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1/3 SUBHARMONIC RESPONSE OF DUFFING OSCILLATOR UNDER PERIODIC AND RANDOM
EXCITATIONS™

N. D. Anh, V. L. Zakovorotny, D. N. Hao, N. X. Chiem

The subharmonic response of one third order of Duffing oscillator under harmonic and random excitations is investigated
for the first time by a technique combining the stochastic averaging method, the equivalent linearization method, and
the technique of auxiliary function for Fokker-Planck equation. The averaged equations are linear zed so that the sta-
tionary density function of the approximate response can be found exactly by the technique of auxiliary function. The
one third order subharmonic response obtained by the present technique is validated by numerical simulation. The sig-
nificant contribution of this work is that it may lead to a new trend in investigating subharmonic oscillators in random
nonlinear systems.

Keywords: Duffing oscillator, subharmonic, averaging method, equivalent linearization, auxiliary function, harmonic
excitation, random excitation.

Introduction. In this paper, we are concerned with the Duffing oscillator, which has been applied to model
many mechanical systems and has attracted much attention as a typical nonlinear system. When the system
is under only a harmonic excitation or random one, two popular tools used to study such a nonlinear system
are the averaging method and equivalent linearization method, respectively. The former was originally given
by Krylov and Bogolyubov [1] and then it was developed by Bogolyubov and Mitropolskiy [2-4] and was ex-
tended to systems under a random excitation with the works of Stratonovich [5], Khasminskii [6], and oth-
ers, which were reviewed in survey paper by Mitropolskiy [3], Robert and Spanos [7] and Manohar [8]. The
later, the stochastic equivalent linearization method, which has attracted many researchers due to its origi-
nality and capability for various applications in engineering, was first studies by Kazakov [9], who extended
Krylov and Bogolyubov’s linearization technique [1] of deterministic problems to random problems. This
method was also reviewed in some books by Roberts and Spanos [10], and Socha [11]. Recently, some ap-
proaches to the stochastic linearization have been proposed in Refs. [12-14]. In [13-14], for example, Anh
et al. have proposed a dual criterion of stochastic linearization method for single and multi-degree-of-
freedom nonlinear systems under white noise random excitations. The authors showed that the accuracy of
the mean-square response is significantly improved when the nonlinearity increases.

In a Duffing oscillator under periodic excitation, the phenomenon of subharmonic response has been
known for years and has been described in many textbooks (see e.g. [15-18]) and works (see e.g. [19-21]).
When the system is subjected to a combination of harmonic and random excitations, however, to the au-
thors’ knowledge, although the response of this oscillator has received a flurry of research effort for years
(see e.g. [22-25]), there is no work on its subharmonic response. Thus, in this research, we present a tech-
nique to treat a one third order subharmonic response of a Duffing oscillator subjected to periodic and ran-
dom excitations. The technique is a combination of the stochastic averaging method, the equivalent lineari-
zation method, and the technique of auxiliary function which yields the exact joint stationary probability den-
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sity function (PDF) for the equivalent linear system [4,26,27]. The approximate analytical solution of the
Duffing system obtained by the proposed technique is validated by numerical simulation results, obtained by
Monte-Carlo method.

1. Formulation problem. Let us consider Duffing oscillator under harmonic and random excitations of the
form

E+ghé+8yz3+@2z:Pcosvt+J§G%(t), (1)

where z(1), z(t), (1) are the displacement, velocity and acceleration of the system, respectively; ¢ is a
small positive parameter; # is the damping coefficient; » is the nonlinear stiffness coefficient; « is the
natural frequency of the corresponding linear system when ¢=0; P, v and o are parameters; and
function £(¢) is a Gaussian white noise process of unit intensity with the correlation function
R.(r)=E[£(t)é(t+7)]=5(z), where &(r) is the Dirac delta function, and notation £(.) denotes the

mathematical expectation operator. It is supposed that the natural frequency « is close to v /3, i.e. pa-
rameters » and v have the relation

o ——=c¢A, 2
5 (2)
where A is a detuning parameter. We introduce a new variable x as follows
P
X =z-Qcosvt, Q=——. 3
o —V

Using (3) Eq. (1) can be rewritten in the form

X+0'x= g[—h()‘( —v@sinvt)—y(x + Qcosvtﬂ +eoz(t). )
Substituting (2) into Eq. (4) we obtain

x+(\§) X =F (x,%,t)+Ject (1), (5)
where
F(x,%,t)=~Ax — h(X —v@sinvt)—y(x + Qcosvt)’. (6)
We seek the solution of Eq. (5) in the form of
. . bv . v dv %
XZbCOSXt-i-dSInXt,X=——SIn—t+—COS—t, 7
3 3 3 3 3 3 )

where b and d are slowly varying random processes satisfying an additional condition
bCOS%t-FG"Sin%t:O. (8)

Substituting (7) into Eq. (5) and then solving the resulting equation and Eq. (8) with respect to the deriva-
tives b and d yield

b= —%(SF ++Ject (t))sin%t,

3 . %
d= ;(SF +Jecé (t))cosgt,

where, noting (6) and (7),
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bv . v dv v .
F=-Albcos~t +dsin—t |- h| -Lsinst + Zcos~ ¢ - vOsinvt
(cos3+ 3} ( 3 3+3 3 vQ@ vj )

3
—y(bcos§t+dsin§t+0cosw‘j .

The pair of stochastic differential equations (9) can be simplified by using the stochastic averaging method
[3-7]

3\/50 :

[):ng(b,d)-i-— 1([‘),

va/2 (11)
d =cH, (b,d)+ 3€G £ (t).

A%

Here % (¢) and £, (t) are independent white noises with unit intensity, and the drift coefficients #, (b,d)

and H,(b,d) are determined as follows

1 %3 _ . v v 1%3 v v
H (b d)=——|=Fsin=td| =t |, H,(b,d)=— | =F —td|=t|. 12
1( ) 2n~£v Sln3 [3 j 2 (6,9) 2n g v COS3 (3 j (12)

Substituting(6), (7) into (12) yields the drift coefficients of the system (11)

_h 6A + 9y Q? 9 /. 3
Il7l1 (b’d)__Eb+Td+8_\;(b d+d —Zde),
% b h

4y 2
The Fokker-Planck (FP) equation written for the stationary probability density function (PDF) W (b,d) asso-

(13)

9y
H,(b,d)= d+g(—b3—ob2—bd2+od2).

ciated with the system (11) has the form
0 0

%(Hl (b,d)w)+ E(HZ (b,d)W)=

9% | & o
=~ 2% 1w+ )], 14
4\/2 abz ( ) 60!2 ( ) ( )
Solution of (14) is still a difficult problem so far because functions H,(b,d) and H,(b,d)are nonlinear

functions in b,d . To overcome this, the equivalent linearization method is employed. Following this method,
the nonlinear functions #,,H, are replaced by linear ones. Noting (13), we denote

6,(b,d) =L (#%d + &* ~200d), -
g, (b,d) =%(—b3 _ Qb - bd® + Qd).
According to the stochastic equivalent linearization method the nonlinear functions (15) are replaced by
g, (b,d) =, b +n,d + 15,
g, (b, d) =Ny D +Mud + My,

where linearization coefficients n;/=127j=1,23 are to be determined by an optimization criterion.

(16)

Thus, the functions 4.,/ =1,2 in (13) are replaced by linear functions
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h 6A +9y(Q?
H1 (b,d) :(_E"‘nnjb"'[—;—yq"'nujd"'nmr
' (17)
_6A+9yQ2
4

A%

h
Hz(b,a’):{ +n21jb+(—5+n22jd+n23.

According to the technique of auxiliary function with the constant auxiliary function taking the form (see
[4,26,27] for details)

6A + 9y’
962 _27"' 21 ~ M2
UO = —2 v ’ (18)
4v A+, +My

the corresponding FP equation to Eq. (14), where drift coefficients are linear functions (17), has the follow-
ing exact solution

W(b,d)=Cexpl—tb* -1,d> +1.bd +t,b+1.d}, (19)
1 2 3 4 5

where C is a normalization constant and coefficients <,/ =1,5 are determined as follows

h 6A +97Q? 6A +97Q?
T, ==V (—E-‘rﬂnj(_h-i-nn+nzz)+[—Tm+nz1)[_Tw+nz1_n12]]'
h 6A +9yQ? 6A +9yQ?
n,=-F (_h+n11+nzz) 5 TN, | _—YQ"'nn_HQ —YQ'HMZ ’
2 2v 4v
6A +9vQ? h 6A +9vQ? h
1, =2¥ {—T"‘nzl —5+nzz + T"'nu _E"'nn ' (20)
6A +9yQ?
1, =2 | Ny (_h"'nn +nzz)+n23 {_Tw+n21 _nuJJ '
6A +9vQ?
T, =2%¥ {—Z—VY‘*‘WH—nn}?m+(_h+n11+nzz)n23jr
where
w o 2v? (_/7 +My,; +2nzz) _ (21)
6A +9yQ”
952 [{-4_2\}'}/0"'7]21 _n12j +(_h M +n22)2]

It is noted that the joint PDF W(b,d) determined by (19) has finite integral if coefficients 7, and r, are
positive. Therefore, the approximate stationary PDF of Eq. (14) is determined by (19) whose coefficients are
given in (20). It is seen from (19) that random variables » and d are jointly Gaussian. Thus, from(19), one
obtains

E(b)— 27,1, + T, d) - 2ut +T, , 2%, 2
ar— = > 1 % =7 =1 (22)
T, — T T~ T — 13
) 21, 3 (N
04 = 71 Koy = !
4t.1, —1 4t 1, — 12
172 3 172 3

where o} and o2 are variance of b and d, respectively, and k,, is covariance of b and d. It is seen
from (22) that necessary statistics of processes & and 4 can be computed algebraically based on coeffi-
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cients of joint PDF W(b,d). Thus, the approximate solution (19) of Eq. (1) is completely determined when
the linearization coefficients n,./=1,2,j=1,2,3 are found.
There are some criteria for determining the coefficients ny [20]. In this work, we use the mean square

error criterion which requires that the mean square of the following errors be minimum [10,11]. From (13),
(15)-(17) we have the errors when using linearization method to be

=g, (b,d)-(nb+n,d +n,),i=1,2. (23)
So, the mean square error criterion leads to
E(e?)-= E{[g, (b,d)— (nyb +7,d + n,3)]2} S min, j=1,2; j=1,2,3. (24)
From
iE(e})zo, i=1,27=123, (25)
;
it follows that
,_c[bg1 d)]-E(6*)n, —E(bd)n, —E(b)n,; =0,
E[d g,(6,0)]- £ (bd)n, ~E (@), ~ £ ()5 =0,
Ela. (b, ] ~E(b)ny ~E(@)n, —my =0, 6)
E[bg,(b,d)|-E(b*)n, - E(bd)n,, — £ (b)ny, =0,
[

Eldg,(b, d] (bd )y, — E(d*)ny, - E(d)ny =0,
[gz (b,d)} —E(b)n21 _E(d)nzz ~ M3 =0,
where g, (b,d), g,(b,d) are given by (15). Using the fact that b and ¢ are jointly Gaussian, all higher

moments of b and ¢ in (26) can be expressed in terms of the first and second moments of b and ¢ by the
following properties of a Gaussian random vector X = (X, X,)=(b,d) [28]

E(X")=E(X)E(X)+nc’ E(X),

27
E(X X[ X2 )= E(X)E (XX )+ mk,  E(XPX2 )+ ok, E (XX, 7 =1,2. @7
Solving system (26) in n, ,/=1,2; j =1,2,3 with noting (27) gives
s = (ks + E()E(d) - OB (),
n12=%(52+52(b)+3oj+352( ) - 2QF (b))
9 2 3
n13__4_Y(kad+E( )E( ) QE ( ) ( )+E (d))
gv (28)
e = 2L {303 4367 (0) 3 + £°(0) +20E (0)
s =~ 3 (ki + £ (6 E (d) - OE (@)
s =g (9% ~26° (6) - QF* (6) + QE* (d) ~26 (b) E* (d) - Q7).
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Thus, n,,7=1,2; j =1,2,3 are determined from the closed system of eleven equations for eleven unknowns
n,, 1=1,2;7=1,2,3; E(b),E(d),c,,55,k,, , obtained by combining equations in (20), (22), and (28).
After being found by solving this closed system, the values of coefficients n,, F=12; j=1,2,3 areto be

substituted into (19) to obtain the approximate stationary PDF in » and d of Duffing equation (1).
From (7), the mean square response of Eq. (5) can be determined as follows

E[x*(t)]=E (£*)cos? %t+E(d2)sin2 %t +E(bd)sinz—3vt : (29)

Taking averaging with respect to time Eqg. (29) gives
2 1°% 2 v 1 2 2
(E[x*(8)]), :Z!;E[x (t)]d(gtjzz(f(b )+E(a?))- (30)

From properties of a variance of a random variable [28], Eq. (30) can be rewritten as
(E[x*(t)]), = %(EZ (b)+0} +E2 (d)+02). (31)
Substituting (22) into (31) and reducing the obtained result yield the time-averaging of mean square re-
sponse to be
B (2'52'54 + 15T )2 + (2'51'55 +1,7T, )2 T, +7T

(E[x*(1)]). = y7e— e (32)

where <,/ =1,5 are given by (20). From (3), one obtains

<E(z2 )>t = % fE[(x (t)+Qcos vtﬂd(%j = <E ES (t)}>t + %2 (33)
Substituting (32) into (33) yields
<E (ZZ )>t _ (2'52'54 + '5315) + (2’5115 + 1314) LUt Q? (34)

2 (41112 - ’C§ )2 4tT, - T; 2

This formula shows that the time-averaged mean square one third order subharmonic response of the sys-
tem can be computed from the coefficients of the stationary PDF (19).

2. Numerical results. In the numerical simulation, the parameters in system (1) are chosen as follows
o=1,v=3.01, €=0.01,y=1, A=2, P=1. The various values of the subharmonic response of Duffing

equation (1) are compared to the numerical simulation results versus the parameter *. The numerical sim-
ulation of the time- averaged mean square response <zz>gm is obtained by 10,000-realization Monte Carlo

simulation with time : in the interval (900s, 1000s). The time-averaged mean square response <E (zz)>[ of

the Duffing oscillator, obtained by the system (22), (28) and (34), are compared to a numerical result. The
response versus the parameter o is evaluated in Table 1 where the error is defined as
2 2
|<Z >s/n7 _<E (Z )>t
Err = x100% . (35)

(2 ).

It is seen from Table 1 that the proposed technique gives a good prediction. Moreover, Fig. 1 portrays the

variation of the mean square subharmonic responses <E (zz)>t obtained by the present technique with the

noise parameter o compared to ones obtained by Monte-Carlo simulation. It is seen that the theoretical

prediction and the simulations agree very well.
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Table 1
The error between the simulation result and approximate values of the time-averaging of mean
square response (2’ (t)>t versus the parameter 6> (0=1,v=3.01,P=1,h=2,e=0.01,y=1)

52 <z2 >sim <E(ZZ)>t Err(%)
0.1 0.0323 |0.0331 [2.48
0.5 0.1328 |0.1350 (1.69
1 0.2599 |0.2626 |1.03
2 0.4978 |0.5136 [3.18
3 0.7272 0.7607 [4.61
4 0.9850 1.0074 |2.28
5 1.2271 1.2545 2.23

15 T

Analysis

% Simulation

<E(z%)>,

Fig. 2. Effects of & and P on the mean square subharmonic response, @ =1,v =3.0L, =0.0L,h = Ly=1
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Fig. 3. Effects of & and / on the mean square subharmonic response, @ =1,v =3.01, =0.0,P=1,y =1

Next, we investigate the effects of the noise intensity o, external force amplitude P, and the
damping term % on the one third order subharmonic response based on equations (22), (28) and (34). With
initial values

(n11ln12In13ln21ln221n23) = (_11_111101_111) ’
and the input parameters ® =1,v=3.01, ¢ =0.01, y =1, theoretical results are shown in Fig. 2 and Fig. 3.

It can be observed that from Fig. 2 that the mean response amplitude increases when harmonic excitation
increases. In Fig. 3, we can see that for given parameters o, v, P, g, v the time-averaged mean square re-

sponse decreases as the damping coefficient increases.
3. Summary and conclusions. The averaging method and the equivalent linearization method are famous
tools in studying nonlinear systems subjected to harmonic and random excitation, respectively. A combina-
tion of those methods will give a power tool to study complex systems. In this work, the subharmonic re-
sponse of one third order of Duffing oscillator under a combination of harmonic and random excitations is
investigated. The technique used in our research is a combination of the two famous methods mentioned
above and the technique of auxiliary function to overcome the difficulty in solving the corresponding FP
equation. The key steps of the technique are summarized as follows. First, the stochastic averaging of the
equation (1) is carried out in Cartesian coordinates by the transformations (3) and (7). The drift coefficients
of the averaged equations in the system (11) are polynomial forms in random variables which give an ad-
vantageous context to apply the equivalent linearization method. The linearization coefficients are deter-
mined by a closed system including the equations in (22), (28) and (34). The FP equation associated with
the equivalent linearized system can be solved exactly by the technique of auxiliary function. The theoretical
results are agreed well with numerical simulations.

It appears that the new approach gained through this study has a large potential and it will become
helpful for other types of nonlinear systems.
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Cy6rapMoHHMYecKUii OTK/IMK TpeTbero nopsaka gnsa ocuvwnasaTtopa [ydduHra, BozMyLLEHHOro
rapMoHMYeCKMM M CriyuyaiiHbiM BozaencTBueM”

H. A. Aub, B. J1. 3akoBopoTHbiii, [l. H. Xao, H. X. Tbem

B cTarse Briepssie UCCIICAYETC CybrapMOHUYECKUI OTRITUK TPETBEO MopsaKa ocymiaropa [ygdurra Ha ocHose Me-
T04a CTOXaCTUYECKOIO YCPEAHEHHUS U O4HOBPEMEHHO CTOXaCTHUYECKOU TMHEapHU3aLmu. TIpu 3TOM UCIIONIb3yeTCs Pa3paba-
TBIBACMBI ABTOPaMU METOZ BCITOMOraTe/ibHbIX QYHKUMA 4715 ypasHeHus Qokkepa — ITnaHKa. YCpeJHEHHBIC YpaBHEHHUs
JIMHEAPHU30BaHbI TaK, 4TO IVIOTHOCTHAS CTALHMOHAPHAS DYHKUNUS MPUGTIIKEHHOrO OTRITUKA MOXET 6bITh T0/TYYEHE TOYHO
C ITOMOLYBIO METO4a BCIIOMOraTe/IbHOH PyHKUmMH, 1071y YeHHbIE HA OCHOBE pa3paBoTaHHOrO METO4Aa PELUCHHUS CDABHUBA-
10TCH C YUCTIEHHBIMU PELUCHUIMU. SHAYEHUE ITOHU PABbOTLI 3aKTIOYACTCS B TOM, YTO IPELJIONCHHBIUA METOH MOXET pH-
BECTH K HOBOH TEHACHLMHU B UCC/TEA0BAHMU CyBrapMOHUYECKUX OCYMIISTOPOB B CITYHAUHBIX HETMHEUHBIX CUCTEM,
KnroueBbre croBa: ocywuigrop Joggurra, cybrapMoHMKa, METO[ YCDEAHEHUS, IKBUBAJICHTHAS JIMHEAPHU3IALMS,
BCIIOMOratesibHas QyHKYMS, rapMOHUYECKUE BO3GYIKLCHIUS, C/TYYaHHBIC BOIOYIKACHMUS.

* PaboTa BbIMONHEHA NpU MOAAEPXKE HaumoHanbHoro doHaa pasBuTUs U Hayku BeeTHama (NAFOSTED), BbeTHaMCKOrO HaLMOHaIbHO-
ro ynusepeuteta r. XownmuH (VNU-HCM) v rpaHTa POOU N2 14-08-00206.
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