is to obtain and verify stiffness matrices for a beam finite element with a piecewise linear
law of stiffness change.

To reach this objective, the following tasks were formulated:

1. To obtain an approximate stiffness matrix on the basis of a variational formulation of the problem and a linear
approximation of the stiffness within the finite element.

2. To develop an exact stiffness matrix for a beam finite element with linearly varying stiffness using an analytical
solution to the differential bending equation.
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3. To conduct a comparative analysis of the accuracy of the calculation results using the proposed stiffness matrices
and the classical approach with discrete stiffness approximation on a series of test examples; to determine the accuracy
by comparing to the results of the analytical solution.

Materials and Methods

Variational Method for Obtaining the Stiffness Matrix. Variational methods [19] are the generally accepted and most
versatile methods for obtaining the stiffness matrix of a finite element. The accuracy of the resulting matrix depends on
how well the input approximation of the desired function reflects the solution to the differential equation.

For the beam under consideration, the classical Euler-Bernoulli hypotheses are applied. The change in the flexural
stiffness of the cross-section D: along the length of the finite element is assumed to be a linear function:

D, (x)=D, [\Vo +%(\V1 _Wo)}’ D, (0)=yoDy, D.(L)=y,Dy, (1)

where Dy — initial stiffness; L — length of the finite element; yo and y; — coefficients that take into account the change
in initial stiffness Dy at the beginning and end of the element, respectively. In this case, yo > 0 and y; > 0.

The finite element method is considered in the form of displacements. The unknowns are the deflection and rotation
angle of the section v; and o; (Fig. 2 a) at the beginning x = 0 and end x = L of the element.

VUL E V(—¥>X4
S U
a) b)

Fig. 2. Beam finite element:
a — unknowns of the finite element method; » — nodal loads and internal forces

To approximate the displacement function v(x), Hermite polynomials are used [1, 4]:

V=N +@oN, + VN3 + 9Ny, (2)
where N; — shape functions (Hermite polynomials) written below:
2x3 3x? x> 2x? 2x3  3x? x> x?
N=———"—"+1;, Ny=—-"—+x;, Nyj=——+—-; Ny=——"—. 3
T2 L Tt L )
Approximation (2) corresponds to the following boundary conditions:
v(0)=vo, v'(0)=¢(0) =0, v(L)=w, V(L)=0(L)=9,. (€))

The prime in (4) denotes the derivative of function v(x) in respect to x.

From formulas (3), it follows that classical shape functions do not take into account the distribution of bending stiffness
along the length of the element, which, in turn, negatively impacts the accuracy of the calculation results. To improve the
accuracy of calculations, when using a variational formulation of the problem, the double approximation method can be

applied [20].
The bending moment is associated with the curvature by the relation:
d?v M
2z 5
dx? D )

z

Here, D. — bending stiffness of the beam cross-section according to (1).
Taking into account (2) and (3):

_MZ =y 12_x_£j+ (6_x_ij+v (_lz_x+£j+ (@_zj (6)
p. N\ )" e L) e T e)"M e
The potential energy of bending deformation is determined by the formula:
L 2
1 d*v
=—|D.| —| dx 7
2 .([ [dx2 j 2

Taking into account (6) and (1), formula (7) takes the form:
U-2L° /D, = 6(\Vo +\V1)f11 +4L(2\V0 +\V1)f12 _IZ(WO +\V1)f13 +4L(\Vo +2\V1)f14 +
+I? (3\Vo Jr\lfl)fzz _4L(2W0 +\I’1)f23 +20° (\lfo +y, )f24 + (®
+6(\I/0 +V, )4](33 —4L(\Ifo +2y, )f34 +I7 (‘4/0 +3y, )f447
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where
Jii=vovo, fi2 =Vve@o; fis =Vvovis fia =Vo®is )
S22 =000, f23 =00v1, foa =001 fi3 =V f3 = V01, fas = 0101

If we introduce the vector of unknowns u = [vo, ®y, Vi, O; ]T , then (8) can be rewritten in the following form:

U:%_T{K]-LT. (10)

Here, [K] — stiffness matrix of the element, determined taking into account (8) and (9):
6(wo+yy) | 2LQ2wo+wy) | —6(wo+wi) | 2L(wo+2vy;)
[K]:& 2L(2yg+y) | L (Bwo+vy) | 2L(2we+w) | L (wo+v) | an
L —6(wo+wi) | 2L(2yo+w) | 6(wo+wi) | —2L(wo+2v)
2L(wo+2y) | L (wo+yy) | 2L(wo+2y) | L*(wo+3y,)

This case yo = yo = 1 corresponds to the classical beam stiffness matrix.
The positive directions of the nodal loads and internal forces are shown in Figure 2 b, from which it follows:

Oy =-Xi; My=Xy, O =X, My =-X,. (12)

Let us calculate the work of external forces.

L
W:XIVO +X2(p0 +X3V1 +X4(p1 +I(qv)dx:

0
qL qu gL qu

=| X, +— +| X, +— +| Xy +— v, +| Xy —"— |0;.

( 1 2)"0 ( 2 D ](Po ( 3 5 Vi 4 D (O

Wil (F+F,). (14)

(13)

In matrix form

where F — vector of concentrated nodal loads; F, q — vector of nodal loads from distributed loads. The components of

these vectors have the form (15):
F=[X, Xo, X, X,]' F,=[qL/2, q1* /12, qL/2, —qI* /12] . (15)
As we can see, the vector of nodal forces from distributed loads obtained in (15) does not take into account the change
in stiffness along the length. This is a drawback of the variational approach in the context of the problem under
consideration.
The total energy of the system, taking into account (10) and (14), is determined by the expression:

1_ = =
H:U—W:Eur-[K]-u—uT-(F+Fq). (16)
Applying the principle of minimum potential energy, we obtain the condition for the stationarity of functional (16):
off 0 |1_; _ (= = _ (= =
—=—1—u |K|u-u"(F+F,));=|K|u—-(F+F,)=0. 17
L K - (Fo ) = [K)a-(F 4 F,) an
The basic equation of the finite element method follows from (17):

[K]-u=F+F,. (18)
Direct Method for Obtaining the Stiffness Matrix. The resulting stiffness matrix (11) has a significant drawback. If we

assume vo = @o = 0, as well as yo = 0 and y; = 1 (which corresponds to zero stiffness at the left clamped edge), the moment
at the left edge will be determined by the formula:

D,
My=X,=K,vy+K,,00+K53v; + K, 40, :L_S(_zvl +(P1L)~ (19)

Note that (19) considers a limiting case — a mathematical idealization, where the stiffness at the support is not simply
small but asymptotically tends to zero. Thus, in accordance with (19), the moment at the left edge does not vanish, which
contradicts formula (5). The reason lies in the inaccurate approximation of the deflection function by formula (2). To
eliminate this discrepancy, an exact stiffness matrix was found through direct integrating the differential equation for
beam bending, taking into account the change in stiffness along the length by formula (1).

A similar approach was used by other authors. In [21], the solution is obtained in the form of power series, therefore,
it cannot be considered closed. In [22], a direct integration method is used to obtain the stiffness matrix of an element
with a power law of stiffness change for stability problems. In [23], an arbitrary law of stiffness change along the length
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is considered. However, for the practical use of the presented results, integration is required. Works [24, 25] are devoted
to solving stability problems. In these papers, the law of stiffness change along the length is given in the form of a
polynomial of the second and fourth degree, while the vector of nodal forces from distributed loads is not provided. A
common drawback of works that take into account second and higher order polynomials in the function of stiffness change
along the length is the complexity of calculating the stiffness matrix. For example, according to [26], to obtain the stiffness
matrix coefficients, it is required to calculate expressions of the form sin[e /n (A)] (the original notations are preserved),
which complicates the analysis of limiting cases and the implementation of solutions in commercial software packages.

To obtain an accurate stiffness matrix, the differential equation for plane transverse bending of a beam with variable
stiffness, known from the course on strength of materials, is considered:

2 2
%(DZ %} =q. (20)

Given the form (1), the general solution to the homogeneous equation (20) will contain a logarithm. We eliminate the

dimensional quantities under the logarithm sign by replacing the variable using the formula:

x=pL, 02p=1. 21
Considering (21):
dv 1dv
g=dr_Ldv (22)
dx Ldp

As aresult, general solution [27] of equation (20) takes the form:
2 *
v(p)=Ci+Cy(p—a) +Cs(p—a)+Cy(p—a)inlp—af+v", (23)
where o=/ (yo— 1), v' — particular solution to the inhomogeneous equation. Due to its cumbersome nature, the
particular solution is not given.
Solution (23) is valid for the cases yo # V1, p # a, since these cases generate uncertainties that are resolved through
limiting in formulas (31), (32) and (33).
The unknown integration constants are determined from the boundary conditions:
v(0)=vy; V'(0)=@oL; v(1)=v,; V(1)=9,L. (24)
In (24), the prime denotes the derivative with respect to p. Multiplier L at the rotation angles in the boundary
conditions (24) is present due to the introduced change of variable (21), which is reflected in (22). After determining the
integration constants from (24), the moment and shear force in the beam, taking into account the introduced change of
variables, are calculated using the formulas:

Do|wo+p(wi—vo)|d®v(p 1 d d*v(p
M=— 0[ 0 E ! 01 dp(2); Q=—Fd—p(Do[Wo+p(\V1—\V0)] dp(2 )] (25)

The coefficients of the stiffness matrix, taking into account (25) and (12), can be found from the expressions:

X, = _Q(O) =k o +kpQo +hsv Hhue - Fyy
X, = M(O) =kyvo +knQo +kp3vi + k@ — Fy o)

X3 = Q(l) = k3 vo H k3@ +ha3v ka0 — F 50

Xy ==M (1) = kv +kip@o +kyzvy +kay@y —F 4.

(26)

Matrix form (26) is equivalent to the one obtained earlier (18). The stiffness matrix in the case under consideration

will take the form:

2870 2LE®, 2820 —2LE®,
D, | 2L&oy | L (2yowo =€) | 2L&wy | —L* (2yo0, +E7)
[]= BL | 287 —2LEm, 2670, 2LEw, 27)
“2LEo, | -L* (2yoo; +82) | 2LEw, | (29,0, +E?)
In (27), the following notations are introduced for the sake of compactness:
A=In(yo /1) E=yo—wi B=A(yo+Wi)=2& @ =yoh—& o =yAr-E (28)
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To implement the proposed stiffness matrix in software, it is critical to be able to transform distributed loads into a
nodal force vector. The exact expressions for vector F, , are given below.

gL 20 (23 +2vow, —v?) 383y - ) ]|
6BE
qu [27“1/0 (\I/o + 2W1)—§(5W0 +y, )]
_ 12BE
F, - | (29)
gL 20 (w3 =2 0w, ~ 2y} ) - 3&(wo -3y, |
6BE
ql? [27“!/1 (2W0 +\V1)_E,~(‘V0 +35y, )}
L 12B8 ]

The main advantage of the obtained matrix (27) and vector (29) is the simplicity of implementation, as well as the
absence of series and special functions in the calculations.

When solving certain problems, it is more convenient to relate section stiffness coefficients yo and vy to the curvature.
In this case, it is necessary to know how the curvature is related to the displacements and rotation angles of the nodes of
the element. Formula (5) can be used for this. Knowing how the moment is expressed at the beginning and end of the
element according to formulas (26), we obtain:

d? M (0 1

KZ i = _%(0)) = _Do\l’o (k21V0 +hknQo +kyvy + k@, _Fq,Z);

| Mp=1) (30)
_;} == P= = (k41V0 +hkyp@o +kg3vi + ki _Fq,4)'

ax=| _; D, (x=L) Dy,

Cases yo=0, y; =0 and yo=y; =\ generate uncertainties of various types in matrix (27) and vector (29). Let us
develop them.

Case yo = 0.
1]o]|-1]L qL/3
(k)= 222 L0 ) O 31)
rr |-10 =L "% | 2qL/3
L|0|-L|L? —ql* /6
Case y; = 0.
1| L]|-1]0 2qL/3
2
[k]=2Rowo| L LT LTELR) |0l @2)
rro|-1|-L 0" 7 | qL/3 ]
00|00 0

From (31) and (32), it is evident that the columns and rows of the stiffness matrix, as well as the components of the
nodal force vector from distributed loads associated with the bending moments at the left and right ends of the finite
element, respectively, are set to zero — which corresponds to equation (5). The vanishing of the bending stiffness can
occur, for example, when tensile reinforcement breaks, or the compressed zone of a reinforced concrete beam fails in any
section. In the case of a statically indeterminate beam, the structure can continue to function during such failures. In
commercial software packages, when such situations arise, hinges are typically activated in the calculation model.

Case o = 1 = y. This case corresponds to the classical stiffness matrix.

12 | 6L |-12] 6L qL /2
2 2
[K]:DO"’ OL | 4% | 6L |2L* | — ql* /12 33)
3 |-12|-6L| 12 |-6L| "¢ qgL/2 |
6L | 21> | -6L | 417 —qL* /12

In practical calculations, to reduce computational errors that may accumulate during the calculation of the stiffness matrix
components and factors (28), it is recommended to use formulas (31), (32) and (33) not when strictly reaching the limiting
case, but when approaching it. For example, set the threshold conditions for using (27) and (29) in the form y; > 10 and
[1 — o/ yi1| > 1073, The specified values are approximate and depend on the specific implementation features.
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Figure 3 shows graphs of three elements of the stiffness matrix, calculated using formulas (11) and (27) for
Y1 = D() =L= 1.

ki,js St
0.8 }
0.6 |
0.4+
02+
00 02 04 06 08  w
- kllTO‘lH./lz P kzzroqﬂ./4 - klzTqu'/6
- — knnpvxﬁ_x./IZ - — kzznpyxﬁ_x./4 . klzupuﬁu./é

Fig. 3. Dependences ki1, k22 and k12 on wo. Solid lines are based on exact stiffness matrix (27);
dashed lines — on approximate matrix (11)

The results presented in Figure 3 show that, for yo = 0 and the corresponding boundary conditions, the stiffness matrix
coefficients associated with the moment at the left edge vanish in the exact matrix (27) — this corresponds to the physical
meaning. Approximate stiffness matrix (11) does not have this property. With a significant difference in stiffness, at the
beginning and end of the element (yo / v <0.2), values of the coefficients of the exact and approximate matrices can
differ by up to 100% (excluding from consideration the limiting case yo — 0). In such situations, it is recommended to
use exact stiffness matrix (27). Similar conclusions can be drawn for the right edge of the finite element.

Research Results. To demonstrate the results obtained using the proposed stiffness matrices, calculation examples
are performed for beams of length 2L, shown in Figure 4.

/’ [T
"’Tﬂ

I | ]
T L | 1 L L

a) b)

Fig. 4. Schematic diagrams for calculation examples:
a — clamped beam of length 2L, loaded with concentrated force;

b — the same under uniformly distributed load

Due to symmetry with respect to x = L, half of the beam is considered in the solution. The boundary conditions under
the action of a concentrated force (diagram in Fig. 4 a) are as follows:

v(0)=0, v/(0)=0; v'(L)=0; (D.v")| =-P/2. (34)
Similarly for the case of distributed load (diagram in Fig. 4 b):
v(0)=0; v'(0)=0; v'(L)=0; (Dov")| =0 (35)
x=L

The following stiffness distribution function along the beam length is considered:
2 2
D, (x)=D0 {so —%(3% +5 —4)+%(S0 +S1—2):|, 36)

so and s1 — beam stiffness coefficients at the beginning and middle of the span, that is, D.(0) = Doso and D-(L) = Dos;. In
this case, D-(L / 2) = Dy. It is important to note that (36) determines the law of stiffness change along the length of the
beam as a whole, while (1) — along the length of the finite element.

Function (36) is selected on the base of the method of load application and the boundary conditions. In this case, for
a beam of constant stiffness, the moments at the support and in the middle of the beam reach maximum values. If the
beam material is reinforced concrete, cracks and a decrease in flexural stiffness should be expected at these points [27].
At a quarter span, the moments are close to zero and, consequently, the stiffness is close to the initial DAL / 2) = Dy.
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Figure 5 shows the graphs of the stiffness distribution along the length of the beam, as well as the approximation
methods under consideration for two alternatives: option 1 — so = 0.001, s; = 1.0; option 2 — 50 = 0.6, 51 = 0.2.

D. /D, D./ Dy

1.0 %l?_'* 1.0

/ s1=1.0
/ 50=0.6

0.5 1 / 0.5

so=1073 s1=0.2

0.0 0.2 0.4 0.6 0.8 x/L 0.0 0.2 0.4 0.6 0.8 x/L
—1la —2a —3a —1b —2b —3b
a) b)
Fig. 5. Stiffness D-(x) / Do distribution along the beam length:
a— option 1 — 50 =0.001 and 51 = 1.0; b — option 2 — 50 = 0.6 and s1 = 0.2.

Curves 1 a, 1 b — initial function; 2 a, 2 b — piecewise linear approximation;
3 a, 3 b — discrete approximation

From the results presented in Figure 5, it is evident that the linear approximation, even with five finite elements,
provides satisfactory agreement (the deviation does not exceed 5%) with the initial function of stiffness change along the
length for the examples under consideration. High accuracy is maintained when approximating the stiffness with a
piecewise linear function for variable cross-sections of complex shape [28]. The value of the average stiffness for discrete
approximation was calculated using the formula:

. (x) dx. 37
The results of calculating the coefficients for the stiffness matrices of finite elements are given in Table 1. For discrete
approximation, yo =y = y.

Table 1
Coefficients of Element Stiffness Matrices
Element 1 2 3 4 5
X; X1 0.0 0.6 0.6 1.2 1.2 1.8 1.8 24 24 3.0
Option 1: 50 =0.001 and s; = 1.0
Coeff. yo,1 Yo (T VYo Vi Yo Vi Yo Y1 Yo Vi
Linear 0.001 0.52 0.52 0.88 0.88 1.08 1.08 1.12 1.12 1.0
Discrete 0.274 0.714 0.993 1.113 1.073
Option 2: 50 = 0.6 and s; = 0.2
Coeff. yo,1 Yo (T VYo Vi Yo Vi Yo Y1 Yo Vi
Linear 0.6 0.904 | 0.904 | 1.016 | 1.016 | 0.936 | 0.936 | 0.664 | 0.664 0.2
Discrete 0.768 0.976 0.992 0.816 0.448

Since an elastic problem is being solved, the results of calculating the stress-strain state components depend linearly on
the load magnitude and initial stiffness Dy. Therefore, in the calculation, these quantities are assumed to be equal to unity.

The solution to equation (20) with boundary conditions (34) and the law of stiffness change (36) is found analytically
for values so and s; under consideration. Due to its cumbersome nature, this solution is not presented here. It was not
possible to obtain an analytical solution for arbitrary values so and s.

The results from the obtained analytical solution were then compared to the results of the finite element calculation.
In the basic calculation, the beam was divided into five finite elements. To study the effect of the number of finite elements
on the accuracy of the results, a series of calculations were performed in which their number varied.
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Based on the calculation results, the error value was determined in comparison with the analytical solution. To
formulate conclusions regarding the required number of elements, a 5% error threshold was adopted. Conclusions
regarding the feasibility of applying this approach in practical calculations were based on the assumption that the threshold
accuracy was achieved with fewer than 60 elements — in this case, the finite element length was 50 mm. Using a finer
granularity is impractical for calculating beams in building structures — it significantly increases computational costs
and calculation time. The maximum number of elements in the calculation examples was set to 400 (with a finite element
length of 7.5 mm). With a larger number of finite elements, the solver implemented by the author began to accumulate
computational errors.

Example 1. Solution to the problem of bending of a clamped beam loaded at the center with a concentrated force. A
sketch of the calculation scheme is shown in Figure 4 a. The stiffness distribution is adopted according to option 1:
s0=10.001 and s; = 1. The graph of the stiffness function for this option is shown in Figure 5 a. Figures 6 and 7 show the
results of calculating the deflections and bending moments, as well as the calculation error.

0.0 0.‘5 1.‘0 1:5 2.‘0 2.‘5 xmoo5 ot

0.8] ol

1.6

321

v+ Do/P, m*{ 0.0 0.5 1.0 M.

ODia €22 A3a =—4a O ¢2b A3b
a) b)

Fig. 6. Results of deflection calculations for the example: @ — calculation results of deflection v depending on x;
b — calculation error depending on the number of finite elements. 1 @, 1 b — linear approximation and exact stiffness matrix (27);
2 a, 2 b — linear approximation and approximate stiffness matrix (11);
3 a, 3 b — discrete approximation; 4 a — analytical calculation results

00 05 10 15 20 25 wm ol
(m]
10}
O

(m]
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a) b)

Fig. 7. Results of moment calculations for example 1: a — calculation results of bending moment M depending on x;
b — calculation error depending on the number of finite elements; 1 a, 1 b — linear approximation and exact stiffness matrix (27);
2 a, 2 b — linear approximation and approximate stiffness matrix (11);
3 a, 3 b — discrete approximation; 4 ¢ — analytical calculation results

Example 2. Example 1, considered previously, represents a case close to the limit, since the stiffness at the left edge
of the beam tends to zero. For a more objective assessment of the accuracy of the approaches under consideration, a
similar series of calculations was performed for the case of a smooth change in stiffness. Figures 8 and 9 present the
results for option 2 of the stiffness change, namely for so = 0.6 and s; = 0.2. The graph of the stiffness function for this
option is shown in Figure 5 b.


https://vestnik-donstu.ru/

Advanced Engineering Research (Rostov-on-Don). 2025;25(4):275-289. eISSN 2687-1653

0.0 0.5 1.0 1.5 2.0 2.5 X, m 5.%1
: : : : : : ’ O a
10+ A
4 A
o A
51 A
oo &y,
A
*%9s Aaa
RALLTITTTTN
0 5 10 Nec.
Oia ¢2a A3a =—4a Oib ¢2b A3b
a) b)

Fig. 8. Results of deflection calculations for example 2: @ —calculation results of deflections v depending on x;
b — calculation error depending on the number of finite elements. 1 @, 1 5 — linear approximation and exact stiffness matrix (27);
2 a, 2 b — linear approximation and approximate stiffness matrix (11);
3 a, 3 b — discrete approximation; 4 ¢ — analytical calculation results
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Fig. 9. Results of calculating moments for example 2: a — calculation results of bending moments M depending on x;
b — calculation error depending on the number of finite elements. 1 @, 1 5 — linear approximation and exact stiffness matrix (27);
2 a, 2 b — linear approximation and approximate stiffness matrix (11);
3 a, 3 b — discrete approximation; 4 a — analytical calculation results

Example 3. The problem of bending of a clamped beam under a distributed load. The sketch is shown in Figure 4 b. The
calculation results in Figures 10 and 11 were obtained for option 1 of the stiffness distribution, i.e., for so =0.001 and s; = 1.

0.0 0‘.5 1‘.0 175 2‘.0 2‘.5 X, ‘m T
3.0¢4 10}
6.04 H
5 =
9.04
v+ Dyg, m*] 0 10 100 7o
Oila ¢2a A3a =—4a Oib ¢2b A3b
a) b)

Fig. 10. Results of deflection calculations for example 3: @ — calculation results of deflections v depending on x;
b — calculation error depending on the number of finite elements; 1 a, 1 5 — inear approximation and exact stiffness matrix (27);
2 a, 2 b — linear approximation and approximate stiffness matrix (11);
3 a, 3 b— discrete approximation; 4 a — analytical calculation results
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Fig. 11. Results of calculating moments for example 3: @ — calculation results of bending moments M depending on x;
b — calculation error depending on the number of finite elements; 1 a, 1 5 — linear approximation and exact stiffness matrix (27);
2 a, 2 b — linear approximation and approximate stiffness matrix (11);
3 a, 3 b — discrete approximation; 4 ¢ — analytical calculation results

Discussion. Based on the analysis of the results shown in Figures 6 and 7, the following conclusions were formulated.
In cases of significant changes in stiffness, as in Example 1, only the exact stiffness matrix (27) provided obtaining results
comparable with an analytical calculation. In this case, the threshold accuracy of 5% was attained with five finite elements
for displacements (Fig. 6 b) and with six finite elements (Fig. 7 b) for bending moments. Using the approximate stiffness
matrix (11), similar accuracy was attained only with 90 and 180 finite elements for deflections and moments, respectively.
Discrete approximation allowed us to obtain the threshold accuracy for deflections with 220 finite elements. For moments,
the required accuracy for discrete approximation was not attained even with 400 elements.

The calculation results for a distributed load, shown in Figures 10 and 11 for Example 3, are similar to those shown
in Figures 6 and 7 for Example 1. The key difference is that the accuracy of the results when using the approximate
matrix (11) and the discrete approximation has decreased. Thus, it can be concluded that the calculation results are affected
not only by the stiffness matrix — exact or approximate — but also by the vector of nodal forces from distributed loads.

Based on the calculation results for a smooth change in stiffness, shown in Figures 8 and 9 for Example 2, the following
conclusions were drawn. The approximate (11) and exact (27) finite element stiffness matrices for a smooth change in
beam stiffness along its length allowed for comparable results with fewer elements. For example, to attain an error of 5%
when calculating deflections using the proposed matrices, no more than four finite elements were required, compared
with eight for discrete approximation. Thus, even in the case of a smooth change in stiffness, a linear approximation
within a finite element allowed for a two-fold reduction in the degree of discretization of the calculation model, while
maintaining comparable calculation accuracy.

The results presented in Figure 8 b and Figure 9 b have a unique feature. The results obtained by the approximate
stiffness matrix (11) with the same number of elements showed a smaller deviation from the analytical solution than the
results obtained by the exact matrix (27). This was due to the convexity (Fig. 5) of the stiffness change function along the
length. In this case, the area of the figure bounded above by the approximation was smaller than the initial. Consequently,
the deflection value obtained by the linear approximation was greater (0 a). From the results of calculating the coefficients
of the approximate (11) and exact matrix (27), shown in Figure 3, it was clear that the approximate matrix (11) had greater
stiffness, which partially compensated for this effect and reduced the total error. Below is matrix [AK], whose coefficients
were calculated from the formula where AK;;= Kf]’-ma/ K7™ e Kf]’-ma — coefficients of matrix (11);
K7™ — coefficients of matrix (27). The calculations were performed for parameters yo = 0.664, y1 = 0.2, Do = 1.0 and
L = 0.6, which corresponds to the fifth finite element for option 2 of the stiffness distribution.

1.09 1.08 1.09 1.11
1.08 1.06 1.08 1.14
[2K] = 1.09 1.08 1.09 L11|

.11 1.14 1.11 1.09

(3%

The average value of the coefficients of matrix (38) is 1.098. Therefore, the stiffness of finite element 5 will be
approximately 10% higher if the approximate stiffness matrix is used (11).
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Conclusion. This paper proposes and verifies an approach to constructing stiffness matrices for beam finite elements
with linear stiffness change along their length. Both approximate (based on a variational solution to the problem) and
exact (by analytical integration of a differential equation) stiffness matrices and corresponding nodal load vectors are
obtained. The key advantages of the resulting matrices are the following.

1. Analytical form of approximate (11) and exact (27) stiffness matrices is presented, as well as approximate (15) and
exact (29) vectors of nodal forces from distributed loads, which makes them easily implemented in existing FEM
programs — both in the author's implementation in Python and in commercial packages.

2. The presented verification examples (Fig. 6-11) allow us to state that even with a relatively rough discretization (a
small number of elements), the linear approximation describes adequately the stress-strain state of beams with both
smooth and abrupt changes in stiffness (including modeling of zones of significant decrease in stiffness).

Linear stiffness approximation provides an optimal balance between accuracy, complexity, and computational
resources, making the proposed method a practical tool for analyzing real-world structures with variable stiffness. A
comparison of calculation results using an approximate and exact stiffness matrix shows that the approximate matrix
allows for attaining the required accuracy with high precision and lower computational costs for beams with smoothly
varying stiffness along their length. For rapid changes in stiffness along the length, as well as in extreme cases, to obtain
significantly higher accuracy while maintaining the same number of elements, it is recommended to use the exact (27)
stiffness matrix. Discrete approximation is only applicable in cases of smooth changes in stiffness along the length.

The resulting stiffness matrices open up possibilities for more accurate and efficient analysis of real structures,
including reinforced concrete elements, taking into account physical nonlinearity — this determines the direction of
further research. It is also planned to obtain a geometric stiffness matrix for solving stability problems and a mass matrix

for dynamic analysis.
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