Becmnuxk Jlonckozo 2ocyoapcmeennozo mexHu4ecKkozo ynueepcumenmd 2016, Ne2(85), 136-147

HPOLHECCBI U MALIUHBI ATPONMHXEHEPHBIX
CUCTEM
PROCESSES AND MACHINES OF AGRO -
ENGINEERING SYSTEMS

YK 631.517:631.415.330.138.1

DOI 10.12737/19690

Reliability-Based Design Optimization Strategy for Soil Tillage Equipment Considering Soil Parameter
Uncertainty *

M. G. Kharmanda’, I. R. Antypas®”~

! Depatment of Biomedical Engineering, Lund University, Sweden
2Don State Technical University, Rostov-on-Don, Russian Federation

CTparterusi ONTUMHM3AaUMH TPOEKTHPOBAHMS
napamMeTpU4ecKoil HeonpeeJeHHOCTH IM0YBbI

HAJAEXKHOCTH  TNOYBOOOpadaThIiBalOIIeil TEXHUKH C  y4eTOM

1 o
M. T. Xapmanga', . P. AuTtubac
! Tynpcxuit yausepcurer, r.JIyuz, IlBemus
2 JIoHCKOH rOCY/IapCTBEHHBIH TEXHHUECKHI yHUBEpCHTET, T. PoctoB-Ha-I[ony, Poccuiickas denepaums

The objective of this work is to provide an efficient tool of
Reliability-Based Design ~ Optimization (RBDO)  for
soil tillage machine design process in order to achieve designs with
a required reliability (safety) level. An efficient methodology that
controls the reliability levels for different statistical distribution
cases of random soil properties is developed. This developed
strategy is based on design sensitivity concepts in order to
determine the influence of each random parameter. The application
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of this method consists in taking into account the uncertainties on
the soil tillage forces. The tillage forces are calculated in
accordance with analytical model of McKyes and Ali with some
modifications to include the effect of both soil-metal adhesion and
tool speed. The different results show the importance of the
developed strategy to improve the performance of the soil tillage
equipments considering both random geometry and loading
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Introduction

In the deterministic design optimization [1,2], the designer aims to reduce the engineering design cost without caring
about the effects of uncertainties concerning materials, geometry and loading. The resulting optimal solution may therefore
represent an inappropriate reliability level. However, the integration of reliability analysis during the optimization process
leads to reduce the structural weight in uncritical regions that does not only provide an improved design but also a higher level
of confidence in the design. This approach can be carried out in two separate spaces: the physical space and the normalized
space. Since many repeated searches are needed in the above two spaces, the computational time for such an optimization is a
big problem. The solution of the above nested problems leads to a high computational cost, especially for large-scale
structures. The major difficulty lies in the structural reliability evaluation, which is carried out by a special optimization
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procedure. In order to improve the numerical performance, an efficient method is developed based on the optimality
conditions. In this work, we use a statistical study of the soil tillage forces, based on soil property randomness.
Soil Tillage Forces
There are many methods and models had been used to predict the forces acting on the tillage tool. However, the
majority of researchers have used the general earth pressure model, proposed by Reece [3]. The total force acting on the tillage
tool can be written as follows:
P=P +R +PRa+PFy+Pa (1)

Here, P is the total soil cutting force acting on the tillage tool (kN), P, is the force acting on the tillage tool caused by soil
gravity (kN), P. is the force acting on the tillage tool caused by cohesion (kN), P., is the force acting on the tillage tool
caused by adhesion (kN), F, is the force acting on the tillage tool caused by surcharge pressure (kN) and P, is the force

acting on the tillage tool caused by tool speed (kN) . The different force components are given by the following equations:

P, =y.d?wN, )
P, =cd.w.N, (3
P, =cC..d.W.N_ 4)
P, =qdwN, (5)
P, =yv2.dwN, (6)

with: v: Soil bulk density (kN /m?), d: Tool working depth (m), c: Soil internal cohesion (kPa) , ¢, : Soil-metal adhesion

(kPa) , q: Surcharge pressure at the soil surface (kPa), v: Forward tool speed (m/s?), w: Tool width (m), N, : Inertial
coefficient (dimensionless), N, : Adhesion coefficient (dimensionless), N, : Cohesion coefficient (dimensionless), N :

Surcharge pressure coefficient (dimensionless), N, : Gravity coefficient (dimensionless)

The coefficients (N, N, , N, Ny, N, ) are defined according to the soil failure model. In this work, we use McKyes

ca?
and Ali's model [3] to determine these N-factors. We select this model according to its simplicity and accuracy [4]. McKeys
and Ali assumed that the soil failure surface from the tool tip to the soil surface was linear, and made an unknown angle j3,

with the soil surface, Fig. 1. The forward distance of the failure crescent from the blade on the surface was assumed to be equal
to the radius r of the crescent.

Fig. 1: Proposed soil failure model for narrow blades

The forces acting on the soil segment are illustrated in Fig. 2, including the effects of the density of soil y , the internal
friction angle ¢, the soil-metal friction angle on the blade surface &, the soil cohesionc, the soil-metal adhesion c, and the
surface surcharge pressure q .
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Fig. 2 Forces acting on the soil segment

According to McKeys and Ali's model, Eq. (1) can be written:
p- [%.y.r.[l+ j—vsv).sin(ﬁr 1)+ cos(9) {H%}q-i-sin(ﬁr +(P)-[1+%J+---

sin(B, ) d
C, [Sin(B, + ) — cot(a).cos(B, +¢)]+y.v Sin(Br+(p)+ cos (B, +) (1+ij] dw "
Al ro o)-Cos(By + @)+ vy cot(a)  tan(B,).cot(a) |\ w) sin(a+B, +8+¢)
Here, r is the distance from the blade to the forward failure plan (m), given by:
r =d.[cot(a) +cot(B, )] (8)

s is the width of the side crescent (m), given by:

s=d .\/cot2 (B,) +2.cot(cr).cot(B,) 9)
a is the Rack angle of the tool from the horizontal (deg), B, is the angle of the soil failure zone (deg), & is the angle of soil-

metal friction (deg) and ¢ is the angle of internal soil friction (deg) . The calculated force in Eq. (7) is a function of the
unknown angle 8, . McKyes and Ali obtained this angle B, by minimizing the dimensionless term of gravity N, . The horizontal

force (H) and the vertical one (V) are obtained by combining P with force of adhesion [4] as follows:
H = P.sin(a +8) +c,.d.w.cot(a) (10)
V =P.cos(a+3)—c,.d.w (12)
Structural Reliability
In structural reliability theory many effective techniques have been developed during the last 40 years to estimate the
reliability, namely FORM (First Order Reliability Methods), SORM (Second Order Reliability Method) and simulation
techniques, see e.g. [5,6]. Here, we consider two kinds of variables: Design variables and Random variables. The image of the
random variables in the standard normalized space (Figure 3b) is denoted u, calculated by: u = T(y) where T(y) is the
probabilistic transformation function applied on the physical space (Figure 3a).

X, 4 Physical Space U4 Normalized Space
Safe Failure Safe ;aiifa'e
Region egion
Design H(x,u)=0
Point
..... A
; (v4 J
B -
0 U
a) b)

Fig. 3: a) Physical spaces, b) normalized spaces.
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For a given failure scenario, the reliability index B is evaluated by solving a constrained minimization problem:
B=min d(u) subjectto: H(u)<0 (12)
with
d=>u?’ (13)
where u is the vector modulus in the normalized space, measured from the origin see Figure (3). The solution to problem (12)
defines the design point P*, see Figure (3b). The resulting minimum distance between the limit state function H(u) and the
origin, is called the reliability index p.

Reliability-Based Design Optimization (RBDO)

Traditionally, for the reliability-based optimization procedure we use two spaces: the physical space and the
normalized space see [7]. Therefore, the reliability-based optimization is performed by nesting the following two problems:
Problem I: Optimization problem: this problem seeks to minimize an objective function subject to deterministic constraints
and reliability requirements which is defined as follow:

min f(x)
subjectto g,x<0 , k=1..,K (14)
and B(x,u) =By

where f(x) is the objective function, gy(x) <0 are the associated constraints, B (x,u) is the reliability index of the structure, and B,

is the target reliability.

Problem I1: Reliability analysis: the reliability index B (x,u) is the minimum distance between the limit state function H(u) and

the origin, see Figure 3b. This index is determined by solving the minimization problem:
min d(u)

. (15)
subjectto  H(u)<0

where d(u) is the distance in the normalized random space, given by d = ./Zuiz , and H(u) is the performance function (or

limit state function) in the normalized space, defined such that H(u) <0 implies failure, see Figure 3b. In the physical space,
the image of H(u) is the limit state function G(y), see Figure 3a [8]. Using the classical approach, the RBDO process is carried
out in two spaces, that leads to a high computational time problem. A hybrid approach based on simultaneous solution of the
reliability and the optimization problem is developed [9]. This approach consists in minimizing a new form of the objective
function F(x,y) subject to a limit state and to deterministic as well as to reliability constraints:

min F(xy)=f(x)-dg(xy)

subjectto G(y)<0 (16)
gk (X)ZO y k:].,...,K

and B(x,u)=p,

Here, dg (x,y) is the distance in the hybrid space between the optimum and the design point, dg (x,y) = d(u). The
minimization of the function F(x,y) is carried out in the Hybrid Design Space (HDS) of deterministic variables x and random
variables y.

Optimum Safety Factor Developments
Formulation Developments
At the MPP, u’, is the solution of the Karush—Kuhn-Tucker (KKT) conditions [1] of the FORM optimization problem (1).
oH
* ou;
U =—p—— 7)
B )
ou;
The derivative of the limit state H with respect to u and the derivative of u with respect to the design variable x can be
expanded in terms of the original random variables y as follows:

ATt (u * OT (u) ox”
a_Hzﬁk—() and ai:k_()ai (18)
ouj Oy oy 0%, Nk ¥k
For simplicity, consider now the case of n normalized variables u; , i=1,...,n, (see Figure 4: two normalized variables
u; and uy). For an assumed failure scenario, we define H(u) <0 and G(y) <0 as limit state functions in the normalized space (u-

space) and in physical one (y-space). Here, the design point P* can be calculated by



Becmnuxk Jlonckozo 2ocyoapcmeennozo mexHu4ecKkozo ynueepcumenmd 2016, Ne2(85), 136-147

min codP=ud 4+l +u?
. (19)
subject to:  H (uy,Us,...,u,)<0
The Lagrangian function for the problem (19) can be written as
L(u,%s)=d?(u)+2-[ H(u)+s?] (20)

where the inequality constraint in (19) is adjoined by means of the Lagrange multiplier A, after having converted the
inequality constraint into the equality H(u)+s’=0 by introducing the real slack variable s. The optimality conditions for the
Lagrangian are:

2
6_L:ﬂ+x6_H:0 , i=1..,n (21)
ou; oy ou;
oL 2
— =H(u)+s“=0 22
— (u) (22)
AL _sa=0 (23)
05

The optimality condition for L with respect to s yields the so-called switching condition s A =0, and the necessary
condition 92L/0 %= 0 for a minimum of L implies that the Lagrangian multiplier A must be non-negative, i.e., A >0 . Due to
condition (23), we can distinguish between two cases:

Case 1: If the real slack variable is non-zero (s= 0), the Lagrangian multiplier has to be zero (A =0) and the limit state
function must be less than zero (H (u) < 0), which corresponds to the case of safety.

Case 2: If the real slack variable is zero (s=0), the Lagrangian multiplier is non-negative (A >0 ) and the limit state is defined
by the equality constraint H (u) =0. The solution here is found on the limit state surface and represents the Design Point.

The first case is not suitable to our reliability-based study whereas the second one is basic for our approach. Using the
expression for the square distance d? in equation (19), we get:
= _&ﬁ | =

20u;
Problem (17) gives us the reliability index B as the minimum distance between the limit state surface and the origin.

1..,n (24)

This means that the resulting reliability index may be lower or higher than the target reliability index f ;. As we seek to satisfy
a required target reliability level for the optimization problem, we can write

B2 = 3 u? (25)

To determine A in (24), we now substitute index i by j in (24), square both sides of the equation, and sum from j=1 to
n. Using (25), we then obtain

2 2
o
2) o (o
Z -
j:l auj
which upon substitution into (24) yields the following expression for the normalized variable u;,
2
&)
ou;
U =B, [~ @7
n | oH
l5)
j=1| ou;
Equation (27) at the optimum value of the normalized vector can be written in the following form:
2
&)
* ou;
U =5, [ (28)
n [ oH
105)
j=1| ou;

where the sign of = depends on the sign of the derivative, i.e.,
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@>0<:>ui*>l and @<0<:>ui*<1 (29)
i i
The calculation of the normalized gradient oH /du is not directly accessible because the mechanical analysis is
carried out in the physical space rather than in the standard space. However, using theory of statistics we can derive the
following expression from which the computation of the normalized gradient can be carried out by applying the chain rule on
the physical gradient 6G / oy :

ot (u
MH_GM (W) Ly o ke1K (30)
oup Oy oy
where T7%(u) denotes the inverse mapping of u=T(y) from standard normalized space u into the random space y. It is not easy

to find the derivative of the inverted probabilistic transformation function T~2(u) with respect to u. Since the calculation of

the normalized gradient vector 0H /du is not directly accessible and according to our several numerical applications, we find
that the normalized gradient in equation (25) considering equation (30) can be expressed as

ﬁ:fﬁ iton (31)
o i

Equation (27) at the optimum value of the normalized vector can be written in the following form:

AL -1n (32)

where the sign of + depends on the sign of the derivative, i.e.,

@>0<:>ui*>1 and @<0<:>ui*<1 i=1,..,n (33)
i [
Statistical Developments
According to the reliability index definition of Hasofer-Lind [5], an iso-probabilistic transformation can be carried out
between the physical space and normalized one (Figure 3). The target reliability index that corresponds to the failure of
probability, is numerically computed as follows

P ~®(-B;) or B ~-0(P) (34)

where ®(.) is the standard Gaussian cumulated function given as follows:

2

L ? e_%dz (35)
N ,

Using the basic definition of Hasofer-Lind reliability index (34), we consider a simple normalized mapping
transformation for the five most commonly used probabilistic distributions (normal, lognormal, uniform, Gumbel and Weibull
distributions).

OSF for normal distribution

In general, when considering the normal distribution law, the transformation between the physical space (or x-Space)
and the normalized space (or u-Space) is defined by

yi =% +oiu; ,i=1..n (36)

d(Z) =

So the design point can be defined as:
yi :Sfi 'Xi’ |:1,,n (37)

Note that using equations (36) and (37), the optimum safety factor associated with ui* can be written as
Sy =l+y;-u;,  i=L..n (38)

where the variance coefficient y; relating the mean m; and standard-deviation o; equalsto: y; =o; /m;.

OSF for lognormal distribution
For lognormal distribution law, the transformation is defined by

y, =et*tst i=1..n (39)

When considering the lognormal distribution and assuming a single limit state failure scenario G(y) <0, the equation
for the optimum safety factor can be written in a way similar to that presented in section 5.2.1. Hence, we get the optimum
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safety factors in terms of the optimum values of the normalized variables ui*(see equation (32)), and the equation for the
optimum safety factors can be written as

Sy = ’_thyiz exp(,fln(1+yi2)~ui*), i=1..n (40)

OSF for uniform distribution
For uniform distribution law, the transformation is defined by

y; =a+(b-a)dU;), i=1..,n (41)
and the normalized variables u; are given by
u, :@1[_yi —aj, i=1..n (42)
b-a
where a and b are the end (bound) values of the interval for y;, and @ is the distribution function. The mean value m; is given by
m; =X =aT+b’ i=1..n (43)
and the standard deviation o; by
b-a .
o = —, i=1..n 44
Ty (44)

Using equations (18), (34) and (41), we get the following expression for the optimum safety factor corresponding to
the optimum value of the normalized variable

Uit Sy, =1-3y; (1-20()), i=1..n (45)

OSF for Weibull distribution
For Weibull distribution law, the transformation is defined by

Y, = v[—ln(dD(—Ui))]% (46)

with ®(-U) =1-®(U), k: shape factor >0, v : measure factor >0, the mean is given by:

m:

m :vr(1+1j=> ve “7)
K F(1+k]

and the standard-deviation is given by:

(43)

where T'(a)=[x*"e"?dz or a factorial form I'(a)=(a—1)! for integers. This way the equation of optimum safety factor can
0

be written as:

S, :;[—In(db(—ur)ﬂ% (49)

| F(l+ lj
k
OSF for Gumbel distribution
For Weibull distribution law, the transformation is defined by

1
i :v—aln[—ln(cl)(ui))] (50)
where the mean is given by:
m :V+(0.577j > vem, _(0.577] 51)
o o
and the standard-deviation is given by:
2

Gi:_n :>(1:TE_2 (52)
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Using (37) and (52), equation (41a) can be written as

512 %[11J —%yfyi (0.577- In[—ln(db(u:))})] (53)

Using these safety factors, we can satisfy the required reliability level and significantly reduce the complexity of the

problem.
OSF Algorithm

The Optimum Safety Factor (OSF) algorithm can be easily implemented in three principal steps (Fig. 4):

1. Determine the design point: we consider the most active constraint as a limit state function G(y). The
optimization problem is to minimize the objective function subject to the limit state and the deterministic constraints. The
resulting solution is considered as the most probable failure point and is termed the design point.

2. Compute the safety factors: in order to compute these factors using equations (38), (40), (45), (49) and (53), a
sensitivity analysis of the limit state function with respect to all variables is required. When the number of the deterministic
variables is equal to that of the random ones, there is no need for additional computational cost when the gradient calculation is
carried out during the optimization process of the design point. If the number of the deterministic variables is different from
that of the random ones, we need only to evaluate the sensitivity of the limit state function with respect to those random
variables that are not common with the deterministic.

3. Calculate the optimal solution: in the last step, we include the values of the safety factors in the computation of
the values of the design variables and then determine the optimum design of the structure.

/ Set initial point: X,.¥,;. /

€
y

:}[ Evaluate Objective -function ]

A 4
) E— [ Optimization Formulation ] 1

— h 4 \/

Failure Point ?

Design Point
Step 1

]

D E— [ Compute OSF ]

h 4

p — [ Reevaluate Functions ]

Optimum Point
Steps 2 &3

y
STOoP

Fig. 4: Flowchart of OSF approach
Numerical Application

Problem Description

The studied chisel plough illustrated in Fig. 6, can be used primarily to realize the weed control, the seedbed
preparation, and other secondary tillage operations. According to the deterministic design studies, the designer proposes a
global safety factor on the yield stress value. The RBDO solution can reduce the structural weight in uncritical regions. It does
not only provide an improved design but also a higher level of confidence in the design. For example, the allowable stress
design methods use a safety factor to compute the allowable stresses in members from the ultimate stress, and a successful
design ensures that the stresses caused by the values of the loads do not exceed the allowable stresses o, =o, / S; where S

is the global safety factor. The values of the proposed safety factors principally depend on the engineering experience that may
lead to low reliability level or to high cost. In this application, we consider that the studied parameters are presented by
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probabilistic characteristics. Let us consider that the horizontal and vertical forces follow lognormal distribution laws and
theirs probabilistic characteristics are presented in Table 1.

‘Ll
[I— ey |
| | ’ A
B _
b P .069.08) 9p=3
foet -
ot - |
( Section ,"
L Y TR N T
1\:
\\J“
| "

a) b)
Fig. 5: a) Schematic drawing of the chisel plough shank with acting forces, b) Two dimensional optimization problem

Table 1
Probabilistic characteristics of tillage forces

Force Distribution Distribution Mean Standard-

Type Type Parameters Value Deviation
P, (kN) | Lognormal n=0,815,£=0.421 2,463 1,044
R, (kN) Lognormal p=-0,052,&=0.415 1,032 0,427

The performance criterion, related to the mechanical resistance of tillage machines is determined by the difference
between the yield stress and the maximum stress. Therefore, the limit state function that defined the safe region can be written

using the following equation:
G(Y) = Opmax -o, <0 (54)

Here, X is the vector of deterministic variables and y is the vector of random variables, o is the yield stress and o, is the

maximum stress that is given by:

6 L 1
=—|(L+L,) Py +—2—R |[+—.P 55
Omax = p2 {( 2 L) Ry tan(c) V} bh " (55)

The limit state function of the simplified shank model, illustrated in Fig. 6, is a function of the following variables as:
G(x,y)=f(Py,R/,a,b,h L, L,) . The input geometrical parameters of the studied shank are: L, =600mm, L, =350mm,

L; =150mm, L, =75mm, o =45, b =32mm and h =58mm .

RBDO under Random Loading
Considering given values of the horizontal and vertical forces as: Py =2,463(kN) and R, =1,032(kN), the

corresponding maximum stress value (using equation (55)) of the initial point equals to: o, =63,99(MPa) . The global

safety factor of this point can be calculated by S; = Gy/Gmax . Using this equation, we get that the global safety factor equals

to: Sy =3,67 . Here, we should estimate the reliability level of this structure using equations (12) and (13).

Table 2
Reliability analysis of the studied shank
Parameters Py (kN) R/ (kN) Omax (MPa) p P
Actual Solution 2,463 1,032 63,99 2
- - 4199 3)(10
Design Point 8,907 4,560 234,91
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Considering two variable problems, the optimization process using ANSYS software (First Order Method) leads to
the coordinates of the design point or so-called MPP (Most Probable failure Point) and the actual point (see Table 2). The

reliability index of the studied structure equals to: B=4,99 that corresponds to probability of failure P; ~3x10" using
equation (34). In fact, the nuclear and spatial studies necessitate very small failure probability, the failure probability should

be: P €[10° —107®] that corresponds to a reliability index B e[4,75—-5,6] however in structural studies, the failure

probability should be: P; e[10° —107°] that corresponds to a reliability index B e [3—4, 25].

Table 3
RBDO of the studied shank
Parameters Py (kN) R/ (kN) Omax (MPa) B Py
Optimum Solution 3,420 4,141 100,16 3.00 1x10°3
Design Point 8,907 4,560 234,91 ! X

Therefore, we should improve the design reliability to be: B, =3 using the recent technology of RBDO based on our

OSF developments. Since the loads presented by the horizontal and vertical forces follow the lognormal distribution law, we
use equation (40) to compute analytically the optimum safety factors of the loads. Table 3 shows the coordinates of the

optimum solution points of the RBDO technology. Figure 7 shows a geometrical description of several solutions. All design

points Py* are located on the failure limit state (G(R,,R,) =0) and the optimum solution points PX* are located at the required
distance d; =3 from the design points.

RBDO under Random Geometry and Loading

Here, we consider the randomness of both geometry and loading parameters. In order to show the influence of
different parameters on the maximum stress values, we perform a sensitivity analysis of the maximum stress relative to the
geometry and loading. Table 4 defines the sensitivities of the maximum stress with respect to geometry and loading

parameters. We note that the derivatives with respect to both parameters L, and L; equal to zeros. Here, we can ignore the

influence of these two parameters on the maximum stress values. Therefore, we deal with four geometry parameters (b, h,

L,, Lyand o) and with two loading parameters (B, and R, ).

Table 4
Sensitivity analysis of the maximum stress function
Type Geometry Loading
Sensitivity Omax | OOmax | OOmax | OOmax | Omax | OOmax | OOmax | OFmax 06 max
Functions ob oh oy oL, oLy oLy oo, oPy OR,
SeV”Z:L'Z:y 199 | -218 | 0000 | 0137 | 0000 | 0195 | -015 | 0024 | 0,0042

Table 5 presents the RBDO results when applying the developed OSF equations for different distribution laws. Table 1
presents the probabilistic data. For both horizontal and vertical forces, the distribution laws (lognormal), the means and the
standard-deviations are presented in Table 1 as given data. To compute the OSF, we use equation (40). Since we apply the
new strategy on the randomness of the geometry parameters with object of demonstrating its efficiency, the standard-

deviations of the random geometry parameters are considered as proportional values of the means (o; = 0,1m;) for simplicity.
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Table 5
RBDO of the studied shank under geometry and loading uncertainty
i Design Optimum
P;{:alrr]s;?rs Dislt_r;k\)l\L/J;ion OSSfiF I\I\O/rz:1nr]i21ItIJIZ;3 ‘ Poi r?t S?)Iution
U Yi X
b(mm) Uniform 0,835 -1,958 31,687 37,917
h(mm) Uniform 0,835 -2,046 57,673 69,077
L, (mm) Normal 0,949 0,5133 350,47 332,48
L, (mm) Weibull 1,303 0,6114 75,174 57,6716
al Gumbel 0,879 -0,5366 44,914 51,1
Py (kN) Lognormal 1,005 0,2156 9,2501 9,203
R, (kN) Lognormal 0,957 0,0895 1,3248 1,383
Omax (MPa) 234,89 124,73
Volume(mm?®) 2,01e6 2,83e6
p 3,00
Py 1x1073

Furthermore, we consider that the length dimension L, , the section shank dimensions (b and h'), the depth dimension L, and
the angle parameter o. follow respectively the normal, uniform, Weibull and Gumbel distributions. The sensitivity analysis
presented in Table 4 shows that the geometry parameters have a bigger influence than the loading parameters.

Conclusions

In this paper, we develop an efficient methodology that can lead to optimum designs under uncertainties. Here, the
developed method controls the structural reliability levels for complex studies. The basic idea of the developed strategy is to
find structural sensitivity values with object of determining the influence of each random parameter. An efficient application
on the chisel shank plough under the uncertainties on the soil tillage forces is detailed. Here, the tillage forces are calculated in
accordance with analytical model of McKyes and Ali. The distributions of soil-tool forces are established to design soil tillage
equipments such as shank chisel plough in collaboration with Cranfield University [10]. The advantage of the RBDO using
OSF is to define the best compromise between cost and safety. Furthermore, we show that the classical design considering the
uncertainty on the loading parameter may not lead to economic or reliable structures.
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