УДК 621.828.3

БАЛАНСИРОВКА РОТОРОВ С ШАРНИРНЫМИ РАБОЧИМИ ЭЛЕМЕНТАМИ

О.О. ПОЛУШКИН, О.А. ПОЛУШКИН, В.П. ЖАРОВ

(Донской государственный технический университет)

Разработана обобщенная рациональная технология балансировки роторов с шарнирными рабочими элементами и априорно обоснована скорость их балансировки, позволившая формализовать технологическую подготовку балансировки таких роторов.

Ключевые слова: ротор с шарнирными элементами, балансировка, технологическая подготовка.

Введение. Шарнирными рабочими элементами снабжаются барабаны различного рода дробилок, измельчителей, ротационных режущих аппаратов сельскохозяйственных машин и др. Схема такого ротора с горизонтальной осью вращения представлена на рис. 1 (вид с торца). Скорость его

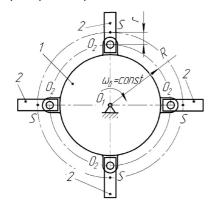


Рис. 1. Схема ротора с шарнирными рабочими элементами

вращения ω_{δ} . Рабочие элементы 2 ротора расположены инерционно симметрично в m рядах (на рисунке m=4) по $n_{_{9}}$ штук в каждом ряду по образующей базовой сборочной единицы 1 (этот случай рассматривается ниже), либо по спирали.

Используемые в настоящее время технологии балансировки таких роторов, основываясь на одноразовом или многоразовом применении типовой технологии динамической балансировки в двух плоскостях коррекции [1], весьма многообразны:

- балансируют полностью собранный ротор. При замене в эксплуатации одного или нескольких рабочих элементов происходит разбалансировка;
- балансируют ротор без рабочих элементов, последние подбирают по массе (без обоснования допуска) и

устанавливают в диаметрально противоположных точках базовой сборочной единицы 1. При такой технологии ротор может иметь недопустимую неуравновешенность за счет погрешностей геометрии установки рабочих элементов;

- предыдущий вариант технологии дополняется балансировкой ротора в сборе, устраняющей дисбалансы от погрешностей геометрии установки рабочих элементов. Такая технология неэффективна из-за лишней первой операции балансировки ротора без рабочих элементов.

Помимо отсутствия технологии балансировки, лишенной недостатков всех перечисленных методов, проблемой балансировки таких роторов является обоснование значения угловой скорости ω_{δ} вращения их на балансировочном станке. Малое значение ω_{δ} не обеспечивает стабильности показаний измерительной системы балансировочного станка из-за того, что шарнирные рабочие элементы не занимают устойчивого положения в поле сил инерции вращающегося ротора. Чрезмерно большое ω_{δ} не рекомендуется по соображениям безопасности балансировки при значительных начальных дисбалансах, характерных для таких роторов.

Все отмеченное делает проблематичной технологическую подготовку балансировки роторов с шарнирными рабочими элементами.

Постановка задач. Решение поставленной проблемы сводится к разработке рациональной технологии балансировки роторов рассматриваемого класса и обоснованию наименьшего возможного значения скорости $\omega_{\mathcal{S}}$ их вращения при балансировке.

Решение задач. Анализ всех представленных выше технологий позволил установить следующую рациональную технологию балансировки рассматриваемого класса роторов, лишенную всех отмеченных недостатков:

- а) подбор рабочих элементов ротора с разграничением их на несколько классов. Внутри каждого класса массы элементов находятся в определенных границах, обоснованных в работах [2, 3];
- б) сборка ротора с установкой в диаметрально противоположных точках базовой сборочной единицы 1 рабочих элементов, принадлежащих одному классу;
 - в) балансировка ротора в сборе.

Адекватность и эффективность такой технологии были многократно подтверждены ее внедрением для балансировки барабанов измельчителей зерноуборочных комбайнов семейств «Нива» и «Дон», ротационного режущего аппарата косилки-измельчителя навесной КИН-2,7 (завод «Ростсельмаш», г. Ростов-на-Дону), ротора кормодробилки ДБ-5,0 (ВНИИживмаш, г. Киев), осуществленным кафедрой «Теория механизмов и машин» ДГТУ. Однако в процессе внедрений постоянно возникала проблема нестабильности показаний измерительной системы балансировочного станка, которые существенно менялись от пуска к пуску.

Идеальное расположение шарнирных рабочих элементов в поле сил инерции, возникающих при вращении ротора на машине или на балансировочном станке, имеет место, когда центры масс S всех этих элементов лежат на прямых, проходящих через ось O_2 шарнира и ось O_1 , вращения ротора (рис. 1). Для обеспечения этого необходимо, прежде всего, чтобы в шарнирах не происходило заклинивание рабочих элементов и сопротивление провороту этого элемента в шарнире было минимальным. Тем не менее, даже с выполнением этих обязательных требований, объективное наличие трения в шарнирах, исполненных, как правило, в виде пар скольжения, ведет к тому, что при скорости ω_δ вращения ротора на балансировочном станке ($\omega_\delta < \omega_g$ — эксплуатационной скорости — для жестких роторов) расположения рабочих элементов будут иметь отклонения от идеального.

Отмеченные отклонения являются малыми, поэтому такая конструкция ротора относится к классу с малыми отклонениями геометрии [1]. Кроме того, такие отклонения являются случайными (от пуска к пуску станка различные рабочие элементы ротора могут получать или не получать различные отклонения). Следствием этих отклонений становятся случайные локальные дисбалансы, которые, суммируясь с исходными начальными дисбалансами, делают нестабильными показания измерительной системы балансировочного станка. При различных пусках станка с таким ротором при одном и том же ω_δ показания его измерительной системы могут существенно меняться как по значениям, так и по углам начальных дисбалансов в плоскостях коррекции. Если эти изменения превосходят значения $D_{\rm допІ}$, $D_{\rm допІ}$ допустимых дисбалансов в плоскостях коррекции I, II, то сбалансировать такой ротор с требуемой точностью не представляется возможным.

При внедрениях представленной выше рациональной технологии балансировки обеспечение стабильности показаний измерительной системы балансировочного станка достигалось двумя путями: снижением сопротивления в шарнирах и увеличением ω_{δ} . При этом добивались, чтобы отклонения показаний измерительной системы станка не превосходило 0,1 значений допустимых дисбалансов в каждой из плоскостей коррекции.

Ниже представлено теоретическое обоснование эффективного способа априорного обеспечения стабильности показания измерительной системы балансировочного станка при балансировке роторов с шарнирными рабочими элементами, который и должен быть реализован на стадии технологической подготовки производства.

Решение задачи будем вести с учетом следующих допущений:

- момент трения в шарнире пропорционален реакции в нем, количественные оценки трения во всех шарнирах одинаковы;
- при запуске вращения ротора на балансировочном станке, с достижением скорости его вращения значения ω_δ положения всех рабочих элементов определяется и сохраняет свое расположение относительно базовой сборочной единицы 1 при последующем вращении с этой скоростью.

Реакция R_{12} в шарнире O_2 определяется значением силы $P_{_{\rm H}}$ инерции, действующей на рабочий элемент, и силы $G_{_9}=m_{_9}g$ его веса ($m_{_9}$ – масса рабочего элемента). Эта реакция обу-

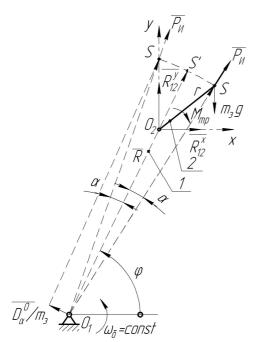


Рис. 2. К обоснованию значения $\left| lpha_{\min}^* \right|$

славливает появление в шарнире O_2 момента $M_{TP}=kR_{12}$ сил трения (k – коэффициент пропорциональности, имеющий размерность длины). При отклонении рабочего элемента вращающегося ротора от идеального его положения на угол $\pm \alpha$ сила $P_{\rm M}$ инерции стремится привести этот элемент в идеальное положение, а момент $M_{\rm TD}$ противодействует этому.

Рассмотрим рабочий элемент, который к моменту достижения скорости вращения ротора на балансировочном станке значения $\omega_{\mathcal{S}} = const$ оказался в произвольном положении, определенном углом φ поворота центра шарнира O_2 относительно оси O_1 ротора. На рис. 2 представлена схема этого элемента со всеми действующими на него усилиями, которые, согласно принципу Даламбера, обеспечивают статическое равновесие этого элемента.

Условия этого равновесия:

$$\begin{cases} \sum X = P_{\text{H}} \cos(\varphi \mp \alpha) + R_{12}^{x} = 0; \\ \sum Y = P_{\text{H}} \sin(\varphi \mp \alpha) - G_{\text{g}} + R_{12}^{y} = 0; \\ \sum M_{O_{2}} = \mp M_{\text{Tp}} \pm P_{\text{H}} R\alpha - m_{\text{g}} g [(R+r)\cos(\varphi \mp \alpha) - R\cos\varphi] = 0, \end{cases}$$
(1)

где
$$M_{TP} = kR_{12} = k\sqrt{\left(R_{12}^{x}\right)^{2} + \left(R_{12}^{y}\right)^{2}}$$

Определив из первых двух уравнений системы (1) значения R_{12}^x , R_{12}^y и подставив их в уравнение для M_{TP} (учитывая, что α малая величина), получим:

$$\mp kP_{\rm H}\sqrt{1-2\frac{m_{\rm g}g}{P_{\rm H}}}(\sin\varphi\mp\alpha\cos\varphi) + \left(\frac{m_{\rm g}g}{P_{\rm H}}\right)^2 \pm \pm P_{\rm H}R\alpha - m_{\rm g}g[(R+r)(\cos\varphi\pm\alpha\sin\varphi) - R\cos\varphi] = 0.$$
(2)

Для различных ϕ условие равновесия (2) принимает различный вид, определяя различные значения равновесного α . Это обуславливает возникновение угловых колебаний каждого рабочего элемента относительно базовой сборочной единицы при запуске вращения ротора. Не рассматривая переходный период роста скорости от нуля до $\omega_{\delta} = const$ (при этом α конечны и значительны, обусловленные этим дисбалансы ротора очень велики, что и объясняет удары при пуске), к моменту достижения скоростью вращения значения ω_{δ} эти колебания становятся малыми. Их наличие и является следствием вариации условий равновесия и равновесных значений α каждого рабочего элемента с изменениями ϕ .

Не рассматривая детально механику малых угловых относительных колебаний рабочего элемента ротора, вращающегося со скоростью $\omega_{\delta} = const$, следует отметить, что при наличии

трения в шарнире эти колебания являются затухающими. С их полным затуханием отклонение α каждого рабочего элемента, оставаясь неизменным, будет отвечать условию

$$-\alpha_{\min}^* \le \alpha \le \alpha_{\min}^*, \tag{3}$$

где $\left| lpha_{\min}^* \right|$ — минимальное из равновесных значений lpha при $0 \leq \varphi < 2\pi$.

Для выявления α_{\min}^* следует использовать более точное условие равновесия рабочего элемента, представив третье уравнение системы (1) в виде:

$$\left| \mp M_{TP} \right| \ge \left| \mp P_H R \alpha + m_g g \left[(R + r) \cos (\varphi \pm \alpha) - R \cos \varphi \right] \right|. \tag{4}$$

Лишь при одном или нескольких из значений $\varphi=\varphi_1$ это условие становится равенством, из которого и находим $\alpha=\left|\alpha_{\min}^*\right|$. При прочих значениях φ элемент, получивший отклонение $|\alpha|\leq\left|\alpha_{\min}^*\right|$, будет сохранять такое отклонение, так как условие (4) будет выполняться в виде неравенства. Другие рабочие элементы ротора, вращающегося со скоростью $\omega_\delta=const$, принимающие при относительных колебаниях значения $|\alpha|\leq\left|\alpha_{\min}^*\right|$, проходя угол $\varphi=\varphi_1$, будут снижать свое значение α вследствие того, что условие (4) при этом не будет выполняться и сила $P_{\rm M}$ уменьшит отклонение $|\alpha|$. Поэтому через один или несколько оборотов ротора для всех его рабочих элементов условие (3) будет выполнено. Тем самым обеспечивается установившееся для данного запуска вращения ротора расположение всех его рабочих элементов с выполнением условия (3). При другом запуске вращения того же ротора на балансировочном станке установившееся расположение его рабочих элементов будет совершенно другим при обязательном выполнении условия (3).

В табл. 1 представлены результаты анализа условия (4) при различных значения ϕ . При этом для каждого ϕ из соответствующего условия равновесия (возведением его в квадрат, пренебрежением величинами высокого порядка малости, решением полученного квадратного неравенства) определили области устойчивых значений отклонений α рабочего элемента, представленные неравенствами (5) — (8). Последующий анализ этих неравенств позволил установить:

- неравенство (6) имеет смысл только в случае, когда

$$\begin{cases} P_{\text{\tiny M}} - m_{_{9}}g > 0 \\ P_{\text{\tiny M}}R - m_{_{9}}g(R+r) > 0. \end{cases}$$

Таблица 1 Результаты анализа условия (4) устойчивости положения шарнирного рабочего элемента

	Условие устойчивого расположения	Значения $lpha$, рад		
	рабочего элемента при вращении ротора			
0	$ \mp k\sqrt{P_{\scriptscriptstyle \rm H}^2+(m_{\scriptscriptstyle \ni}g)^2} \ge \mp P_{\scriptscriptstyle \rm H}R\alpha+m_{\scriptscriptstyle \ni}gr $	$-\frac{m_{_{9}}gr}{P_{_{H}}R} - \frac{k}{R}\sqrt{1 + \left(\frac{m_{_{9}}g}{P_{_{H}}}\right)^{2}} \le \alpha \le -\frac{m_{_{9}}gr}{P_{_{H}}R} + \frac{k}{R}\sqrt{1 + \left(\frac{m_{_{9}}g}{P_{_{H}}}\right)^{2}} $ (5)		
$\frac{\pi}{2}$	$ \mp k(P_{\mathtt{M}} - m_{\mathfrak{I}}g) \geq \mp P_{\mathtt{M}}R\alpha \pm m_{\mathfrak{I}}g(R+r)\alpha $	$-\frac{k(P_{_{\rm II}}-m_{_{9}}g)}{P_{_{\rm II}}R-m_{_{9}}g(R+r)} \le \alpha \le \frac{k(P_{_{\rm II}}-m_{_{9}}g)}{P_{_{\rm II}}R-m_{_{9}}g(R+r)} $ (6)		
π	$ \mp k\sqrt{P_{\scriptscriptstyle \rm H}^2+(m_{\scriptscriptstyle 9}g)^2} \ge \mp P_{\scriptscriptstyle \rm H}R\alpha-m_{\scriptscriptstyle 9}gr $	$\frac{m_{_{3}}gr}{P_{_{H}}R} - \frac{k}{R}\sqrt{1 + \left(\frac{m_{_{3}}g}{P_{_{H}}}\right)^{2}} \le \alpha \le \frac{m_{_{3}}gr}{P_{_{H}}R} + \frac{k}{R}\sqrt{1 + \left(\frac{m_{_{3}}g}{P_{_{H}}}\right)^{2}} $ (7)		
$\frac{3}{2}\pi$	$ \mp k(P_{_{\mathrm{H}}} + m_{_{9}}g) \geq \mp P_{_{\mathrm{H}}}R\alpha \mp m_{_{9}}g(R+r)\alpha $	$-\frac{k(P_{_{\rm H}}+m_{_{9}}g)}{P_{_{\rm H}}R+m_{_{9}}g(R+r)} \le \alpha \le \frac{k(P_{_{\rm H}}+m_{_{9}}g)}{P_{_{\rm H}}R+m_{_{9}}g(R+r)} $ (8)		

Учитывая, что

$$P_{\rm M} = m_{\rm B} \omega_{\delta}^2 O_1 S = m_{\rm B} \omega_{\delta}^2 \left(R \cos \alpha + \sqrt{r^2 + (R \sin \alpha)^2} \right) \approx m_{\rm B} \omega_{\delta}^2 (R + r), \tag{9}$$

оба последних неравенства могут быть удовлетворены, если необходимое условие «развертывания» шарнирных рабочих элементов ротора при его балансировке представляется как

$$\omega_{\delta} > \sqrt{g/R}$$
; (10)

- при $\, \omega_\delta o \infty \,$, когда в соответствии с (9) $\, P_{_{\rm H}} o \infty \,$, вне зависимости от значения ϕ

$$-\alpha_{\min} \le \alpha \le \alpha_{\min}, \quad \alpha_{\min} = \frac{k}{R}$$
 (11)

минимальное предельно возможное значение отклонения рабочего элемента от его идеального состояния;

- найдя производные $dx/dP_{\rm M}$ граничных функций $\alpha(P_{\rm M})$, фигурирующих слева и справа в неравенствах (5) (8) для различных ϕ (см. табл. 1), и установив их знак, определили монотонность изменения этих функций при вариации $P_{\rm M}$ с изменением значения $\sqrt{g/R} < \omega_{\delta} < \infty$. Результаты представлены в табл. 2;
- положив $\omega_{\delta} = \sqrt{g/R}$ и определив по (9) $P_{M} = m_{_{9}}g\frac{R+r}{R}$, подстановкой последнего в граничные функции нашли их значения, представленные в табл. 2;
- найдя для каждой из функций $\alpha(P_{_{\mathrm{H}}})$ ее предел при $P_{_{H}} \to \infty$, значения этих пределов также представили в табл. 2.

Таблица 2 Результаты анализа граничных функций $\,\alpha(P_{_{\!\!\mathsf{H}}})\,$ неравенств (5) – (8)

φ	F	Характер монотонности	Значение функции	$\lim \alpha(P_{\mathtt{M}})$
	Граница	в функции $\sqrt{g/R} < \omega_{\mathcal{S}} < \infty$	при $\omega_{\mathcal{S}} = \sqrt{g/R}$	$P_{\rm M} \rightarrow \infty$
0	Верхняя	Растет	$-\frac{r}{R+r} + \frac{k}{R}\sqrt{1 + \left(\frac{R}{R+r}\right)^2}$	$\frac{k}{R}$
U	Нижняя	Растет	$-\frac{r}{R+r} - \frac{k}{R} \sqrt{1 + \left(\frac{R}{R+r}\right)^2}$	$-\frac{k}{R}$
π	Верхняя	Убывает	8	$\frac{k}{R}$
$\frac{\pi}{2}$	Нижняя	Растет	- 8	$-\frac{k}{R}$
π	Верхняя	Убывает	$\frac{r}{R+r} + \frac{k}{R}\sqrt{1 + \left(\frac{R}{R+r}\right)^2}$	$\frac{k}{R}$
, and the second	Нижняя	Убывает	$-\frac{r}{R+r} - \frac{k}{R} \sqrt{1 + \left(\frac{R}{R+r}\right)^2}$	$-\frac{k}{R}$
3 _	Верхняя	Растет	$\frac{k}{2R} \left(1 + \frac{R}{R+r} \right)$	$\frac{k}{R}$
$\frac{3}{2}\pi$	Нижняя	Убывает	$\frac{k}{2R} \left(1 + \frac{R}{R+r} \right)$	$-\frac{k}{R}$

По результатам произведенного анализа на рис. З построены графики, характеризующие изменение граничных функций $\alpha(\omega_\delta)$. Из этих графиков следует, что устойчивое положение шарнирных рабочих элементов при вращении ротора на балансировочном станке при теоретическом отсутствии их отклонений от идеального положения $\left(\alpha_{\min}^*=0\right)$ может иметь место лишь в случае, когда нижняя граница $\alpha(P_{\scriptscriptstyle \rm H})$ при $\varphi=\pi$ и верхняя граница $\alpha(P_{\scriptscriptstyle \rm H})$ при $\varphi=0$, представленные в табл. 1, пересекают ось ω_δ на рис. З в общей точке, т. е. когда

$$\alpha = \frac{m_3 gr}{P_{\rm H} R} - \frac{k}{R} \sqrt{1 + \left(\frac{m_3 g}{P_{\rm H}}\right)^2} = 0.$$

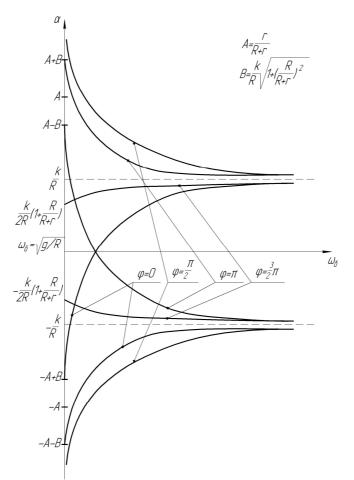


Рис. 3. Изменение граничных функций $\alpha(\omega_\delta)$ устойчивого расположения шарнирного рабочего элемента при различных ϕ

Решая это уравнение с учетом (9), находим

$$\omega_{\delta} = \omega_{\delta_{H}} = \sqrt{\frac{g}{k} \cdot \frac{r}{R+r}} \,. \tag{12}$$

Любое отклонение скорости балансировки от значения $\omega_{\delta_{\mathrm{H}}}$, определенного последним выражением, приводит к возникновению отклонения lpha каждого рабочего элемента, отвечающе-

го условию (3) при $\alpha_{\min}^* \neq 0$. При этом с уменьшением ω_{δ} в сравнении с $\omega_{\delta_{\mathbb{H}}}$ положения рабочих элементов теряют стабильность при $\varphi=0$ и $\varphi=\pi$; с увеличением ω_{δ} стабильность этих элементов обеспечивается при любом φ с появлением отклонений α . Такое отклонение каждого шарнирного рабочего элемента создает у ротора локальный дисбаланс $\overline{D}_{\alpha}^{0}$, направленный перпендикулярно O_1O_2 (см. рис. 2) и определяемый по значению как

$$\overline{D}_{\alpha}^{0} = m_{\alpha}(\overline{O_{1}S} - \overline{O_{1}S'}) = m_{\alpha}(R + r)\alpha. \tag{13}$$

Для каждого \dot{r} го шарнирного элемента из полного их множества $N_{_9}$, установленного инерционно симметрично на роторе в m рядах по $n_{_9}$ в каждом из рядов ($N_{_9}=mn_{_9}$), значение и угол локального дисбаланса \overline{D}_{α_i} , обусловленного отклонением α_i этого элемента, являются случайными величинами. Этот дисбаланс меняется от пуска к пуску балансировочного станка с одним и тем же ротором. Главный вектор дисбалансов от отклонений всех $N_{_9}$ элементов ротора определяется как

$$\overline{D}_{\alpha} = \sum_{i=1}^{N_{\circ}} \overline{D}_{\alpha_i} = m_{\circ} \sum_{i=1}^{N_{\circ}} (\overline{O_1 S_i} - \overline{O_1 S_i'}). \tag{14}$$

Значение и угол \overline{D}_{α} также будут случайными. Они будут меняться от пуска к пуску балансировочного станка с одним и тем же ротором. При больших значениях \overline{D}_{α} показания измерительной системы балансировочного станка будут меняться от пуска к пуску. Особо же это сказывается после корректировки исходных дисбалансов ротора, не зависящих от отклонения его шарнирных элементов, когда значения \overline{D}_{α} сравнимы со значением $D_{\rm ст}$ допустимых дисбалансов ротора, регламентированного конструктором. Учитывая, что ротор необходимо балансировать с точностью до значения $D_{\rm ст}$ доп , а также то, что при такой норме точности балансировки основной объем (99,3%) балансируемых роторов данного типоразмера будет производиться без каких-либо затруднений, поставим условие:

$$D_{\alpha} \le 0.1 D_{\text{стдоп}} \,. \tag{15}$$

Отыскивая далее теоретически предельное максимальное значение D_{α} , рассмотрим наиболее неблагоприятный случай, когда расположение и значения локальных дисбалансов \overline{D}_{α_i} , $i=1...N_{_9}$ обеспечивают $D_{\alpha}=D_{\alpha\,{\rm max}}$. При прямолинейном размещении $n_{_9}$ шарнирных рабочих элементов вдоль оси ротора полагаем, что все эти элементы имеют отклонения $\alpha=\pm\alpha_{{\rm min}}^*$ или $\alpha=0$. Поэтому экстремальные теоретически возможные значения дисбалансов, обусловленных этими отклонениями, определятся как

$$D_{\alpha j} = m_{_{3}} n_{_{3}} (R + r) \alpha_{\min}^{*}$$
 или $D_{\alpha j} = 0$. (16)

Обосновывая значение $D_{\alpha\, \rm max}$, рассмотрим сначала случай четного числа m прямолинейных рядов шарнирных элементов, расположенных инерционно симметрично по окружности. При этом отклонения $\alpha=\pm \alpha_{\rm min}^*$ всех диаметрально противоположно распложенных элементов должны быть произведены в противоположных направлениях так, чтобы сумма каждой пары противоположных $\overline{D}_{\alpha j}$ составляла

$$D_{\alpha_i} = 2m_{\mathfrak{I}}n_{\mathfrak{I}}(R+r)\alpha_{\min}^*, \tag{17}$$

а значение $D_{lpha\,{
m max}}$ определялось соотношениями:

$$D_{\alpha}^{x} = D_{\alpha_{i}} \sum_{i=0}^{\frac{m}{2}-1} \cos\left(\frac{2\pi}{m} \cdot i\right); \ D_{\alpha}^{y} = D_{\alpha_{i}} \sum_{i=0}^{\frac{m}{2}-1} \sin\left(\frac{2\pi}{m} \cdot i\right); \ D_{\alpha \max} = \sqrt{\left(D_{\alpha}^{x}\right)^{2} + \left(D_{\alpha}^{y}\right)^{2}}.$$

На рис.4,a описываемый случай рассмотрен для m=6 .

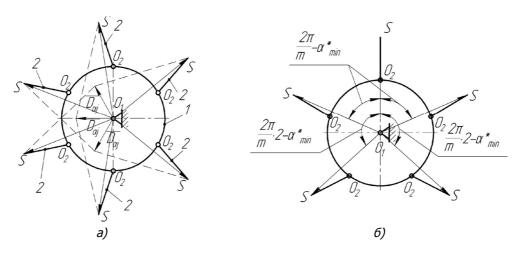


Рис. 4. К определению $D_{lpha \max}$ при четном (a) и нечетном (b) значении m

Произведя подстановку в последние уравнения, получаем

$$D_{\alpha \max} = 2m_{_{9}}n_{_{9}}(R+r) \cdot \eta \cdot \alpha_{\min}^{*}, \qquad (18)$$

где

$$\eta = \sqrt{\left[\sum_{i=0}^{\frac{m}{2}-1} \cos\left(\frac{2\pi}{m}i\right)\right]^2 + \left[\sum_{i=0}^{\frac{m}{2}-1} \sin\left(\frac{2\pi}{m}i\right)\right]^2}.$$
 (19)

При нечетном m>1 максимальное теоретически возможное значение $D_{\alpha}=D_{\alpha\,{\rm max}}$ имеет место, когда один из рядов элементов расположен идеально ($\alpha=0$), а ряды элементов, расположенные слева и справа от него, имеют противоположенные отклонения $\alpha=\pm\alpha_{\rm min}^*$ в сторону идеально расположенного элемента. На рис.4, δ такая модель представлена для случая m=5. Определяя при этом значение главного вектора дисбалансов ротора от этих отклонений, находим

$$D_{\alpha \max} = m_{9} n_{9} (R+r) + 2m_{9} n_{9} (R+r) \sum_{i=0}^{entier\left(\frac{m}{2}\right)} \cos\left(\frac{2\pi}{m}i - \alpha_{\min}^{*}\right) =$$

$$= m_{9} n_{9} (R+r) \left[1 + 2\sum_{i=0}^{entier\left(\frac{m}{2}\right)} \cos\left(\frac{2\pi}{m}i - \alpha_{\min}^{*}\right)\right]. \tag{20}$$

Учитывая при раскрытии косинуса разности углов малость $lpha_{\min}^*$, а также принимая во внимание, что при любом нечетном m

$$1+2\sum_{i=0}^{entier\left(\frac{m}{2}\right)}\cos\left(\frac{2\pi}{m}i\right)=0$$

уравнение (20) можно привести к виду (18), в котором для нечетного m:

$$\eta = \sum_{i=0}^{entier\left(\frac{m}{2}\right)} \sin\left(\frac{2\pi}{m} \cdot i\right). \tag{21}$$

Таким образом, полагая в (15) $D_{\alpha}=D_{\alpha\,{\rm max}}$, определенное по (18), находим минимально допустимое устойчивое отклонение шарнирного рабочего элемента при $\varphi=0$ и $\varphi=\pi$, при котором балансировка такого ротора с точностью до $D_{\rm CT, TOH}$ не вызывает затруднений:

$$\left| \pm \alpha_{\min}^* \right| = \frac{0.1 D_{\text{cr доп}}}{m_0 n_0 (R+r) \eta}$$
 (22)

Подставляя в уравнение $\alpha(P_{_{\rm M}})$ нижней границы неравенства (7) значение $\alpha=-\alpha_{\min}^*$ или в уравнение верхней границы неравенства (5) значение $\alpha=\alpha_{\min}^*$, получаем уравнение

$$\alpha_{\min}^* \cdot R + \frac{m_{_{9}}g}{P_{_{\text{II}}}} \cdot r = k \sqrt{1 + \left(\frac{m_{_{9}}g}{P_{_{\text{II}}}}\right)^2},$$

решая которое с учетом малости k в сравнении с r, находим:

$$\frac{m_{9}g}{P_{H}} = \frac{k - \alpha_{\min}^{*} \cdot R}{r} \cdot$$

Раскрывая в последнем уравнении $P_{_{\mathrm{II}}}$ по (9), находим верхнюю границу угловой скорости ω_{δ} балансировки ротора с шарнирными рабочими элементами:

$$\omega_{\delta} = \omega_{\delta_B} = \sqrt{\frac{g}{k - \alpha_{\min}^* R} \cdot \frac{r}{R + r}},$$
(23)

где $lpha_{\min}^*$ определяется по (22);

$$k = f \frac{d_{uu}}{2},\tag{24}$$

где f – коэффициент трения материалов, контактирующих в шарнире, оцениваемый по [4]; d_{uu} – номинальный диаметр контактирующих поверхностей в шарнире.

Если $k \leq \alpha_{\min}^* \cdot R$, то верхней границы значения ω_{δ} не существует.

Таким образом, достаточным условием эффективной балансировки ротора с шарнирными рабочими элементами является принятие значения угловой скорости ω_{δ} балансировки из диапазона:

$$\sqrt{\frac{g}{k} \cdot \frac{r}{R+r}} \le \omega_{\delta} \le \sqrt{\frac{g}{k - \alpha_{\min}^* R} \cdot \frac{r}{R+r}}$$
 (25)

Все расчеты по обоснованию значения $\, \omega_{\delta} \,$ формализованы для использования ЭВМ.

Заключение. Разработкой обобщенной рациональной технологии балансировки ротационных агрегатов с шарнирными рабочими элементами и обоснованием скорости балансировки таких агрегатов устранили проблему технологической подготовки их балансировки, обеспечив априорное решение всех ее задач.

Библиографический список

- 1. Справочник по балансировке / под общ. ред. М.Е. Левита. М.: Машиностроение, 1992. 464 с.
- 2. Полушкин О.А. Задача деления области значений гауссовой случайной величины на классы с равными дисперсиями и ее приложение к обоснованию закона распределения дисбаланса / О.А. Полушкин // Динамика узлов и агрегатов сельскохозяйственных машин: сб. статей / РИСХМ. Ростов н/Д, 1978. С. 12-23.
- 3. Полушкин О.А. Уравновешивание роторов со сменными подбираемыми по массе элементами / О.А. Полушкин, Л.Е. Декамили // Тракторы и сельхозмашины. − 1980. − № 3. − С. 25-26.
- 4. Справочник машиностроителя: в 6 т. / под ред. Н.С. Ачеркана. Т.1. М.: Машгиз, 1960.

Материал поступил в редакцию 15.01.11.

References

- 1. Spravochnik po balansirovke / pod obsch. red. M.E. Levita. M.: Mashinostroenie, 1992. 464 s. In Russian.
- 2. Polushkin O.A. Zadacha deleniya oblasti znachenii gaussovoi sluchainoi velichiny na klassy s ravnymi dispersiyami i ee prilojenie k obosnovaniyu zakona raspredeleniya disbalansa / O.A. Polushkin // Dinamika uzlov i agregatov sel'skohozyaistvennyh mashin: sb. statei / RISHM. Rostov n/D, 1978. S. 12-23. In Russian.
- 3. Polushkin O.A. Uravnoveshivanie rotorov so smennymi podbiraemymi po masse elementami / O.A. Polushkin, L.E. Dekamili // Traktory i sel'hozmashiny. − 1980. − № 3. − S. 25-26. − In Russian.
- 4. Spravochnik mashinostroitelya: v 6 t. / pod red. N.S. Acherkana. T.1. M.: Mashgiz, 1960. In Russian.

BALANCING OF ROTORS WITH HINGED WORKING PARTS

O.O. POLUSHKIN, O.A. POLUSHKIN, V.P. ZHAROV

(Don State Technical University)

Generalized rational technology of the rotors with hinged working parts is developed. Their balancing speed is a priori established, that enables to formalize the technological preparation of those rotors balancing.

Keywords: rotors with hinged parts, balancing, technological preparation.