Data measurement system for non-destructive quality testing of hard alloys
https://doi.org/10.23947/1992-5980-2018-18-4-421-425
Abstract
Introduction. It is known that the quality of products from sintered hardmetals, if the fabrication technique is not violated, is determined by the phase composition and an average grain size of the carbide phase. However, hard alloys have a disadvantage inherent in all products of powder metallurgy - the inhomogeneity of the structure and the corresponding variation of properties. Traditional methods of monitoring the structure and phase composition according to the results of selective destructive tests prevent from receiving quality data under the production conditions and do not guarantee the identity of the properties of all batch products under study. The major method of non-destructive quality control of hard alloys is coercimetry, but domestic coercimeters are currently not produced. In this regard, the work objective is to create a domestic data measurement system for non-destructive quality testing of hard alloys and an assessment of the reliability of the results obtained with its help. Materials and Methods. Cylindrical and spherangular rods with the diameter of 4 to 10 mm, made of alloys of VK8 and VK10HOM grades, were used in the work. The method of comparison with a certified product was used to determine the coercitive force in the data measuring system. Research Results. The coercive force of two batches of products from hard alloys of VK10HOM and VK8 grades was measured using the developed data measuring system and KOERZIMAT 1.097 HcJ coersimeter. Discussion and Conclusions. The experimental studies show that the values of the coercitive force of the samples obtained on different equipment have approximately the same level.
The inhomogeneity of the structure characteristic of sintered hardmetals being a fabrication technique effect is confirmed. Providing that the relative error of measuring the coercitive force for each sample should be within ± 6%, the results obtained can be considered satisfactory. It is shown that the measurement algorithm proposed and implemented in the data measurement system through comparing the characteristics of the tested and certified samples with the known coercitive force, allows the manufacturer of hard alloy products to expand the sample of inspected products up to 100%, and to significantly reduce the costs for non-destructive testing of products.
About the Authors
I. K. TsybriiRussian Federation
Tsybrii Irina K. - head of the Instrument Making and Biomedical Engineering Department, Cand. Sci. (Eng.), associate professor
1, Gagarin sq., Rostov-on-Don, 344000, RF
I. L. Vyalikov
Russian Federation
Vyalikov, Ivan L. - associate professor of the Instrument Making and Biomedical Engineering Department, Cand. Sci. (Eng.)
1, Gagarin sq., Rostov-on-Don, 344000, RF
V. I. Ignatenko
Russian Federation
Ignatenko, Vitaly I. - associate professor of the Instrument Making and Biomedical Engineering Department, Cand. Sci. (Eng.)
1, Gagarin sq., Rostov-on-Don, 344000, RF
References
1. Киффер, Р. Твердые сплавы / Р. Киффер, Ф. Бенезовский. — Москва : Металлургия, 1971. — 390 с. 2. Чапорова, И. Н. Структура спеченных твердых сплавов / И. Н. Чапорова, К. С. Чернявский. — Москва : Металлургия, 1975. — 247 с.
2. Лошак, М. Г. Прочность и долговечность твердых сплавов / М. Г. Лошак. — Киев : Наук. думка, 1984. — 325 с.
3. Цыбрий, И. К. Магнитные свойства и методы исследования структуры спеченных твердых сплавов: дис. на соиск. учен. степ. канд. техн. наук (05.02.01). – Ростов-на-Дону, 1984. – 166 c.
4. ГОСТ 20 559–75 (ИСО 4884–78, ИСО 4489–78). Сплавы твердые, материалы керамические инструментальные. Правила приемки и методы отбора проб (с Изменениями № 1, 2, 3, 4) [Электронный ресурс] / Электронный фонд правовой и нормативно-технической документации. — Режим доступа : http://docs.cntd.ru/document/1200009536 (дата обращения : 15.02.2018).
5. ГОСТ 24 916–81 (СТ СЭВ 1254–78). Сплавы твердые спеченные. Метод определения коэрцитивной силы (с Изменением № 1) [Электронный ресурс] / Электронный фонд правовой и нормативно-технической документации. — Режим доступа : http://docs.cntd.ru/document/1200010981(дата обращения : 15.02.2018).
6. Förster F., Stumm W., Application of magnetic and electromagnetic nondestructive test methods fof measuring physical and technological material values // Materials Evaluation, 1975. V. 33. № 1. P. 5 15.
7. Коэрцитиметр KOERZIMAT 1.097 HcJ. 67654-17 : Методика поверки МП 28-261-2017 [Электронный ресурс] / МетрКонсалт. — Режим доступа : http://www.all-pribors.ru/opisanie/67654-17-koerzimat-1-097-hsj-77206 (дата обращения : 15.02.2018).
8. Симоненко, Н. И. Испытательный стенд для измерения магнитных характеристик твердых сплавов / Н. И. Симоненко, И. К. Цыбрий // Фундаментальные основы, теория, методы и средства измерений, контроля и диагностики: мат-лы 19-ой междунар. науч.-практ. конф. — Новочеркасск, 2018г. — С.127–131.
9. Цыбрий, И. К. Система цифровой обработки сигнала в приборе для определения коэрцитивной силы твердых сплавов / И. К. Цыбрий, Н. И. Симоненко, И. Н. Богданов // Трансформация мирового научно-технического знания : сб. научных трудов по мат-лам междунар. науч.-практ. конф. — Белгород, 2018. — С. 117–119.
Review
For citations:
Tsybrii I.K., Vyalikov I.L., Ignatenko V.I. Data measurement system for non-destructive quality testing of hard alloys. Vestnik of Don State Technical University. 2018;18(4):421-425. https://doi.org/10.23947/1992-5980-2018-18-4-421-425