ТЕХНИЧЕСКИЕ НАУКИ

УДК 621.95.08:51-74

ДИАГНОСТИРОВАНИЕ ОТКЛОНЕНИЙ СВЕРЛА В РАДИАЛЬНОМ НАПРАВЛЕНИИ

В.С. БЫКАДОР

(Донской государственный технический университет)

Рассмотрено применение стробоскопического преобразования А. Пуанкаре для диагностирования отклонений сверла в радиальном направлении.

Ключевые слова: стробоскопическое преобразование А.Пуанкаре, диагностирование технологических процессов.

Введение. Одной из проблем процесса сверления глубоких отверстий является обеспечение геометрической точности параметров отверстия [1, 2]. Под погрешностью геометрических параметров отверстия, как правило, понимаются отклонения действительного диаметра отверстия от его идеального диаметра (разбивка отверстия) и отклонение действительной оси отверстия от его идеальной оси (увод оси отверстия). Известно, что на разбивку отверстия и увод его оси влияют отклонения сверла в радиальном направлении. Одним из современных и эффективных способов устранения радиальных отклонений сверла является адаптивное управление процессом сверления. Законы управления процессом сверления необходимо строить на основе изучения динамики процесса обработки, которая отражает в себе как процессы, протекающие в зоне резания, так и особенности технологической системы, приводящие к различным погрешностям обрабатываемых отверстий. Однако существует немалое число факторов (срыв нароста, неравномерное продвижение стружки по стружкоотводящим канавкам, погрешности элементов технологического оборудования, неточность движений исполнительных органов и т.п.), которые приводят к упругим деформационным смещениям вершины сверла и которые сложно учесть в динамических моделях,

так как эти факторы имеют случайный характер. Поэтому целесообразно формирования помимо законов управления, учитывающих динамику технологической системы, выполнять диагностирование упругих отклонений вершины сверла в реальном времени процесса сверления и вводить соответствующие коррекции в законы управления с целью устранения геометрических погрешностей отверстия. Постановка задачи. Изучение взаимосвязи между отображениями стробоскопических точек на плоскостях А. Пуанкаре с соответствующими радиальными отклонениями сверла.

Базовые положения. На рис.1 приведена схема измерения радиальных отклонений сверла бесконтактным способом при помощи токовихревых датчиков.

Рис.1. Схема измерения радиальных отклонений сверла при помощи токовихревых датчиков

Радиальные отклонения вершины сверла в ортогональных направлениях представляют собой вектор непрерывных функций времени $Y = \|y_1(t), y_2(t)\|^T$, анализ которых позволяет установить значения отклонений по каждому направлению, вид отклонений и их тренд во времени. Однако следует учитывать некоторые важные обстоятельства. Во-первых, цифровая реализация системы диагностирования приводит к тому, что в действительности анализируются не исходные непрерывные функции $y_1(t)$ и $y_2(t)$, а их дискретные аналоги $y_1(t_k)$ и $y_2(t_k)$, потенциально несущие меньшее количество информации. Во-вторых, выше было отмечено, что реальный процесс резания является потенциально возмущенным, поэтому процесс резания сопровождается силовым шумом. Отметим, что составляющие силового шума не зависят от координат состояния системы. Таким образом, необходимо анализировать некоторый случайный процесс дискретного характера. Обоснование введения стробоскопического преобразования А.Пуанкаре. Процессы, протекающие в зоне резания, находятся в частотном диапазоне, определяемом частотой вращения шпинделя станка ω_p . Собственные колебания системы, как минимум, на порядок выше частоты шпинделя ω_p , поэтому можно считать, что резонансные свойства подсистемы инструмента проявляться не будут. Другими словами, основные факторы, вызывающие разбивку диаметра и увод оси отверстия, вызваны возмущениями, связанными с физическими явлениями, сопутствующими процессу резания и периодически повторяющими с периодом, определяемым частой вращения шпинделя ω_p . Для выявления таких периодичностей удобно использовать стробоскопическое преобразование А. Пуанкаре от вектора непрерывных функций У [3].

Вектор *У* представляет собой решения системы дифференциального уравнения (1), описывающего движения вершины сверла в ортогональных радиальных направлениях во временной области.

$$M \cdot \frac{d^2 Y}{dt^2} + H \cdot \frac{dY}{dt} + C \cdot Y = P_Y(Y, S_P, V_P), \qquad (1)$$

где M, H и C - матрицы размером 2×2, определяющие параметры подсистемы инструмента в ортогональных радиальных направлениях; $Y = \|y_1(t), y_2(t)\|^T$ - вектор отклонений сверла в радиальных направлениях; $P_Y(Y, S_P, V_P) = \|P_{YI\Sigma}(Y, S_P, V_P), P_{Y2\Sigma}(Y, S_P, V_P)\|^T$ - вектор-функций динамических характеристик; S_P - подача пиноли; V_P - скорость резания.

Рис. 2. Варианты введения плоскости Π_i на фазовом портрете $\left(dy_i \, / \, dt; \, y_i \right)$

Известно, что решения системы (1) можно представить в фазовых плоскостях с координатами $(dy_i/dt; y_i)$. Тогда, рассекая траекторию изображающей точки Q секущей плоскостью Π_i , можно получить на Π_i проекции траектории точки Q, которые будут представлять собой преобразование А. Пуанкаре фазового портрета. Следует отметить, что плоскость Π_i может быть введена как угодно на фазовом портрете, главное, чтобы было выполнено требование трансверсальности плоскости Π_i к фазовой траектории. Для рассматриваемого случая плоскость Π_i может быть введена одним из способов, показанных на рис.2.

Как видно из рис.2, введение секущей плоскости на фазовом портрете по варианту $\Pi_i^{(1)}$ позволяет анализировать только изменение скоростей dy_i / dt , по варианту $\Pi_i^{(2)}$ - только изменения координат y_i , а по варианту $\Pi_i^{(3)}$ - как изменения скоростей dy_i / dt , так и изменения координат y_i . Так как интерес представляют отклонения радиальных координат вершины сверла y_i , которые формируют геометрические погрешности отверстия, то вполне достаточно ограничиться введением секущей плоскости $\Pi_i = \Pi_i^{(2)}$.

Следует обратить внимание на то, что в общем случае период пересечения фазовой траектории плоскости Π_i может быть различным из-за наличия в решении системы (1) движений, обусловленных многими факторами, поэтому использование преобразования А. Пуанкаре приводит к размыванию точки А.Пуанкаре на плоскости Π_i . Тем не менее, по своей сущности, функции вектора Y являются периодическими. Период данных функций определяется частотой вращения шпинделя ω_p . Таким образом, для анализа радиальных перемещений вершины сверла целесообразно использовать именно стробоскопическое преобразование А. Пуанкаре.

Перед тем как перейти к рассмотрению расположения точек А. Пуанкаре на плоскостях, соответствующих различным видам отклонений сверла, остановимся на некоторых важных моментах. Во-первых, как было сказано выше, период стробоскопического отображения А. Пуанкаре определяется частотой вращения шпинделя ω_p . Так как имеется четыре датчика (см. рис.1), то за один оборот сверла получается по одной точке от каждого датчика. Другими словами, выполняется стробоскопическое преобразование А. Пуанкаре для каждого датчика, а в идеале для пары ортогонально расположенных датчиков. Так как датчики смещены относительно друг друга на угол $\Delta \phi = \pi/2$ (рис.3,*a*), то временные интервалы снятия данных с датчиков будут также смещены на 1/4 периода оборота сверла. Отметим, что частота вращения шпинделя ω_p может иметь вариации $\pm \Delta \omega_p$, поэтому для адаптивной подстройки периода стробоскопического отображения А. Пуанкаре желательно использовать датчик угла поворота, а не формировать период, используя таймер. Во-вторых, так как диаметр сверла D не имеет значения для анализа отклонений его вершины, то целесообразно исключить диаметр D и рассматривать некоторую окружность с радиусом $\Delta^{(0)}$ (рис.3,*6*), которую будем называть базовой. Если отклонения сверла отсутствуют, то все точки будут лежать на пересечении базовой окружности с осями каждого из направлений

смещений Δ_i , в противном случае точки А. Пуанкаре будут находиться не на базовой окружности. Таким образом, базовая окружность является некоторым критерием, характеризующим отклонения вершины сверла в радиальном направлении. В-третьих, следует отметить, что радиальные смещения сверла рассматриваются в плоскости L датчиков, расположенной на расстоянии l_s от точки закрепления сверла (см. рис.1). Так как рассматривается низкочастотная область колебаний инструмента, то деформационные смещения вершины сверла и деформационные смещения сверла в плоскости L можно связать через некоторый коэффициент.

Расположения точек А. Пуанкаре на плоскостях для различных видов радиальных отклонений вершины сверла. При силовом зашумлении процесса сверления диагностирование радиальных отклонений вершины сверла с помощью стробоскопического преобразования А. Пуанкаре возможно только с использованием статистических оценок, например, среднего значения μ_x и дисперсии σ_x^2 расположения точек на плоскостях А. Пуанкаре. Как известно, данные характеристики определяются следующими выражениями [4]:

$$\mu_x = \frac{1}{m} \cdot \sum_{k=1}^m y_k ; \qquad (2)$$

$$\sigma_x^2 = \frac{1}{m-1} \cdot \sum_{k=1}^m (y_k - \mu_x)^2 , \qquad (3)$$

где *m* - число реализаций скользящего среднего; *y*_k - *k* -е значение случайной величины отклонения вершины сверла в радиальном направлении.

Следует обратить внимание на следующие аспекты. Во-первых, вычисление статистических величин μ_x и σ_x^2 необходимо выполнять по каждому направлению Δ_i $(i = \overline{1,4})$. Во-вторых, требуется накопление некоторого количества исходных данных для выполнения достоверного статистического анализа, т.е. необходимо накопить некоторое минимальное количество точек $m_O = \min(m)$, обеспечивающее сходимость оценок μ_x и σ_x^2 к некоторому стационарному значению. На рис.4 приведен пример зависимости сходимости μ_x от количества точек m. Как можно видеть, минимальным количеством точек, обеспечивающим сходимость μ_x , является $m_O \approx 150$. В-третьих, как показали исследования, вместо скользящего окна шириной в m_O точек возможно усреднение по всему ансамблю наблюдаемых величин, т.е. окно не смещается на одно точку, а постоянно расширяется, включая в себя новые точки. Именно такой подход был использован для оценки расположения точек на плоскостях А. Пуанкаре при наличии силового шума.

Рис.4. Пример сходимости оценки μ_x в зависимости от величины выборки m

(для случая убывающей разбивки отверстия по направлению $\,\Delta_{1}\,$)

На рис.5, *а* показано расположение точек и их средних значений μ_x (по каждому из направлений) для случая постоянной разбивки, а на рис.5, *б* для случая убывающей разбивки по мере увеличения глубины засверливания сверла.

Рис.5. Пример расположения точек на плоскостях А. Пуанкаре и их средних значений μ_x (по *i* -му направлению): *a* – постоянная разбивка; *б* – уменьшающаяся разбивка по мере заглубления сверла.

В случае постоянной разбивки диаметра отверстия (см. рис.5,*a*), в начале процесса диагностирования при $m < m_O$ будет наблюдаться изменение величин μ_x вблизи некоторого значения Δ_r (см. рис.5,*a*), при $m \ge m_O$ точка, характеризующая μ_x , стабилизируется около некоторой величины Δ_r .

Аналогичное движения точки μ_x будет наблюдаться и при изменяющейся при заглублении сверла разбивке. Однако в данном случае точка μ_x при $m > m_0$ будет иметь монотонное движение. Например, при уменьшающейся разбивке при увеличении заглубления сверла точка, характеризующая μ_x , будет монотонно двигаться в сторону базовой окружности (см. рис.5,*б*).

Следует обратить внимание, что в случае разбивки диаметра отверстия точки могут располагаться за пределами базовой окружности, что, в свою очередь, зависит от направления вектора радиального отклонения вершины сверла *Y* в момент начала стробоскопического преобразования А. Пуанкаре. Однако все положения, касающиеся как расположения, так и движения средних значений μ_x точек, при разбивке диаметра отверстия останутся в силе.

При уводе оси сверла будет иметь место монотонное нарастание вектора радиального отклонения вершины сверла Y, что приведет к тому, что сверло своей цилиндрической поверхностью будет приближаться к одним датчикам и отдаляться от других. Такое движение сверла будет иметь характерное движение среднего значения μ_x точек по соответствующим направлениям Δ_i (см. рис.6): по одним направлениям μ_x будет двигаться от периферии окружности к её центру, по другим направлениям μ_x будет перемещаться от периферии окружности в бесконечность.

Отметим, что по величинам смещений μ_x , которые обозначены на рис.6 как $\Delta \mu_x$, возможно ориентировочно оценить величину смещения сверла по каждому из ортогональных направлений $\Delta_1 - \Delta_3$ и $\Delta_2 - \Delta_4$, а по направлениям движения точек – ориентировочное направление увода оси сверла. Действительное направление увода сверла противоположно направлению движения точек на плоскостях А. Пуанкаре (см. рис.6). Выше описанный случай относится к отображению развития увода на плоскостях А. Пуанкаре при сверлении без вращения заготовки.

Рис.6. Пример расположения точек на плоскостях А. Пуанкаре и их средних значений μ_x (по i -му направлению) для случая увода оси сверла при отсутствии вращения заготовки

Рис.7. Пример изменения дисперсии σ_x^2 точек на плоскостях А. Пуанкаре по направлению Δ_4 : 1 – увод оси сверла при совместном вращении шпинделя станка и заготовки; 2 – отсутствие каких-либо радиальных отклонений сверла.

По мере возможности для уменьшения увода оси сверла применяют сверление с одновременным вращением шпинделя станка и заготовки, при этом $|\omega_3| < |\omega_p|$ (ω_3 - частота вращения заготовки). В этом случае вектор радиального отклонения вершины сверла *Y* при развитии увода сверла будет совершать вращение с частотой ω_3 , а период стробоскопического отображения А.Пуанкаре будет, как и ранее, зависеть от частоты вращения шпинделя ω_p . Это приведёт к тому, что точки на плоскостях А. Пуанкаре будут располагаться хаотически по каждому Δ_i направлению, а величины μ_x будут лежать на базовой окружности. В этом случае увод вершины сверла можно анализировать по величинам дисперсий σ_x^2 по каждому направлению. Увеличение увода оси сверла приведёт к соответствующему увеличению дисперсий σ_x^2 .

Следует отметить, что минимально необходимое количество точек m_O для данного случая сверления, как правило, в несколько раз больше, чем для ранее рассмотренных случаев.

Однако в случае силовой зашумлённости процесса дисперсии σ_x^2 точек на плоскостях А. Пуанкаре будут иметь место и в отсутствие каких-либо отклонений сверла. Дисперсии σ_x^2 в данном случае будут обусловлены силовым шумом. Тем не менее, величины дисперсий σ_x^2 , вызванных уводом оси сверла при совместном вращении шпинделя станка и заготовки, будут выше, чем величины дисперсий σ_x^2 , вызванных только лишь одним силовым шумом (рис.7).

Выводы. 1. Как можно заметить, расположение и движение стробоскопических точек на плоскостях А. Пуанкаре позволяет однозначно определить вид радиального отклонения сверла и его стробоскопическую оценку, а по скорости перемещения точек по плоскостям оценить интенсивность развития радиального отклонения сверла. Отметим, что для проведения данного анализа удобным является выполнять оценку расположения и движения точек относительно базовой окружности, которая в таком случае является некоторым отображением идеальной поверхности отверстия.

2. Использование даже таких элементарных статистических оценок, как среднее значение μ_x и дисперсия σ_x^2 случайного распределения точек на плоскостях А. Пуанкаре, обусловленного силовым шумом процесса сверления, обеспечивает достаточно приемлемую скорость сходимости последовательности для многих практических случаев и тем самым позволяет использовать плоскость А. Пуанкаре для анализа радиальных отклонений сверла непосредственно во время процесса сверления с целью организации адаптивного управления процессом и предотвращения или снижения геометрических погрешностей отверстия.

Основные результаты в статье получены при финансовой поддержке РФФИ по проекту 07-09-90000.

Библиографический список

1. Троицкий Н.Д. Глубокое сверление / Н.Д. Троицкий. – Л.: Машиностроение, 1971. – 176 с.

2. Дечко Э.М. Сверление глубоких отверстий в сталях / Э.М. Дечко. – Минск.: Вышэйша шк., 1979. – 232 с.

3. Андронов А.А. Теория колебаний / А.А. Андронов, А.А. Витт, С.Э. Хайкин. – М.: Физматгиз, 1959. – 916 с.

4. Бендат Дж., Пирсол А. Прикладной анализ случайных данных / Дж. Бендат, А. Пирсол; пер. с англ. – М.: Мир, 1989. – 540 с.

Материал поступил в редакцию 08.11.10.

References

1. Troickii N.D. Glubokoe sverlenie / N.D. Troickii. – L.: Mashinostroenie, 1971. – 176 s. – In Russian.

2. Dechko E.M. Sverlenie glubokih otverstii v stalyah / E.M. Dechko. – Minsk.: Vysheisha shk., 1979. – 232 s. – In Russian.

3. Andronov A.A. Teoriya kolebanii / A.A. Andronov, A.A. Vitt, S.E. Haikin. – M.: Fizmatgiz, 1959. – 916 s. – In Russian.

4. Bendat Dj., Pirsol A. Prikladnoi analiz sluchainyh dannyh / Dj. Bendat, A. Pirsol; per. s angl. – M.: Mir, 1989. – 540 s. – In Russian.

V.S. BYKADOR

RADIAL DRILL DEVIATIONS DIAGNOSIS

Application of stroboscopic Poincare map for diagnosis of a radial drill deviation is considered. **Key words:** stroboscopic Poincare map, manufacturing activities diagnosis.