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The objective of this work is to provide an efficient tool of 

Reliability-Based Design Optimization (RBDO) for 

soil tillage machine design process in order to achieve designs with 

a required reliability (safety) level. An efficient methodology that 

controls the reliability levels for different statistical distribution 

cases of random soil properties is developed. This developed 

strategy is based on design sensitivity concepts in order to 

determine the influence of each random parameter. The application 

of this method consists in taking into account the uncertainties on 

the soil tillage forces. The tillage forces are calculated in 

accordance with analytical model of McKyes and Ali with some 

modifications to include the effect of both soil-metal adhesion and 

tool speed. The different results show the importance of the 

developed strategy to improve the performance of the soil tillage 

equipments considering both random geometry and loading 

parameters. 

 

 

Целью данной работы является разработка эффективного и 

надежного метода проектирования почвообрабатывающих 

машин для получения конструкции с требуемой 

надежностью и высоким уровнем безопасности. Разработана 

эффективная методология, контролирующая уровень 

надежности для различных ситуаций статистического 

распределения изученных случайных свойств почвы. 

Разработанный метод основан на концепции 

чувствительности конструкции, обеспечивающей 

способность определять влияние каждого случайного 

параметра. Особенность этого метода состоит в том, что он 

принимает в расчет неопределенные силы при обработке 

почвы. Силы почвообрабатывающей техники 

рассчитываются в соответствии с аналитической моделью 

McKyes и Али с некоторыми изменениями, включающими 

влияние как адгезии почвы и металла, так и скорости 

машины. Различные результаты показывают важность 

разработанного метода для повышения производительности 

почвообрабатывающих машин с учетом и случайной 

геометрии, и заданных параметров. 
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 Introduction 

 In the deterministic design optimization [1,2], the designer aims to reduce the engineering design cost without caring 

about the effects of uncertainties concerning materials, geometry and loading. The resulting optimal solution may therefore 

represent an inappropriate reliability level. However, the integration of reliability analysis during the optimization process 

leads to reduce the structural weight in uncritical regions that does not only provide an improved design but also a higher level 

of confidence in the design. This approach can be carried out in two separate spaces: the physical space and the normalized 

space. Since many repeated searches are needed in the above two spaces, the computational time for such an optimization is a 

big problem. The solution of the above nested problems leads to a high computational cost, especially for large-scale 

structures. The major difficulty lies in the structural reliability evaluation, which is carried out by a special optimization 
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procedure. In order to improve the numerical performance, an efficient method is developed based on the optimality 

conditions. In this work, we use a statistical study of the soil tillage forces, based on soil property randomness.   

Soil Tillage Forces 

There are many methods and models had been used to predict the forces acting on the tillage tool. However, the 

majority of researchers have used the general earth pressure model, proposed by Reece [3]. The total force acting on the tillage 

tool can be written as follows:  

 P P P P P Pc ca q a      (1) 

Here, P  is the total soil cutting force acting on the tillage tool ( )kN , P  is the force acting on the tillage tool caused by soil 

gravity ( )kN , cP  is the force acting on the tillage tool caused by cohesion ( )kN , caP  is the force acting on the tillage tool 

caused by adhesion ( )kN , qP  is the force acting on the tillage tool caused by surcharge pressure ( )kN  and aP  is the force 

acting on the tillage tool caused by tool speed ( )kN . The different force components are given by the following equations:  

 2. . .P d w N     (2) 

 . . .c cP c d w N  (3)  

 . . .ca c caP c d w N  (4)  

 . . .q qP q d w N  (5)  

 
2. . . .a aP v d w N   (6) 

with: :  Soil bulk density
3( / )kN m , :d  Tool working depth ( )m , :c  Soil internal cohesion ( )kPa , :ac  Soil-metal adhesion

( )kPa , :q  Surcharge pressure at the soil surface ( )kPa , :v  Forward tool speed
2( / )m s , :w  Tool width ( )m , :aN  Inertial 

coefficient (dimensionless), :caN  Adhesion coefficient (dimensionless),  :cN  Cohesion coefficient (dimensionless), :qN  

Surcharge pressure coefficient (dimensionless), :N  Gravity coefficient (dimensionless) 

The coefficients ( aN , caN , cN , qN , N ) are defined according to the soil failure model. In this work, we use McKyes 

and Ali's model [3] to determine these N-factors. We select this model according to its simplicity and accuracy [4]. McKeys 

and Ali assumed that the soil failure surface from the tool tip to the soil surface was linear, and made an unknown angle r  

with the soil surface, Fig. 1. The forward distance of the failure crescent from the blade on the surface was assumed to be equal 

to the radius r of the crescent. 

 
 

Fig. 1:  Proposed soil failure model for narrow blades  

 

The forces acting on the soil segment are illustrated in Fig. 2, including the effects of the density of soil  , the internal 

friction angle , the soil-metal friction angle on the blade surface  , the soil cohesion c , the soil-metal adhesion ac and the 

surface surcharge pressure q . 
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Fig. 2 Forces acting on the soil segment 

 

According to McKeys and Ali's model, Eq. (1) can be written:  
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       
             

          

 (7)  

Here, r  is the distance from the blade to the forward failure plan ( )m , given by:  

  . cot( ) cot( )rr d     (8) 

s  is the width of the side crescent ( )m , given by:  

 2. cot ( ) 2.cot( ).cot( )r rs d      (9) 

  is the Rack angle of the tool from the horizontal (deg) , r  is the angle of the soil failure zone (deg) ,   is the angle of soil-

metal friction (deg)  and   is the angle of internal soil friction (deg) . The calculated force in Eq. (7) is a function of the 

unknown angle r . McKyes and Ali obtained this angle r by minimizing the dimensionless term of gravity N . The horizontal 

force (H) and the vertical one (V) are obtained by combining P with force of adhesion [4] as follows:  

 .sin( ) . . .cot( )aH P c d w       (10)  

 .cos( ) . .aV P c d w      (11) 

Structural Reliability 

 In structural reliability theory many effective techniques have been developed during the last 40 years to estimate the 

reliability, namely FORM (First Order Reliability Methods), SORM (Second Order Reliability Method) and simulation 

techniques, see e.g. [5,6].  Here, we consider two kinds of variables: Design variables and Random variables. The image of the 

random variables in the standard normalized space (Figure 3b) is denoted u, calculated by: u = T(y) where T(y) is the 

probabilistic transformation function applied on the physical space (Figure 3a).  

 

a)      b) 

Fig. 3: a) Physical spaces, b) normalized spaces. 
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For a given failure scenario, the reliability index β is evaluated by solving a constrained minimization problem:  

    min  d u      subject to:    H u 0    (12) 

with  

 2
id = u  (13) 

where u is the vector modulus in the normalized space, measured from the origin see Figure (3). The solution to problem (12) 

defines the design point P*, see Figure (3b). The resulting minimum distance between the limit state function H(u) and the 

origin, is called the reliability index β. 

Reliability-Based Design Optimization (RBDO) 

Traditionally, for the reliability-based optimization procedure we use two spaces: the physical space and the 

normalized space see [7]. Therefore, the reliability-based optimization is performed by nesting the following two problems: 

Problem I: Optimization problem: this problem seeks to minimize an objective function subject to deterministic constraints 

and reliability requirements which is defined as follow:  

 

 

 

0 1,...,

,

k

t

min            f x

subject to   g x           ,  k K

and            x u

 

  

 (14) 

where f(x) is the objective function, gk(x)  0 are the associated constraints, β (x,u) is the reliability index of the structure, and βt 

is the target reliability.  

Problem II: Reliability analysis: the reliability index β (x,u) is the minimum distance between the limit state function H(u) and 

the origin, see Figure 3b. This index is determined by solving the minimization problem: 

  
 

  0

min             d u      

subject to    H u 
 (15) 

where d(u) is the distance in the normalized random space, given by 
2

id u  , and H(u) is the performance function (or 

limit state function) in the normalized space, defined such that H(u)  0 implies failure, see Figure 3b. In the physical space, 

the image of H(u) is the limit state function G(y), see Figure 3a [8]. Using the classical approach, the RBDO process is carried 

out in two spaces, that leads to a high computational time problem. A hybrid approach based on simultaneous solution of the 

reliability and the optimization problem is developed [9]. This approach consists in minimizing a new form of the objective 

function F(x,y) subject to a limit state and to deterministic as well as to reliability constraints:    

 

     

 

 

 

, ,

0

0 1,...,

,

k

t

min            F x y f x d x y

subject to   G y

                   g x             ,   k K

and              x u

 



 

  

 (16) 

Here, dβ (x,y) is the distance in the hybrid space between the optimum and the design point, dβ (x,y) = d(u). The 

minimization of the function F(x,y) is carried out in the Hybrid Design Space (HDS) of deterministic variables x and random 

variables y. 

 

Optimum Safety Factor Developments 

Formulation Developments 

At the MPP, u
*
, is the solution of the Karush–Kuhn–Tucker (KKT) conditions [1] of the FORM optimization problem (1).  

 
* i
i

i

H

u
u    

H

u




 





 (17) 

The derivative of the limit state H with respect to u and the derivative of u with respect to the design variable x can be 

expanded in terms of the original random variables y as follows:  

 
 1

k

i k i

T uH G
  

u y u

 


  
 and 

 * *
k

i k k

T uu x
 

x y y

 


  
 (18) 

For simplicity, consider now the case of n normalized variables ui ,  i = 1,...,n, (see Figure 4: two normalized variables 

u1 and u2). For an assumed failure scenario, we define H(u)  0 and G(y)  0 as limit state functions in the normalized space (u-

space) and in physical one (y-space).  Here, the design point P
*
 can be calculated by 
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 

2 2 2 2
1 2

1 2, ,..., 0

n

n

min          :     d u u  ... u    

subject to:    H u u u

   


 (19) 

The Lagrangian function for the problem (19) can be written as 

      2 2, ,L u s d u H u s    
 

 (20) 

where the inequality constraint in (19) is adjoined by means of the Lagrange multiplier  , after having converted the 

inequality constraint into the equality H(u)+s
2
=0  by introducing the real slack variable s. The optimality conditions for the 

Lagrangian are:  

 
2

0 1,...,
i i i

L d H
     ,   i n

u u u

  
    

  
 (21) 

    2 0
L

H u s


  


 (22) 

  2 0
L

 s 
s


  


 (23) 

The optimality condition for L  with respect to s yields the so-called switching condition 0s   , and the necessary 

condition 
2
L/  s

2 0
 for a minimum of L implies that the Lagrangian multiplier   must be non-negative, i.e., 0  . Due to 

condition (23), we can distinguish between two cases: 

Case 1: If the real slack variable is non-zero (s  0), the Lagrangian multiplier has to be zero ( 0  ) and the limit state 

function must be less than zero (   0H u  ), which corresponds to the case of safety. 

Case 2: If the real slack variable is zero (s=0), the Lagrangian multiplier is non-negative ( 0  ) and the limit state is defined 

by the equality constraint   0H u  . The solution here is found on the limit state surface and represents the Design Point. 

The first case is not suitable to our reliability-based study whereas the second one is basic for our approach. Using the 

expression for the square distance d
2
 in equation (19), we get:  

 , 1,...,
2

i
i

H
u i n

u

 
  


 (24) 

Problem (17) gives us the reliability index   as the minimum distance between the limit state surface and the origin. 

This means that the resulting reliability index may be lower or higher than the target reliability index  t. As we seek to satisfy 

a required target reliability level for the optimization problem, we can write 

 
2 2

1

n

t i
i

u    


    (25) 

To determine   in (24), we now substitute index i by j in (24), square both sides of the equation, and sum from j=1 to 

n. Using (25), we then obtain 
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t
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j j

   

H

u

 
 

   
 
  

 (26) 

which upon substitution into (24) yields the following expression for the normalized variable ui ,  

 

2

2

1

i
i t

n

j j

H

u
u    

H

u

 
 
 

 
 
 
  

 (27) 

Equation (27) at the optimum value of the normalized vector can be written in the following form:  

 

2

*

2

1

i
i t

n

j j

H

u
u    

H

u

 
 
 

 
 
 
  

 (28) 

where the sign of ± depends on the sign of the derivative, i.e., 



M. G. Kharmanda и др.
 
Reliability-Based Design Optimization Strategy for Soil Tillage 

 

 *0 1i
i

G
u   

y


  


and *0 1i

i

G
u   

y


  


 (29) 

The calculation of the normalized gradient /H u   is not directly accessible because the mechanical analysis is 

carried out in the physical space rather than in the standard space. However, using theory of statistics we can derive the 

following expression from which the computation of the normalized gradient can be carried out by applying the chain rule on 

the physical gradient / yG  : 

 
 1

1,..., 1,...,
k

i k i

T uH G
     ,  i n,    k K   

u y u

 
  

  
 (30) 

where 
1( )T u

 denotes the inverse mapping of u=T(y) from standard normalized space u into the random space y. It is not easy 

to find the derivative of the inverted probabilistic transformation function 
1( )T u

 with respect to u. Since the calculation of 

the normalized gradient vector /H u   is not directly accessible and according to our several numerical applications, we find 

that the normalized gradient in equation (25) considering equation (30) can be expressed as 

 1,...,
i i

H G
     ,  i n

u y

 
 

 
 (31) 

Equation (27) at the optimum value of the normalized vector can be written in the following form:  

 *

1

1,...,
i

i t
n

j j

G

y
u   ,      i n

G

y




  






 (32) 

where the sign of ± depends on the sign of the derivative, i.e., 

  *0 1i
i

G
u   

y


  


and *0 1i

i

G
u   

y


  


, 1,...,i n  (33) 

Statistical Developments 

According to the reliability index definition of Hasofer-Lind [5], an iso-probabilistic transformation can be carried out 

between the physical space and normalized one (Figure 3).  The target reliability index that corresponds to the failure of 

probability, is numerically computed as follows  

 ( )f tP       or   1( )t fP    (34) 

where (.) is the standard Gaussian cumulated function given as follows: 

  

2

2
1

( ) ,
2

z
Z

Z e dz




  


 (35) 

Using the basic definition of Hasofer-Lind reliability index (34), we consider a simple normalized mapping 

transformation for the five most commonly used probabilistic distributions (normal, lognormal, uniform, Gumbel and Weibull 

distributions). 

OSF for normal distribution  

In general, when considering the normal distribution law, the transformation between the physical space (or x-Space) 

and the normalized space (or u-Space) is defined by 

 , 1,...,i i i iy x u      i n     (36) 

So the design point can be defined as: 

 . 1
ii f iy S x ,        i ,...,n   (37) 

Note that using equations (36) and (37), the optimum safety factor associated with 
*
iu  can be written as 

 
*1 1

if i iS u ,        i ,...,n      (38) 

where the variance coefficient i  relating the mean im  and standard-deviation i  equals to: /i i im   . 

OSF for lognormal distribution 

For lognormal distribution law, the transformation is defined by 

 , 1,...,i i iu
iy e      i n

 
   (39) 

When considering the lognormal distribution and assuming a single limit state failure scenario G(y)  0, the equation 

for the optimum safety factor can be written in a way similar to that presented in section 5.2.1. Hence, we get the optimum 
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safety factors in terms of the optimum values of the normalized variables 
*
iu (see equation (32)), and the equation for the 

optimum safety factors can be written as 

  2 *

2

1
exp ln 1 1,...,

1
if i i

i

S u ,      i n      
  

 (40) 

OSF for uniform distribution 

For uniform distribution law, the transformation is defined by 

 ( ) ( ), 1,...,i iy a b a U         i n      (41) 

and the normalized variables ui are given by 

 1 1,...,i
i

y a
u ,             i n

b a

  
   

 
 (42) 

where a and b are the end (bound) values of the interval for iy , and   is the distribution function. The mean value im  is given by 

 1,...,
2

i i

a b
m x ,           i n


    (43) 

and the standard deviation i  by 

 1,...,
12

i

b a
,          i n


    (44) 

Using equations (18), (34) and (41), we get the following expression for the optimum safety factor corresponding to 

the optimum value of the normalized variable 

 
*
iu :  *1 3 1 2 ( ) 1,...,

if i iS u ,               i n       (45) 

OSF for Weibull distribution  

For Weibull distribution law, the transformation is defined by 

  
1

ln ( ) k
i iy U        (46) 

with ( ) 1 ( )U U    , k: shape factor >0,  : measure factor >0, the mean is given by: 

 
1

1im
k

 
   

 
=> 

1
1

im

k

 
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 (47) 

and the standard-deviation is given by:  
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where   1

0

a za x e dz


     or a factorial form    1 !a a    for integers. This way the equation of optimum safety factor can 

be written as:  

  
1

*1
ln ( )

1
1

i

k
f iS u

k

    
  

  
 

 (49) 

OSF for Gumbel distribution  

For Weibull distribution law, the transformation is defined by 

  
1

ln ln ( )i iy u      
 (50) 

where the mean is given by:  
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 =>  
0.577
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 
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 

 (51) 

and the standard-deviation is given by: 
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 (52) 
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Using (37) and (52), equation (41a) can be written as 

   1,2 2 *

2

1 24
1 1 0.577 ln ln ( )

2i
i i if

S y u
 

           

 (53) 

Using these safety factors, we can satisfy the required reliability level and significantly reduce the complexity of the 

problem. 

OSF Algorithm 

The Optimum Safety Factor (OSF) algorithm can be easily implemented in three principal steps (Fig. 4): 

1. Determine the design point: we consider the most active constraint as a limit state function G(y). The 

optimization problem is to minimize the objective function subject to the limit state and the deterministic constraints. The 

resulting solution is considered as the most probable failure point and is termed the design point. 

2. Compute the safety factors: in order to compute these factors using equations (38), (40), (45), (49) and (53), a 

sensitivity analysis of the limit state function with respect to all variables is required. When the number of the deterministic 

variables is equal to that of the random ones, there is no need for additional computational cost when the gradient calculation is 

carried out during the optimization process of the design point. If the number of the deterministic variables is different from 

that of the random ones, we need only to evaluate the sensitivity of the limit state function with respect to those random 

variables that are not common with the deterministic.     

3. Calculate the optimal solution: in the last step, we include the values of the safety factors in the computation of 

the values of the design variables and then determine the optimum design of the structure.     

 
Fig. 4: Flowchart of OSF approach 

Numerical Application 

Problem Description  

The studied chisel plough illustrated in Fig. 6, can be used primarily to realize the weed control, the seedbed 

preparation, and other secondary tillage operations. According to the deterministic design studies, the designer proposes a 

global safety factor on the yield stress value. The RBDO solution can reduce the structural weight in uncritical regions. It does 

not only provide an improved design but also a higher level of confidence in the design. For example, the allowable stress 

design methods use a safety factor to compute the allowable stresses in members from the ultimate stress, and a successful 

design ensures that the stresses caused by the values of the loads do not exceed the allowable stresses w y fS   where fS   

is the global safety factor. The values of the proposed safety factors principally depend on the engineering experience that may 

lead to low reliability level or to high cost. In this application, we consider that the studied parameters are presented by 
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probabilistic characteristics. Let us consider that the horizontal and vertical forces follow lognormal distribution laws and 

theirs probabilistic characteristics are presented in Table 1.  

 

 

a) b) 

Fig. 5: a) Schematic drawing of the chisel plough shank with acting forces, b) Two dimensional optimization problem 

 

Table 1 

Probabilistic characteristics of tillage forces 

Force 

Type 

Distribution 

Type 

Distribution 

Parameters 

Mean 

Value 

Standard-

Deviation 

( )HP kN  Lognormal 0,815  , 0.421   2,463 1,044 

( )VP kN  Lognormal 0,052   , 0.415   1,032 0,427 

The performance criterion, related to the mechanical resistance of tillage machines is determined by the difference 

between the yield stress and the maximum stress. Therefore, the limit state function that defined the safe region can be written 

using the following equation:  

 max(y) 0yG      (54) 

Here, x is the vector of deterministic variables and y is the vector of random variables, y  is the yield stress and max  is the 

maximum stress that is given by: 

    4
max 2 42

6 1
. . .

tan( ) ..
H V H

L
L L P P P

b hb h

 
     

 
 (55) 

The limit state function of the simplified shank model, illustrated in Fig. 6, is a function of the following variables as: 

2 4(x, y) ( , , , , , , )H VG f P P b h L L  . The input geometrical parameters of the studied shank are: 1 600L mm , 2 350L mm , 

3 150L mm ,
 4 75L mm , 45  , 32b mm  and 58h mm . 

 

RBDO under Random Loading 

Considering given values of the horizontal and vertical forces as: 2,463( )HP kN  and 1,032( )VP kN ,  the 

corresponding maximum stress value (using equation (55)) of the initial point equals to: max 63,99( )MPa  . The global 

safety factor of this point can be calculated by maxf yS    . Using this equation, we get that the global safety factor equals 

to: 3,67fS  . Here, we should estimate the reliability level of this structure using equations (12) and (13).  

Table 2 

Reliability analysis of the studied shank 

Parameters ( )HP kN  ( )VP kN  max ( )MPa    fP  

Actual Solution 2,463 1,032 63,99 
4,99 73 10  

Design Point 8,907 4,560 234,91 

 



M. G. Kharmanda и др.
 
Reliability-Based Design Optimization Strategy for Soil Tillage 

 
Considering two variable problems, the optimization process using ANSYS software (First Order Method) leads to 

the coordinates of the design point or so-called MPP (Most Probable failure Point) and the actual point (see Table 2). The 

reliability index of the studied structure equals to: 4,99   that corresponds to probability of failure 73 10fP   using 

equation (34). In fact, the nuclear and spatial studies necessitate very small failure probability, the failure probability should 

be:
 

6 8[10 10 ]fP     that corresponds to a reliability index [4,75 5,6]   however in structural studies, the failure 

probability should be:
 

3 5[10 10 ]fP     that corresponds to a reliability index [3 4,25]  .  

Table 3 

RBDO of the studied shank 

Parameters ( )HP kN  ( )VP kN  max ( )MPa    fP  

Optimum Solution 3,420 4,141 100,16 
3,00 31 10  

Design Point 8,907 4,560 234,91 

 

Therefore, we should improve the design reliability to be: 3t    using the recent technology of RBDO based on our 

OSF developments. Since the loads presented by the horizontal and vertical forces follow the lognormal distribution law, we 

use equation (40) to compute analytically the optimum safety factors of the loads. Table 3 shows the coordinates of the 

optimum solution points of the RBDO technology. Figure 7 shows a geometrical description of several solutions. All design 

points *
yP  are located on the failure limit state ( ( , ) 0H VG P P  ) and the optimum solution points 

*
xP  are located at the required 

distance 3d    from the design points. 

RBDO under Random Geometry and Loading 

Here, we consider the randomness of both geometry and loading parameters. In order to show the influence of 

different parameters on the maximum stress values, we perform a sensitivity analysis of the maximum stress relative to the 

geometry and loading. Table 4 defines the sensitivities of the maximum stress with respect to geometry and loading 

parameters.  We note that the derivatives with respect to both parameters 1L and 3L equal to zeros. Here, we can ignore the 

influence of these two parameters on the maximum stress values. Therefore, we deal with four geometry parameters ( b , h , 

2L , 4L and  ) and with two loading parameters ( HP  and VP ).  

Table 4 

Sensitivity analysis of the maximum stress function 

Type Geometry Loading 

Sensitivity 

Functions 
max

b




 max

h




 

max

1L




 max

2L




 max

3L




 max

4L




 max


 

max

HP




 max

VP




 

Sensitivity 

Values 
-1,99 -2,18 0,000 0,137 0,000 0,195 -0,15 0,024 0,0042 

 

Table 5 presents the RBDO results when applying the developed OSF equations for different distribution laws. Table 1 

presents the probabilistic data. For both horizontal and vertical forces, the distribution laws (lognormal), the means and the 

standard-deviations are presented in Table 1 as given data. To compute the OSF, we use equation (40).  Since we apply the 

new strategy on the randomness of the geometry parameters with object of demonstrating its efficiency, the standard-

deviations of the random geometry parameters are considered as proportional values of the means ( 0,1i im  ) for simplicity.  
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Table 5 

RBDO of the studied shank under geometry and loading uncertainty 

Random 

Parameters 

Distribution 

Laws 

OSF 

if
S  

Normalized 

Variable 

iu  

Design 

Point 

iy  

Optimum 

Solution 

ix  

( )b mm  Uniform 0,835 -1,958 31,687 37,917 

( )h mm  Uniform 0,835 -2,046 57,673 69,077 

2 ( )L mm  Normal 0,949 0,5133 350,47 332,48 

4 ( )L mm  Weibull 1,303 0,6114 75,174 57,6716 

  Gumbel 0,879 -0,5366 44,914 51,1 

( )HP kN  Lognormal 1,005 0,2156 9,2501 9,203 

( )VP kN  Lognormal 0,957 0,0895 1,3248 1,383 

max ( )MPa  234,89 124,73 

3( )Volume mm  2,01e6 2,83e6 

  3,00 

fP  31 10  

Furthermore, we consider that the length dimension 2L , the section shank dimensions ( b and h ), the depth dimension 4L and 

the angle parameter follow respectively the normal, uniform, Weibull and Gumbel distributions. The sensitivity analysis 

presented in Table 4 shows that the geometry parameters have a bigger influence than the loading parameters. 

Conclusions 

In this paper, we develop an efficient methodology that can lead to optimum designs under uncertainties. Here, the 

developed method controls the structural reliability levels for complex studies. The basic idea of the developed strategy is to 

find structural sensitivity values with object of determining the influence of each random parameter. An efficient application 

on the chisel shank plough under the uncertainties on the soil tillage forces is detailed. Here, the tillage forces are calculated in 

accordance with analytical model of McKyes and Ali. The distributions of soil-tool forces are established to design soil tillage 

equipments such as shank chisel plough in collaboration with Cranfield University [10]. The advantage of the RBDO using 

OSF is to define the best compromise between cost and safety. Furthermore, we show that the classical design considering the 

uncertainty on the loading parameter may not lead to economic or reliable structures.  
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