УДК 621.762

ИССЛЕДОВАНИЕ МАГНИТНЫХ СВОЙСТВ И ФРАКТАЛЬНОСТИ ПОВЕРХНОСТИ ПОРОШКОВОГО Fe — Р МАТЕРИАЛА — АНАЛОГА ТЕХНИЧЕСКОГО ЖЕЛЕЗА, ПОЛУЧЕННОГО ГОРЯЧЕЙ ОБЪЕМНОЙ ШТАМПОВКОЙ ПОРИСТОЙ ЗАГОТОВКИ

А.Ю. КЕМ

(Донской государственный технический университет)

Установлена связь показателя фрактальной размерности поверхности с особенностями формирования комплекса магнитных свойств порошковых магнитно-мягких материалов системы Fe — P, подвергнутых горячей штамповке.

Ключевые слова: магнитно-мягкие материалы, система Fe — P, магнитная проницаемость, коэрцитивная сила, индукция, фрактальность, поверхность.

Введение. В работах [1-3] показано, что особенности формирования магнитных свойств горячештампованных порошковых магнитно-мягких материалов системы Fe-P обусловлены предысторией их получения, влияющей на дефектность структуры, при этом снижение коэрцитивной силы, повышение максимальной и остаточной индукции и коэффициента прямоугольности петли гистерезиса K_{Π} , связано с окислением границ зерен исходных порошков в процессе термомеханического воздействия при горячей штамповке и формированием текстуры деформации.

В то же время из данных работ [4-6] следует, что аппарат теории фракталов — самоподобных множеств дробной размерности может использоваться для анализа процессов, протекающих в неупорядоченных средах и приводящих к изменению их структуры, например, формированию деформационного рельефа на поверхности порошкового материала. Методики экспериментального определения фрактальной размерности поверхности порового пространства рассмотрены в [7]. Определение фрактальной размерности поверхности порошковых материалов системы Al — Cu с различным содержанием Cu и установление ее связи с процессами спекания проведено в [6]. Однако вопрос о связи магнитных свойств с фрактальными характеристиками поверхности порошковых пористых тел практически не исследован и требует изучения.

Целью настоящей работы является определение фрактальной размерности поверхности и установление ее связи с магнитными свойствами порошковых горячештампованных материалов системы Fe – P, полученных по различным технологическим схемам.

Материалы и методика эксперимента. В качестве исходного материала, используемого в работе для изготовления образцов порошкового материала системы Fe — P, применялся порошок марки PASC 60 производства фирмы «Höganäs» Швеция, представляющий собой смесь порошка марки ASC 100.29 и феррофосфора, при этом массовая доля фосфора в образцах составляла 0,59-0,66% [8]. Образцы материалов для исследования магнитных свойств получали по следующим технологическим схемам:

- образец-тороид 1 получен холодным прессованием PASC 60 с последующим спеканием прессовки при 1150°C , 2 ч;
- образец-тороид 2 получен по технологии образца 1 с использованием горячей штамповки (ДГП) спеченной заготовки, предварительно нагретой до 1100° С (время остывания заготовки 5-7 мин.);
- образец-тороид 3 получен по технологии образца 2 с дополнительным отжигом после ДГП при 1100° C, 2 ч;
- образец-тороид 4 получен холодным прессованием из PASC 60 без спекания, с последующим ДГП при 1100° С (время остывания заготовки 5-7 мин) и отжигом при 1100° С, 2 ч.

Максимальную индукцию $B_{\text{маx}}$ в полях напряженностью (H) до 2500 A/м, остаточную индукцию B_r , коэрцитивную силу H_c , начальную μ_l и максимальную магнитную проницаемость μ_{max} определяли по ГОСТ 8.377-80. Методика измерений не отличалась от описанной в [8].

Фрактальность поверхности исследовали с помощью сканирующего зондового микроскопа NT-MTD (Зеленоград). Методом вертикальных сечений Мандельброта [4] полученных изображений определяли фрактальную размерность поверхности D. Размер анализируемого участка поверхности во всех случаях не превышал 40х40 мкм. Фрактальную размерность определяли как модуль тангенса угла наклона среднего участка зависимости L/L_0 (L- длина секущей линии, L_0- расстояние между точками сканирования) от увеличения в двойных логарифмических координатах. Линейная аппроксимация модуля позволяет считать фрактальную размерность интегральной характеристикой поверхности [4-6].

Результаты и их обсуждение. Трехмерная реконструкция поверхности образцов представлена на рис.1, а линии сканирования участков поверхности — на рис.2. Результаты обработки сечений сканирования приведены в табл.1.

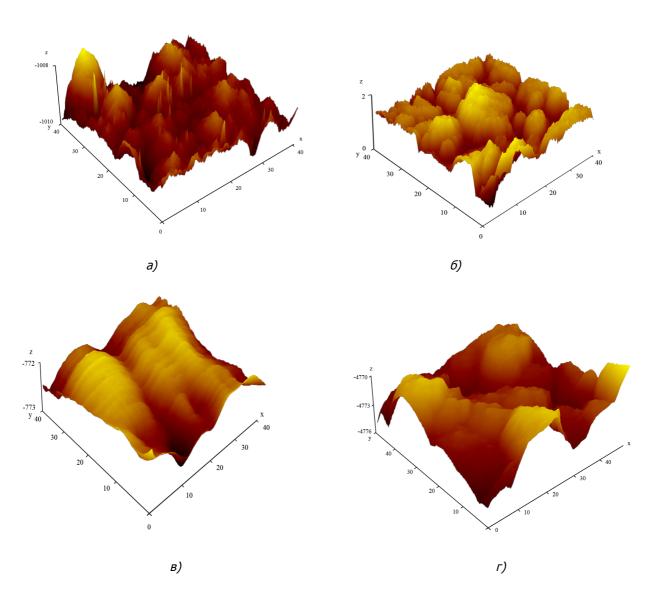


Рис.1. Реконструкция трехмерного изображения участков поверхности: $a, \, 6, \, B, \, r$ — образцы-тороиды $1, 2, \, 3, \, 4$ соответственно

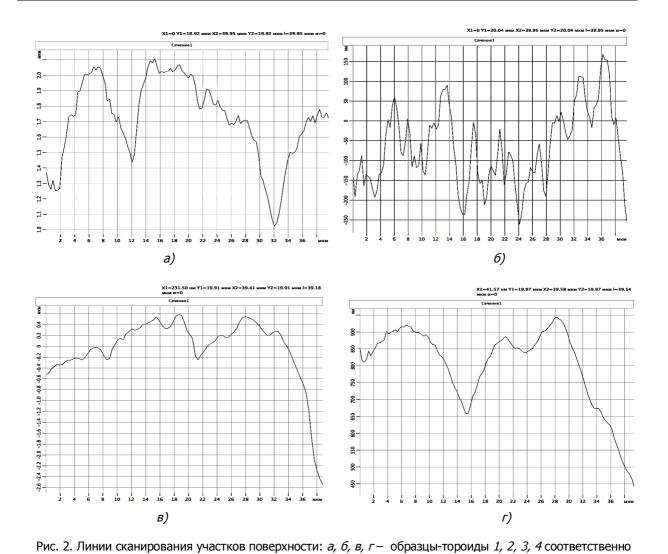


Таблица 1 Численные результаты обработки сечений сканирования поверхности порошковых образцов

Номер	Номер	Курви-	Цена	Коэффи-	Длина кривой	Базовая длина	Величина	Среднее
образца-	сече-	длина,	отрезка по	циент	сканирования	участка скани-	фракталь-	значение, D
тороида	ния	MM,	оси сканиро-	масштаби-	с учетом	рования, мкм	ной размер-	
		В	вания, мкм	рования по	масштаби-		ности, D	
		сечении		ОСЯМ	рования, нм			
	1	600	2	1,74	105,20	38	1,280	
1	2	533	2	1,35	120,77	38	1,318	1,340608
	3	1030	2	1,75	177,68	38	1,424	1,540000
	1	724	2	1,78	122,51	38	1,322	
2	2	532	2	1,39	115,11	38	1,305	1,302624
	3	429	2	1,22	105,76	38	1,281	1,302024
	1	424	2	2,25	55,97	38	1,106	
3	2	316	2	1,49	62,99	38	1,139	1,151201
	3	335	2	1,23	81,03	38	1,208	1,131201
	1	259	2	0,96	80,36	38	1,206	
4	2	279	2	0,96	85,48	38	1,223	1,216276
	3	259	2	0,91	84,62	38	1,220	1,2102/6

Результаты магнитных исследований представлены в табл. 2, а также в виде зависимостей В(H) для второго квадранта частных петель гистерезиса образцов исследуемых материалов (рис.3). Выбор второго квадранта обусловлен тем, что полная петля гистерезиса каждого образца снималась отдельными фрагментами с завершением замкнутого магнитного цикла и фиксацией дрейфа нуля микровеберметра после выполнения массива измерений для каждого из фрагментов. Таблица 2

Результаты измерения частных петель гистерезиса образцов

Образон-торона 1									
Образец-тороид 1 w1=20, Imax ≈ 1.53 A, w1=20, Imax ≈ 4.01 A, w1=20, Imax ≈ 10.07 A,									
w1=20, Imax ≈ 1.53 A, Hmax ≈ 327 A/м	$W1=20$, $IIIIAX \approx 4.01 A$, $IIIAX \approx 867 A/M$	w1=20, Imax ≈ 10.07 A, Hmax ≈ 2155 A/м							
Максимальная индукция *	Максимальная индукция *	Максимальная индукция *							
Фтах(Hmax) = 2288±25 мкВб	Фтах(Hmax) = 3167±30 мкВб	Фтах(Hmax) = 3660±40 мкВб							
ϕ Пах(ППах) = 2200±25 МКВО Втах(Hmax) = 0,763 ± 0,038Тл	$Bmax(Hmax) = 3107 \pm 30$ мкво $Bmax(Hmax) = 1,058 \pm 0,053 Tл$	Bmax(Hmax) = 3000140 MkB0							
Остаточная индукция *	Остаточная индукция *	Остаточная индукция *							
Фост(Hmax) = 1792±20 мкВб	Фост(Hmax) = 2398±25 мкВб	Фост(Hmax) = 2528±25 мкВб							
		Вост(Нтах) = 2326±23 мкво							
Коэрцитивная сила Нс, А/м 137-165									
Начальная магнитная проницаемость не менее 350									
Максимальная магнитная проницаемость не менее 1850									
Образец-тороид 2 w1=20, Imax \approx 1,60 A, w1=20, Imax \approx 4,06 A, w1=20, Imax \approx 10,07 A,									
W1-20, 1max ~ 1,00 A, Hmax ≈ 340 A/M	W1-20, Illiax ~ 4,00 A, Hmax ≈ 860 A/M	W1-20, IMAX ~ 10,07 A, Hmax ≈ 2138 A/M							
Максимальная индукция *	Максимальная индукция *	Максимальная индукция *							
Фтах(Hmax) = 1045±10 мкВб	Фтах(Hmax) = 2420±25 мкВб	Фтах(Hmax) = 3580±38 мкВб							
$Bmax(Hmax) = 1043 \pm 10$ мкво В $Bmax(Hmax) = 0.418 \pm 0.022$ Тл	$Bmax(Hmax) = 2420 \pm 23$ мкво $Bmax(Hmax) = 0.968 \pm 0.050$ Тл	Bmax(Hmax) = $1,432 \pm 0,070$ T π							
, , , , , ,		Остаточная индукция *							
Остаточная индукция * Фост(Hmax) = 650±7 мкВб	Остаточная индукция *	Фост(Hmax) = 2000±20 мкВб							
	Фост(Hmax) = 1620 ± 20 мкВб								
Вост(Hmax) = 0.260 ± 0.013 Тл	$Boct(Hmax) = 0.648 \pm 0.032T\pi$	$Boct(Hmax) = 0,800\pm0,040Tл$							
Коэрцитивная сила Нс, А/м 175-315									
Начальная магнитная проницаемость не менее 250									
Максимальная магнитная проницаемость не менее 1050									
Образец-тороид 3									
w1=20, Imax ≈ 1,56 A,	w1=20, Imax ≈ 4,05 A,	$w1=20$, $Imax \approx 10,06 A$,							
Hmax ≈ 331 A/м	Hmax ≈ 860 A/м	Hmax ≈ 2136 A/м							
Максимальная индукция *	Максимальная индукция *	Максимальная индукция *							
Φ max(Hmax) = 3480±35 мкВб	Φ max(Hmax) = 3880±40 мкВб	Φ max(Hmax) = 4100±40 мкВб							
$Bmax(Hmax) = 1,265 \pm 0,063Tл$	$Bmax(Hmax) = 1,411 \pm 0,070Тл$	$Bmax(Hmax) = 1,491\pm0,075Тл$							
Остаточная индукция *	Остаточная индукция *	Остаточная индукция *							
Фост(Hmax) = 3350 ± 35 мкВб	Фост(Hmax) = 3600±40 мкВб	Фост(Hmax) = 3700 ± 40 мкВб							
Bocт(Hmax) = 1,218 ± 0,060Тл	BOCT(Hmax) = $1,309 \pm 0,065T\pi$	$Boct(Hmax) = 1,345\pm0,070Tл$							
Коэрцитивная сила Нс, А/м 92-100									
Начальная магнитная проницаемость не менее 600									
Максимальная магнитная проницаемость не менее 4900									
Образец-тороид 4									
w1=20, Imax ≈ 1,54 A,	$w1=20$, $Imax \approx 4,05 A$,	w1=20, Imax ≈ 10,07 A,							
Hmax ≈ 327 A/м	Hmax ≈ 859 A/м	Hmax ≈ 2137 A/м							
Максимальная индукция *	Максимальная индукция *	Максимальная индукция *							
Φ max(Hmax) = 3500±30 мкВб	Φ max(Hmax) = 3915±40 мкВб	Φ max(Hmax) = 4190±40 мкВб							
$Bmax(Hmax) = 1,400 \pm 0,07 Tл$	$Bmax(Hmax) = 1,566 \pm 0,078 Tл$	$Bmax(Hmax) = 1,676 \pm 0,080Тл$							
Остаточная индукция *	Остаточная индукция *	Остаточная индукция *							
Фост(Hmax) = 3220±30мкВб	Фост(Hmax) =3600±36 мкВб	Фост(Hmax) = 3700±40 мкВб							
Вост(Hmax) = 1,288 ± 0,064 Тл	$Boct(Hmax) = 1,440 \pm 0,072Tл$	Вост(Hmax) = 1,480±0,074 Тл							
Коэрцитивная сила Нс, А/м 91-103									
Начальная магнитная проницаемость не менее 600									
Максимальная магнитная проницаемость не менее 5400									

Примечание: * – типичные абсолютные погрешности измерения потока (определяются погрешностью микровеберметра) и индукции (определяются погрешностями измерения потока и площади сечения образца); w1=20 – число витков намагничивающей обмотки.

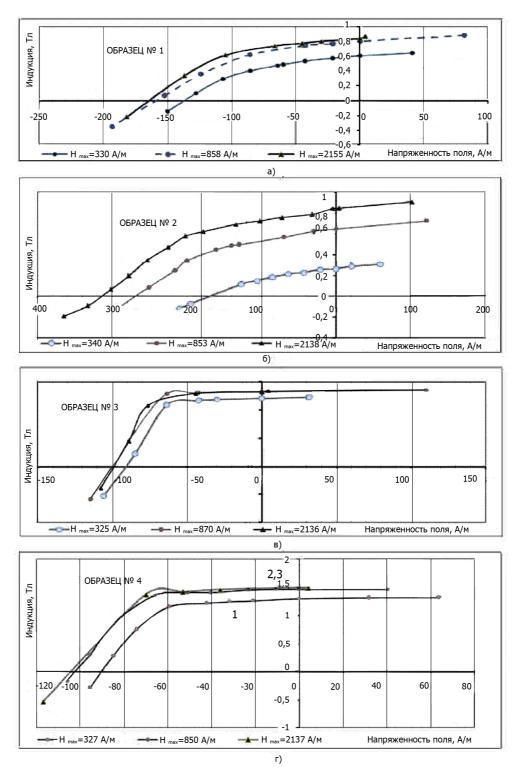


Рис. 3. Второй квадрант частных петель гистерезиса при различных значениях H_{max} : $a, \, 6, \, B, \, \Gamma$ — образцы-тороиды $1, \, 2, \, 3, \, 4$ соответственно

Подробный анализ влияния предыстории получения образцов исследуемых магнитно-мягких материалов на уровень их магнитных характеристик проведен в работах [1-3, 8], здесь же отметим следующее. Образец-тороид 1, не подвергавшийся горячей штамповке, обладает относительно невысоким уровнем магнитной проницаемости и максимальной индукции; у холоднопрес-

сованного образца-тороида 2, подвергнутого горячей штамповке без последующего отжига, величина индукции возрастает, величина максимальной магнитной проницаемости достигает значений примерно 1050 Гс/э, коэрцитивная сила также увеличивается, достигая значений примерно 300 А/м, что связано с особенностями структуры (Fe — P)-порошковых материалов (пористость+субструктура) и их дефектностью [8].

В то же время применение высокотемпературного отжига материалов после горячей штамповки (образцы-тороиды 3,4) позволяет не только увеличить значения максимальной индукции материала (для данного H_{max}), его остаточной индукции и магнитной проницаемости, но и существенно (до 100 A/m) уменьшить коэрцитивную силу.

Установлено, что с изменением технологической схемы наблюдается изменение максимальной и остаточной индукции при заданном максимальном поле, а также коэрцитивной силы материала (см. табл. 2). Спекание холоднопрессованного материала (образец-тороид 1) приводит к умеренному значению коэрцитивной силы материала, а также к пониженному значению максимальной и остаточной индукции даже для петли, приближающейся к предельной, что обусловлено высокой пористостью образца. Горячая штамповка без последующего отжига и перекристаллизации (образец-тороид 2) вследствие уплотнения материала и возникновения в нем значительных механических напряжений обусловливает увеличение не только максимальной индукции, но также и коэрцитивной силы, что затрудняет намагничивание образцов в умеренных полях (~2200 А/м) до состояния, приближающегося к предельному. И только использование высокотемпературного отжига (образцы-тороиды 3,4) приводит как к существенному росту значений максимальной и остаточной индукции, так и к значительному снижению величины коэрцитивной силы материалов. Из полученных результатов следует, что магнитные свойства порошкового материала являются структурно-чувствительными и существенно зависят от технологических режимов изготовления образцов, при этом пористость не является основным фактором, определяющим уровень магнитных свойств.

Отмеченные нами особенности формирования магнитных свойств удовлетворительно согласуются с результатами атомно-силовых исследований изменения состояния поверхности образцов материалов методом сканирующей зондовой микроскопии. Установлено, что повышение степени деформационно-термического воздействия на испытуемые образцы приводит к немонотонному изменению величины фрактальной размерности (см.табл.1). Сопоставление результатов измерения величины коэрцитивной силы в зависимости от технологической схемы изготовления образца с данными об изменении фрактальной размерности, показывает, что в схеме: холодное прессование + спекание \rightarrow холодное прессование + ДГП \rightarrow холодное прессование + ДГП + отжиг \rightarrow холодное прессование + СПС \rightarrow 170-310 \rightarrow 80-100 \rightarrow 80-100 А/м в полях напряженностью 330, 860 и 2160 А/м и соответствует темпу и знаку изменения величины D. Аналогичная картина наблюдается и для величины максимальной магнитной проницаемости, также являющейся структурно-чувствительной характеристикой.

Таким образом, анализ результатов исследований сечений поверхностей образцов позволяет сделать вывод о существовании областей поверхностей, обладающих фрактальными свойствами. Это подтверждается дробными значениями размерности по всем исследованным сечениям поверхности порошковых образцов. Отметим при этом, что значения фрактальной размерности сечений удовлетворяют условию 1≤D≤2. Наличие минимальных значений D определяется, повидимому, погрешностью используемых алгоритмов обработки изображения и может интерпретироваться как приближение показателя фрактальной размерности к топологической размерности линии.

Изменение показателя фрактальной размерности поверхности образцов с различной технологической наследственностью нужно, по-видимому, связывать с изменениями намагниченности, вызванными внутренними деформациями и включениями, что полностью согласуется с теоретическими положениями [9].

Заключение. Показана возможность использования топологии поверхности порошковых материалов в качестве функции отклика процессов, ответственных за ее формирование. Концептуально использование теории фракталов позволяет прогнозировать изменение уровня магнитных свойств (коэрцитивной силы и максимальной магнитной проницаемости) порошковых материалов, однако, для инженерного использования требуется наработка массива экспериментального материала и совершенствование методик оценки показателя фрактальной размерности.

Библиографический список

- 1. Кем А.Ю. Мёссбауэровские и магнитные исследования горячештампованного порошкового магнитно-мягкого материала Fe – Р / А.Ю. Кем, Чан Мань Тунг, В.В. Китаев // Вестн. Донск. гос. ун-та. – 2010. – №5.– С.700-712.
- 2. Кем А.Ю. Формирование магнитных свойств порошковых магнитно-мягких (Fe P) материалов, аналогов технического железа / А.Ю. Кем, Чан Мань Тунг, В.В. Китаев // Новые перспективные материалы и технологии их получения (НПМ-2010): сб. тр. 5-й междунар, науч. конф. – Волгоград: Изд-во ВГТУ, 2010. - С. 252-254.
- 3. Кем А.Ю. Об особенностях эволюции петли гистерезиса порошковых магнитно-мягких материалов системы (Fe – P) / А.Ю. Кем, Чан Мань Тунг, В.В. Китаев // Тр. РГУПС. – 2010. Nº3(12). – C. 49-53.
- 4. Иванова В.С. Синергетика и фракталы в материаловедении / В.С. Иванов. М.: Наука, 1994. – 383 c.
- 5. Севостьянова И.Н. Фрактальные характеристики поверхности пластически деформированного композита карбид вольфрама – железомарганцевая сталь / И.Н. Севостьянова, С.Н. Кульков // ЖТФ. – 2003. – Т. 73, вып. 2. – С. 81-86.
- 6. Кем А.Ю. Процессы спекания и фрактальность порошковых материалов на основе алюминия / А.Ю. Кем, Л.А. Арестова // ФиХОМ. – 2010. – №6. – С. 51-56.
- 7. Мосолов А.Б. Фракталы, скейлы и геометрия пористых материалов / А.Б. Мосолов, О.Ю. Динариев // ЖТФ. – 1988. – Т. 58, вып. 2. – С. 157-163.
- 8. Чан Мань Тунг. Особенности формирования комплекса магнитных свойств порошкового Fe – P материала – аналога технического железа, полученного горячей объемной штамповкой пористой заготовки: автореф. дисс... канд. техн. наук. – Ростов н/Д, 2010. – 25 с.
- 9. Киттель К. Физическая теория доменной структуры ферромагнетиков / К. Киттель // УФН. 1950. Т. XL1, вып. 4. С. 453-544.

Материал поступил в редакцию 28.12.10.

References

- 1. Kem A.Y. Messbauerovskie i magnitnye issledovaniya qoryacheshtampovannogo poroshkovogo magnitno-myagkogo materiala Fe – P / A.Y. Kem, Chan Man' Tung, V.V. Kitaev // Vestn. Donsk. gos. un-ta. – 2010. – Nº5. – S. 700-712. – In Russian.
- Kem A.Y. Formirovanie magnitnyh svoistv poroshkovyh magnitno-myagkih (Fe P) materialov, analogov tehnicheskogo jeleza / A.Y. Kem, Chan Man' Tung, V.V. Kitaev // Novye perspektivnye materialy i tehnologii ih polucheniya (NPM-2010): sb. tr. 5-i mejdunar. nauch. konf. – Volgograd: Izd-vo VGTU, 2010. – S. 252-254. – In Russian.
- 3. Kem A.Y. Ob osobennostyah evolyucii petli gisterezisa poroshkovyh magnitno-myagkih materialov sistemy (Fe – P) / A.Y. Kem, Chan Man' Tung, V.V. Kitaev // Tr. RGUPS. – 2010. – №3(12). - S. 49-53. - In Russian.
- 4. Ivanova V.S. Sinergetika i fraktaly v materialovedenii / V.S. Ivanov. M.: Nauka, 1994. 383 s. – In Russian.
- 5. Sevost'yanova I.N. Fraktal'nye harakteristiki poverhnosti plasticheski deformirovannogo kompozita karbid vol'frama – jelezomargancevaya stal' / I.N. Sevost'yanova, S.N. Kul'kov // JTF. – 2003. – T. 73, vyp. 2. – S. 81-86. – In Russian.
- 6. Kem A.Y. Processy spekaniya i fraktal'nost' poroshkovyh materialov na osnove alyuminiya / A.Y. Kem, L.A. Arestova // FiHOM. – 2010. – №6. – S. 51-56. – In Russian.
- 7. Mosolov A.B. Fraktaly, skeily i geometriya poristyh materialov / A.B. Mosolov, O.Y. Dinariev // JTF. – 1988. – T. 58, vyp. 2. – S. 157-163. – In Russian.
 8. Chan Man' Tung. Osobennosti formirovaniya kompleksa magnitnyh svoistv poroshkovogo
- Fe P materiala analoga tehnicheskogo jeleza, poluchennogo goryachei ob'emnoi shtampovkoi poristoi zagotovki: avtoref. diss... kand. tehn. nauk. Rostov n/D, 2010. 25 c. In Russian.

 9. Kittel' K. Fizicheskaya teoriya domennoi struktury ferromagnetikov / K. Kittel' // UFN. 1950.
- T. XLI, vyp. 4. S. 453-544. In Russian.

SURFACE MAGNETIC PROPERTIES AND FRACTALITY OF Fe-P POWDER MATERIAL - IRON ANALOGUE RECEIVED BY POROUS WORKPIECE FORGING

A.Y. KEM

(Don State Technical University)

Connection of the surface fractality factor with formation features of the magnetic properties of powder softmagnetic materials of Fe-P system under hot-stamping is shown.

Keywords: soft-magnetic materials, Fe-P system, magnetic conductivity, coercitive force, induction, fractality,