1. Fairweather, G., Karageorghis, A. The method of fundamental solutions for elliptic boundary value problems. Advances in Computational Mathematics, 1998, vol. 9, pp. 69-95.
2. Alves, C.-J.-S., Chen, C.-S. A new method of fundamental solutions applied to nonhomogeneous elliptic problems. Advances in Computational Mathematics, 2005, vol. 2, pp. 125-142.
3. Bakhvalov, Y.A., et al. Pogreshnost' metoda tochechnykh istochnikov pri modelirovanii potentsial'nykh poley v oblastyakh s razlichnoy konfiguratsiey. [Errors of Point Source Method under Simulation of Potential Fields in Areas with Different Shape Configuration.] Russian Electromechanics, 2012, no. 5, pp. 17-21 (in Russian).
4. Knyazev, S.Yu., Shcherbakova, E.E., Zaichenko, A.N. Sravnitel'nyy analiz dvukh variantov metoda kollokatsiy pri chislennom modelirovanii potentsial'nykh poley. [A Comparative Analysis of Two Variants of the Collocation in Numerical Modeling of Potential Fields.] Russian Electromechanics, 2014, no. 1, pp. 17-19 (in Russian).
5. Knyazev, S.Yu., Shcherbakova, E.E., Shcherbakov, A.A. Komp'yuternoe modelirovanie potentsial'nykh poley metodom tochechnykh istochnikov. [Computer modeling of potential fields by point-source method.] Rostov-on-Don: DSTU Publ. Centre, 2012, 156 p. (in Russian).
6. Knyazev, S.Yu. Ustoychivost' i skhodimost' metoda tochechnykh istochnikov polya pri chislennom reshenii kraevykh zadach dlya uravneniya Laplasa. [Stability and Convergence of Point-Source Field Method at Numerical Solution to Boundary Value Problems for Laplace Equation.] Russian Electromechanics, 2010, no. 3, pp. 3-12 (in Russian).
7. Knyazev, S.Yu., Shcherbakova, E.E. Reshenie trekhmernykh kraevykh zadach dlya uravneniy Laplasa s pomoshch'yu metoda diskretnykh istochnikov polya. [The Decision of the Three-Dimensional Boundary Value Problems for the Laplace Equation Using the Method of Discrete Sources of the Field.] Russian Electromechanics, 2015, no. 5, pp. 25-30 (in Russian).
8. Knyazev, S.Yu., Shcherbakova, E.E., Yengibaryan, A.A. Chislennoe reshenie kraevykh zadach dlya uravneniya Puassona metodom tochechnykh istochnikov polya. [Numerical solution to boundary problems for Poisson equation by pointsource method.] Vestnik of DSTU, 2014, vol. 14, no. 2 (77), pp. 15-20 (in Russian).
9. Knyazev, S.Yu. Chislennoe reshenie uravneniy Puassona i Gel'mgol'tsa s pomoshch'yu metoda tochechnykh istochnikov. [Numerical solution to Poisson and Helmholtz equations using point source method.] Russian Electromechanics, 2007, no. 2, pp. 77-78 (in Russian).
10. Knyazev, S.Yu., Shcherbakova, E.E., Zaichenko, A.N. Chislennoe reshenie kraevykh zadach dlya neodnorodnykh uravneniy Gel'mgol'tsa metodom tochechnykh istochnikov polya. [Numerical Solution of the Boundary Problems with Non-Homogeneous Helmholtz Equation by Field Point-Source Method.] Russian Electromechanics, 2014, no. 4, pp. 14-19 (in Russian).
11. Knyazev, S.Yu., Shcherbakova, E.E. Primenenie metoda tochechnykh istochnikov polya pri chislennom reshenii zadach na sobstvennye znacheniya dlya uravneniya Gel'mgol'tsa. [The Numerical Eigenvalue Problems Solution for the Helmholtz Equation Using the Point Sources Method] Russian Electromechanics, 2016, no. 3 (545), pp. 11- 17 (in Russian).
12. Shcherbakova, E.E. Resheniya zadach na sobstvennye znacheniya dlya uravneniya Gel'mgol'tsa metodom tochechnykh istochnikov polya. [Solving eigenvalues problems for Helmholtz equation by point-source method.] Vestnik of DSTU, 2016, vol. 16, no. 3 (86), pp. 87-95 (in Russian).
13. Knyazev, S.Yu., Shcherbakova, E.E. Reshenie zadach teplo- i massoperenosa s pomoshch'yu metoda tochechnykh istochnikov polya. [The solution of heat and mass transfer problems by the point source method.] University News. North-Caucasian region. Technical Sciences Series, 2006, no. 4, pp. 43-47 (in Russian).
14. Knyazev, S.Yu., Shcherbakova, E.E. Chislennoe issledovanie stabil'nosti termomigratsii ploskikh zon. [Numerical study of stability of flat bands thermomigration.] Russian Electromechanics, 2007, no. 1, pp. 14-19 (in Russian).
15. Lunin, L.S., et al. Issledovanie stabil'nosti termomigratsii ansamblya lineynykh zon s pomoshch'yu trekhmernoy komp'yuternoy modeli, postroennoy na osnove metoda tochechnykh istochnikov polya. [The study of stability of thermomigration of an ensemble of linear zones using a three-dimensional computer model constructed on the basis of the field point sources method.] Vestnik SSC RAS, 2015, vol. 11, no. 4, pp. 9-15 (in Russian).
16. Martin, Liviu, Karageorghis, Andreas. The MFS-MPS for two-dimensional steady-state thermoelasticity problems. Anal. Bound. Elem. 2013, vol. 37, iss. 7-8, pp. 1004-1020.
17. Yan Gu, Wen Chen, Xiaoqiao He. Improved singular boundary method for elasticity problems. Comput. & Structures, 2014, vol. 135, pp. 7-82.
18. Knyazev, S.Yu., Pustovoyt, V.N., Shcherbakova, E.E. Modelirovanie poley uprugikh deformatsiy s primeneniem metoda tochechnykh istochnikov. [Modeling the elastic strain fields by point-source method.] Vestnik of DSTU, 2015, vol. 15, no. 1(80), pp. 29-38 (in Russian).
19. Knyazev, S.Yu. , et al. Modelirovanie trekhmernykh poley uprugikh deformatsiy s pomoshch'yu metoda tochechnykh istochnikov.[Modeling of three-dimensional elastic strain fields by point-source method.] Vestnik of DSTU, 2015, vol. 15, no. 4 (83), pp. 13-23 (in Russian).
20. Knyazev, S.Yu., Shcherbakova, E.E., Shcherbakov, A.A. Matematicheskoe modelirovanie poley uprugikh deformatsiy metodom tochechnykh istochnikov polya. [Mathematical modeling of elastic deformation fields by field point source method.] Mathematical Methods in Engineering and Technologies-MMTT, 2015, no. 5 (75), pp. 21- 23 (in Russian).
21. Knyazev, S.Yu., Shcherbakova, E.E. Primenenie chislennykh fundamental'nykh resheniy v metode tochechnykh istochnikov polya. [Application of the numerically obtained fundamental solutions in the field point-source method.] Vestnik of DSTU, 2016, vol. 16, no. 4 (87), pp. 118-125 (in Russian).
22. Knyazev, S.Yu., Shcherbakova, E.E. Metod chislennogo resheniya statsionarnogo uravneniya Shredingera. [Method for Numerical Solution of the Stationary Schrödinger Equation.] Russian Physics Journal, 2017, vol. 59, no. 10, pp. 87-92 (in Russian).
23. Knyazev, S.Yu. Integral'noe uravnenie dlya chislennogo resheniya statsionarnykh kvantovo-mekhanicheskikh zadach. [Integral equation for numerical solution of stationary quantum-mechanical problems.] Vestnik of DSTU, 2016, vol. 16, no. 3 (86), pp. 79-86 (in Russian).
24. Landau, L.D., Lifshits, E.M. Kvantovaya mekhanika. Nerelyativistskaya teoriya. [Quantum Mechanics. Nonrelativistic theory.] Moscow: Nauka, 1963, 703 p. (in Russian).