CONTACT PROBLEM FOR A TWO-LAYERED CYLINDER
https://doi.org/10.23947/1992-5980-2018-18-3-265-270
Abstract
Introduction. The investigation of the contact problems for cylindrical bodies is urgent due to the engineering contact strength analysis on shafts, cores and pipe-lines. In the present paper, a new contact problem of elastostatics on the interaction between a rigid band and an infinite two-layered cylinder, which consists of an internal continuous cylinder and an outer hollow one, with a frictionless contact between the cylinders, is studied. The outer cylindrical band of finite length is press fitted. By using a Fourier integral transformation, the problem is reduced to an integral equation with respect to the unknown contact pressure.
Materials and Methods. Different combinations of linearly elastic materials of the composite cylinder are considered. Asymptotics of the symbol function of the integral equation kernel at zero and infinity is analyzed. This plays an important role for the application of the analytical solution methods. A key dimensionless geometric parameter is introduced, and a singular asymptotic technique is employed to solve the integral equation.
Research Results. On the basis of the symbol function properties, a special easily factorable approximation being applicable in a wide variation range of the problem parameters is suggested. The Monte-Carlo method is used to determine the approximation parameters. The asymptotic formulas are derived both for the contact pressure, and for its integral characteristic. Calculations are made for different materials and for various relative thickness of the cylindrical layer including thin-walled layers.
Discussion and Conclusions. The asymptotic solutions are effective for relatively wide bands when the contact zone length is bigger than the diameter of the composite cylinder. It is significant that the method is applicable also for those cases when the outer cylindrical layer is treated as a cylindrical shell. The asymptotic solutions can be recommended to engineers for the contact strength analysis of the elastic barrels with a flexible coating of another material.
About the Authors
D. A. PozharskiiRussian Federation
Pozharskii, Dmitry A. - Head of the Applied Mathematics Department, Dr.Sci. (Phys.-Math.), professor.
1, Gagarin Square, Rostov-on-Don, 344000.
N. B. Zolotov
Russian Federation
Zolotov, Nikita B. - graduate student, Vorovich Institute for Mathematics, Mechanics, and Computer Science.
8-a, ul. Milchakova, Rostov-on-Don, 344090.
I. Ye. Semenov
Russian Federation
Semenov, Ivan E. - student of the Applied Mathematics Department.
1, Gagarin Square, Rostov-on-Don, 344000.
E. D. Pozharskaya
Russian Federation
Pozharskaya, Elizaveta D. - student of the Applied Mathematics Department.
1, Gagarin Square, Rostov-on-Don, 344000.
M. I. Chebakov
Russian Federation
Chebakov, Mikhail I. - Chief Research Scholar, Vorovich Institute for Mathematics, Mechanics, and Computer Science, Dr.Sci. (Phys.-Math.), professor.
8-a, ul. Milchakova, Rostov-on-Don, 344090.
References
1. Belyankova, T. I. The dynamic contact problem for a prestressed cylindrical tube filled with a fluid / T.I. Belyankova, V.V. Kalinchuk // Journal of Applied Mathematics and Mechanics. ― 2009. ― Vol. 73, No. 2.― P. 209–219. DOI: https://doi.org/10.1016/j.jappmathmech.2009.04.011.
2. Александров, В. М. Контактные задачи в машиностроении / В. М. Александров, Б. Л. Ромалис. ― Москва : Машиностроение, 1986. ― 176 с.
3. Aizikovich, S.M. The axisymmetric contact problem of the indentation of a conical punch into a half-space with a coating inhomogeneous in depth / S.M. Aizikovich, A.S. Vasil’ev, S.S. Volkov // Journal of Applied Mathematics and Mechanics. ― 2015. ― Vol. 79, No. 5. ― P. 500–505. DOI: https://doi.org/10.1016/j.jappmathmech.2016.03.011.
4. Krenev, L.I. Indentation of a functionally graded coating on an elastic substrate by a shpero-conical indenter / L.I. Krenev, E.V. Sadyrin, S.M. Aizikovich, T.I. Zubar / Springer Proceedings in Physics. ― 2017. ― Vol. 193. ― P. 397–405. DOI: https://doi.org/10.1007/978-3-319-56062-5_33.
5. Пожарский, Д. А. К одной задаче Белоконя А. В. / Д. А. Пожарский, Н. Б. Золотов // Вестник Донского гос. техн. ун-та. ― 2017. ― Т. 17, № 2. ― С. 7–11. DOI: https://doi.org/10.23947/1992-5980-2017-17-2-7-11 .
6. Золотов, Н. Б. К контактным задачам для цилиндра / Н. Б. Золотов, Д. А. Пожарский, Е. Д. Пожарская // Известия вузов. Северо-Кавказский регион. Естественные науки. ― 2017. ― № 2. ― С. 12–14. DOI: https://doi.org/10.23683/0321-3005-2017-2-12-14.
7. Григолюк, Э. И. Контактные задачи теории пластин и оболочек / Э. И. Григолюк, В. М. Толкачев. ― Москва : Машиностроение, 1980. ― 411 с.
8. Arutyunyan, N.Kh. On the contact interaction of an elastic ring with an elastic cylinder / N.Kh. Arutyunyan// Mechanics of Solids. ― 1994. ― Vol. 29, No. 2. ― P. 194–197.
9. Goriacheva, I. G. Contact problem in the presence of wear for a piston ring inserted into cylinder / I.G. Goriacheva // Journal of Applied Mathematics and Mechanics. ― 1980. ― Vol. 44, No. 2. ― P. 255–257.
10. Нобл, Б. Метод Винера-Хопфа / Б. Нобл. ― Москва : Изд-во иностранной литературы, 1962. ― 276 с.
Review
For citations:
Pozharskii D.A., Zolotov N.B., Semenov I.Ye., Pozharskaya E.D., Chebakov M.I. CONTACT PROBLEM FOR A TWO-LAYERED CYLINDER. Vestnik of Don State Technical University. 2018;18(3):265-270. https://doi.org/10.23947/1992-5980-2018-18-3-265-270