To one Belokon’s problem
https://doi.org/10.23947/1992-5980-2017-17-2-7-11
Abstract
About the Authors
Dmitry A PozharskiiRussian Federation
Nikita B. Zolotov
Russian Federation
References
1. Aleksandrov, V. M., Belokon, A. V. Asymptotic solution of a class of integral equations and its application to contact problems for cylindrical elastic bodies. Journal of Applied Mathematics and Mechanics, 1967, vol. 31, no. 4, pp. 718–724.
2. Aleksandrov, V. M., Belokon, A. V. Asymptotic solution of a class of integral equations encountered in the investigation of mixed problems of the mathematical physics for regions with cylindrical boundaries. Journal of Applied Mathematics and Mechanics, 1968, vol. 32, no. 3, pp. 402–413.
3. Galin, L. A., ed. Razvitie teorii kontaktnykh zadach v SSSR. [Development of the theory of contact problems in the USSR.] Moscow: Nauka, 1976, 493 p. (in Russian).
4. Aleksandrov, V. M., Romalis, B.L. Kontaktnye zadachi v mashinostroenii. [Contact problems in mechanical engineering.] Moscow: Mashinostroenie, 1986, 176 p. (in Russian).
5. Aleksandrov, V. M., Pozharskii, D. A. An asymptotic method in contact problems. Journal of Applied Mathematics and Mechanics, 1999, vol. 63, no. 2, pp. 283–290.
6. Alexandrov, V. M., Pozharskii, D. A. Three-dimensional contact problems. Dordrecht: Kluwer academic publishers, 2001, 406 p.
7. Dаvtyan, D. B., Pozharskii, D. A. The action of a strip punch on a transversely isotropic half-space. Journal of Applied Mathematics and Mechanics, 2012, vol. 76, no. 5, pp. 558–566.
8. Artamonova, E. A., Pozharskii, D. A. A strip cut in a transversely isotropic elastic solid. Journal of Applied Mathematics and Mechanics, 2013, vol. 77, no. 5, pp. 551–558.
9. Nasedkin, А. V., Vatulyan, A. O., Karyakin, M. I. Aleksandr Vladimirovich Belokon' (1941–2013). [Alexander Vladimirovich Belokon (1941 – 2013).] Izvestiya vuzov. Severo-Kavkazskiy region. Natural Sciences. 2016, no. 4, pp. 128– 129 (in Russian).
10. Abramovits, M, Stigan, I., erd. Spravochnik po spetsial'nym funktsiyam. [Reference on special functions.] Moscow: Nauka, 1979, 832 p. (in Russian).
Review
For citations:
Pozharskii D.A., Zolotov N.B. To one Belokon’s problem. Vestnik of Don State Technical University. 2017;17(2):7-11. (In Russ.) https://doi.org/10.23947/1992-5980-2017-17-2-7-11