Синтез управления маневром уклонения беспилотного летательного аппарата с учетом терминальных ограничений
Аннотация
Введение. Статья посвящена решению задачи формирования субоптимальной стратегии уклонения беспилотного летательного аппарата в условиях неопределенности текущих характеристик движения и будущей стратегии поведения противодействующего ЛА, управление которым формируется с максимальной эффективностью. При этом траектория маневрирующего ЛА должна удовлетворять требованиям оптимальности некоторых заданных функций фазовых переменных в конечный момент времени и условиям прохождения его траектории через заданную терминальную область пространства. Начальные условия и динамические возможности уклоняющегося и противодействующего ЛА в начальный момент времени считаются известными. Управление уклоняющимся ЛА формируется его бортовыми средствами навигации и наведения в реальном масштабе времени на основе нелинейного позиционного управления с обратной связью. Целью работы является построение алгоритма решения задачи синтеза терминально-оптимального управления движением центра масс высокоскоростного беспилотного летального аппарата, позволяющего осуществлять поиск оптимального управления в функции текущих координат объекта. Рассмотрение задачи в такой постановке отличает ее от классических конфликтных задач о преследовании, решаемых с привлечением теории дифференциальных игр и требует поиска эффективных в вычислительном отношении способов ее решения.
Материалы и методы. Наиболее эффективными для беспилотных ЛА, функционирующих в условиях интенсивных возмущений, жестких ограничений на фазовые переменные и управление, являются так называемые методы оптимального терминального управления, реализующие адаптивные алгоритмы с прогнозом. Поэтому решение сформулированной задачи может быть получено именно на основе использования их идеологии.
Результаты исследования. Разработан новый метод кусочно-программного терминального управления движением беспилотного ЛА, отличающийся от известных тем, что основан на процедуре поиска стратегии управления по критерию наилучшего гарантированного результата с учетом терминальных ограничений. Разработана методика расчета стратегии управления маневром уклонения ЛА в медленном контуре терминальной системы управления, отличающаяся тем, что вместо процедуры прогноза в ускоренном времени и расчета невязок используется процедура преобразования краевой задачи в одноточечную задачу интегрирования системы обыкновенных дифференциальных уравнений, учитывающая наличие ненулевого терминального члена в целевом функционале.
Обсуждение и заключения. Несмотря на то, что формирование субоптимальной стратегии наведения в терминальную область уклоняющегося ЛА осуществляется не в форме синтеза, программное управление адаптируется к текущим условиям. Это достигается за счет итерационной процедуры регулярного пересчета терминальных условий, что эквивалентно периодическому замыканию обратной связи. Таким образом, выведение уклоняющегося ЛА в заданную терминальную область осуществляется программно, а управление уклонением от противодействующего ЛА формируется в форме синтеза. Ограничениями на метод являются условия, что модель движения противодействующего ЛА известна и он формирует естественное управление с целью перехвата уклоняющегося ЛА.
Ключевые слова
Об авторах
Н. Я. ПоловинчукРоссия
Половинчук Николай Яковлевич, кандидат технических наук, профессор кафедры АЭC и ПНК
344009, г. Ростов-на-Дону, пр. Шолохова, 262 в
С. В. Иванов
Россия
Иванов Станислав Валерьевич, кандидат технических наук доцент кафедры «Автоматизация производственных процессов»
344000, г. Ростов-на-Дону, пл. Гагарина, 1
Л. И. Котельницкая
Россия
Котельницкая Любовь Ивановна, кандидат технических наук, доцент кафедры «Математика»
344000, г. Ростов-на-Дону, пл. Гагарина, 1
Список литературы
1. Красовский, Н. Н. Позиционные дифференциальные игры / Н. Н. Красовский, А. И. Субботин. — Москва : Наука, 1974. — 254 с.
2. Щербань, И. В. Методика синтеза управления маневром уклонения игрока уклоняющегося ЛА в медленном контуре терминальной системы управления / И. В. Щербань, С. В. Иванов // Двойные технологии. — 2010. — №1.— С. 59–64.
3. Атанс, М. Оптимальное управление / М. Атанс, П. Фалб. — Москва: Машиностроение, 1968. — 764 с.
4. Федоров, В. В. Численные методы максимина / В. В. Федоров. —Москва : Наука, 1979. — 278 с.
5. Красовский, Н. Н. Игровые задачи о встрече движений / Н. Н. Красовский. — Москва : Наука,1970. — 420 с.
6. Понтрягин, Л. С. Избранные научные труды. Т.2. Дифференциальные уравнения. Теория операторов. Оптимальное управление. Дифференциальные игры / Л. С. Понтрягин. — Москва : Наука, 1988. — 575 с.
7. Соколов, С. В. Решение задачи синтеза оптимального управления в конфликтной задаче / С. В. Соколов, И. В. Щербань // Изв.РАН. ТиСУ. — 2003. — №5. — С.35–40.
8. Shcherban I.V. An efficient suboptimal algorithm for player-ally control in a conflict problem // Journal of Computer and Systems Sciences International. 2007. vol. 46, No. 1. p. 3-8.
9. Барков, В. В. Краевая задача оптимального управления нелинейными детерминированными системами / В. В. Барков, Ю. А. Кочетков // Известия РАН. Теория и системы управления. — 1995. — №6. — С. 184–193.
10. Баратова, Е. Д. Метод штрафов и необходимые условия оптимальности в дифференциальной иерархической игре при неопределенности / Е. Д. Баратова, А. Ф. Тараканов // Изв. РАН. ТиСУ. — 2003. — № 3. — С.30–36.
11. Соколов, С. В. Оптимальное управление спуском космического аппарата в возмущенной атмосфере / С. В. Соколов, И. В. Щербань // Известия РАН. ТиСУ. — 1999.— №1. — С.138–143.
12. Первачев, С. В. Адаптивная фильтрация сообщений / С. В. Первачев, А. И. Перов. — Москва : Радио и связь, 1991. — 160 с.
13. Буков, В. Н. Адаптивные прогнозирующие системы управления полетом / В. Н. Буков. — Москва : Наука, 1987. — 230 с.
14. Половинчук, Н. Я. Методы и алгоритмы терминального управления движением летательных аппаратов: монография / Н. Я. Половинчук, И. В. Щербань. — Москва : МО РФ, 2004. — 290 с.
15. Половинчук, Н. Я. Терминальное наведение баллистических летательных аппаратов: монография / Н. Я. Половинчук. — Москва : МО РФ, 2004. — 138 с.
16. Половинчук, Н. Я. Проектирование систем управления ракет-носителей и межконтинентальных баллистических ракет / Н. Я. Половинчук, А. А. Ардашов. — Ростов-на-Дону : РВИРВ, 2010.— 242 с.
17. Половинчук, Н. Я. Синтез алгоритма терминально-оптимального управления высокоскоростным маневрирующим летательным аппаратом / Н. Я. Половинчук, С. В. Иванов // Двойные технологии. — 2017. — №2. — С. 9–13.
18. Аппазов, Р. Ф Методы проектирования траекторий носителей и спутников Земли / Р. Ф. Аппазов, О. Г. Сытин. — Москва : Наука, 1987. — 440 с.
19. Разоренов, Г. Н. Системы управления летательными аппаратами (баллистическими ракетами и их головными частями) : учебник для вузов / Г. Н. Разоренов, Э. А. Бахрамов, Ю. Ф. Титов. — Москва : Машиностроение, 2003. — 584 с.
20. Соколов, С. В. Теоретические основы синтеза автономных помехоустойчивых бесплатформенных навигационных систем: монография / С. В. Соколов, Н. Я. Половинчук. — Ростов-на-Дону : МО РФ, 1998. — 340 с.
21. Гурман, В. И. Вырожденные задачи оптимального управления / В. И. Гурман. — Москва : Наука, 1977. — 304 с.
22. Брайсон, А. Прикладная теория оптимального управления / А. Брайсон, Хо Ю-Ши. — Москва : Мир, 1972. — 402 с.
23. Пантелеев, А. В. Теория управления в примерах и задачах / А. В. Пантелеев, А. С. Бортаковский. — Москва : Высшая школа, 2003.— 585 с.
Рецензия
Для цитирования:
Половинчук Н.Я., Иванов С.В., Котельницкая Л.И. Синтез управления маневром уклонения беспилотного летательного аппарата с учетом терминальных ограничений. Вестник Донского государственного технического университета. 2018;18(2):190-200. https://doi.org/10.23947/1992-5980-2018-18-2-190-200
For citation:
Polovinchuk N.Y., Ivanov S.V., Kotelnitskaya L.I. Synthesis of evasive maneuver control of unmanned aerial vehicle for terminal restrictions. Vestnik of Don State Technical University. 2018;18(2):190-200. (In Russ.) https://doi.org/10.23947/1992-5980-2018-18-2-190-200