Preview

Advanced Engineering Research (Rostov-on-Don)

Advanced search

HEURISTIC SYNTHESIS ALGORITHM OF EVENT DEPENDENCIES MODEL

Abstract

The problem of relationship between events by the example of rail automatic and remote control devices errors is considered. Heuristic synthesis algorithm of dependencies model structure — Bayesian network — according to the diagnostic data on the ground of minimal length description principle is offered. The developed algorithm and its  software implementation are described.

About the Author

Dmitry V. Gorishny
Rostov State Transport University
Russian Federation


References

1. Lyuger Dj. Iskusstvennyi intellekt. Strategii i metody resheniya slojnyh problem. — M. : Vil'yams, 2003. — 864 s. — in Russian.

2. Rassel S., Norvig P. Iskusstvennyi intellekt: sovremennyi podhod. — M. : Vil'yams, 2006. — 1408 s. — in Russian.

3. McKay D. Information Theory, Inference, and Learning Algorithms. — Cambridge : Cambridge University Press, 2003. — 550 p.

4. Mitchell T. Machine Learning. — NY : McGraw-Hill, 1997. — 432 p.

5. Murphy K. A Brief introduction to graphical models and Bayesian networks. — Berkeley, 2001. — 19 p.

6. Otenyia L. Bayesian Belief Networks for dementia diagnosis and other applications: A comparison of hand-crafting and construction using novel data-driven technique // Technical Report CSM-179. — University of Stirling, 2008. — 332 p.

7. Chickering D.M., Geiger D., Heckerman D. Learning Bayesian Networks is NP-hard // Technical Report MSR-TR-94-17. — Microsoft, 2004. — 155 p.

8. Chow C.K., Liu C.N. Approximating discrete probability distributions with dependence trees // IEE Transactions on information theory. — 1968. — Vol. IT-14, N 3. — 6 p.

9. Grunwald P. A Tutorial Introduction to the Minimum Description Length Principle // Advances in Minimum Description Length: Theory and Applications. MIT Press. — Cambridge, 2005. — 80 p.

10. Suzuki J. Learning Bayesian Belief Networks based on the Minimum Description length Principle: Basic Properties // IEICE Trans. on Fundamentals. — 1999. — Vol. E82-A, N 9. — 9 p.

11. Zheng Y., Kwoh C.K. Improved MDL Score for Learning of Bayesian Networks // Proceedings of the International Conference on Artificial Intelligence in Science and Technology. — 2004. — AISAT. — P. 98—103.


Review

For citations:


Gorishny D. HEURISTIC SYNTHESIS ALGORITHM OF EVENT DEPENDENCIES MODEL. Vestnik of Don State Technical University. 2010;10(5):683-692. (In Russ.)

Views: 275


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2687-1653 (Online)