Application of the generalized point source method for solving boundary value problems of mathematical physics
https://doi.org/10.23947/1992-5980-2017-17-2-12-22
Abstract
About the Authors
Sergey Yu. KnyazevRussian Federation
Elena E. Shcherbakova
Russian Federation
References
1. Fairweather, G., Karageorghis, A. The method of fundamental solutions for elliptic boundary value problems. Advances in Computational Mathematics, 1998, vol. 9, pp. 69–95.
2. Alves, C.-J.-S., Chen, C.-S. A new method of fundamental solutions applied to nonhomogeneous elliptic problems. Advances in Computational Mathematics, 2005, vol. 2, pp. 125–142.
3. Bakhvalov, Y.A., et al. Pogreshnost' metoda tochechnykh istochnikov pri modelirovanii potentsial'nykh poley v oblastyakh s razlichnoy konfiguratsiey. [Errors of Point Source Method under Simulation of Potential Fields in Areas with Different Shape Configuration.] Russian Electromechanics, 2012, no. 5, pp. 17–21 (in Russian).
4. Knyazev, S.Yu., Shcherbakova, E.E., Zaichenko, A.N. Sravnitel'nyy analiz dvukh variantov metoda kollokatsiy pri chislennom modelirovanii potentsial'nykh poley. [A Comparative Analysis of Two Variants of the Collocation in Numerical Modeling of Potential Fields.] Russian Electromechanics, 2014, no. 1, pp. 17–19 (in Russian).
5. Knyazev, S.Yu., Shcherbakova, E.E., Shcherbakov, A.A. Komp'yuternoe modelirovanie potentsial'nykh poley metodom tochechnykh istochnikov. [Computer modeling of potential fields by point-source method.] Rostov-on-Don: DSTU Publ. Centre, 2012, 156 p. (in Russian).
6. Knyazev, S.Yu. Ustoychivost' i skhodimost' metoda tochechnykh istochnikov polya pri chislennom reshenii kraevykh zadach dlya uravneniya Laplasa. [Stability and Convergence of Point-Source Field Method at Numerical Solution to Boundary Value Problems for Laplace Equation.] Russian Electromechanics, 2010, no. 3, pp. 3–12 (in Russian).
7. Knyazev, S.Yu., Shcherbakova, E.E. Reshenie trekhmernykh kraevykh zadach dlya uravneniy Laplasa s pomoshch'yu metoda diskretnykh istochnikov polya. [The Decision of the Three-Dimensional Boundary Value Problems for the Laplace Equation Using the Method of Discrete Sources of the Field.] Russian Electromechanics, 2015, no. 5, pp. 25–30 (in Russian).
8. Knyazev, S.Yu., Shcherbakova, E.E., Yengibaryan, A.A. Chislennoe reshenie kraevykh zadach dlya uravneniya Puassona metodom tochechnykh istochnikov polya. [Numerical solution to boundary problems for Poisson equation by pointsource method.] Vestnik of DSTU, 2014, vol. 14, no. 2 (77), pp. 15–20 (in Russian).
9. Knyazev, S.Yu. Chislennoe reshenie uravneniy Puassona i Gel'mgol'tsa s pomoshch'yu metoda tochechnykh istochnikov. [Numerical solution to Poisson and Helmholtz equations using point source method.] Russian Electromechanics, 2007, no. 2, pp. 77–78 (in Russian).
10. Knyazev, S.Yu., Shcherbakova, E.E., Zaichenko, A.N. Chislennoe reshenie kraevykh zadach dlya neodnorodnykh uravneniy Gel'mgol'tsa metodom tochechnykh istochnikov polya. [Numerical Solution of the Boundary Problems with Non-Homogeneous Helmholtz Equation by Field Point-Source Method.] Russian Electromechanics, 2014, no. 4, pp. 14–19 (in Russian).
11. Knyazev, S.Yu., Shcherbakova, E.E. Primenenie metoda tochechnykh istochnikov polya pri chislennom reshenii zadach na sobstvennye znacheniya dlya uravneniya Gel'mgol'tsa. [The Numerical Eigenvalue Problems Solution for the Helmholtz Equation Using the Point Sources Method] Russian Electromechanics, 2016, no. 3 (545), pp. 11– 17 (in Russian).
12. Shcherbakova, E.E. Resheniya zadach na sobstvennye znacheniya dlya uravneniya Gel'mgol'tsa metodom tochechnykh istochnikov polya. [Solving eigenvalues problems for Helmholtz equation by point-source method.] Vestnik of DSTU, 2016, vol. 16, no. 3 (86), pp. 87–95 (in Russian).
13. Knyazev, S.Yu., Shcherbakova, E.E. Reshenie zadach teplo- i massoperenosa s pomoshch'yu metoda tochechnykh istochnikov polya. [The solution of heat and mass transfer problems by the point source method.] University News. North-Caucasian region. Technical Sciences Series, 2006, no. 4, pp. 43—47 (in Russian).
14. Knyazev, S.Yu., Shcherbakova, E.E. Chislennoe issledovanie stabil'nosti termomigratsii ploskikh zon. [Numerical study of stability of flat bands thermomigration.] Russian Electromechanics, 2007, no. 1, pp. 14–19 (in Russian).
15. Lunin, L.S., et al. Issledovanie stabil'nosti termomigratsii ansamblya lineynykh zon s pomoshch'yu trekhmernoy komp'yuternoy modeli, postroennoy na osnove metoda tochechnykh istochnikov polya. [The study of stability of thermomigration of an ensemble of linear zones using a three-dimensional computer model constructed on the basis of the field point sources method.] Vestnik SSC RAS, 2015, vol. 11, no. 4, pp. 9–15 (in Russian).
16. Martin, Liviu, Karageorghis, Andreas. The MFS–MPS for two-dimensional steady-state thermoelasticity problems. Anal. Bound. Elem. 2013, vol. 37, iss. 7–8, pp. 1004-1020.
17. Yan Gu, Wen Chen, Xiaoqiao He. Improved singular boundary method for elasticity problems. Comput. & Structures, 2014, vol. 135, pp. 7–82.
18. Knyazev, S.Yu., Pustovoyt, V.N., Shcherbakova, E.E. Modelirovanie poley uprugikh deformatsiy s primeneniem metoda tochechnykh istochnikov. [Modeling the elastic strain fields by point-source method.] Vestnik of DSTU, 2015, vol. 15, no. 1(80), pp. 29—38 (in Russian).
19. Knyazev, S.Yu. , et al. Modelirovanie trekhmernykh poley uprugikh deformatsiy s pomoshch'yu metoda tochechnykh istochnikov.[Modeling of three-dimensional elastic strain fields by point-source method.] Vestnik of DSTU, 2015, vol. 15, no. 4 (83), pp. 13–23 (in Russian).
20. Knyazev, S.Yu., Shcherbakova, E.E., Shcherbakov, A.A. Matematicheskoe modelirovanie poley uprugikh deformatsiy metodom tochechnykh istochnikov polya. [Mathematical modeling of elastic deformation fields by field point source method.] Mathematical Methods in Engineering and Technologies-MMTT, 2015, no. 5 (75), pp. 21– 23 (in Russian).
21. Knyazev, S.Yu., Shcherbakova, E.E. Primenenie chislennykh fundamental'nykh resheniy v metode tochechnykh istochnikov polya. [Application of the numerically obtained fundamental solutions in the field point-source method.] Vestnik of DSTU, 2016, vol. 16, no. 4 (87), pp. 118–125 (in Russian).
22. Knyazev, S.Yu., Shcherbakova, E.E. Metod chislennogo resheniya statsionarnogo uravneniya Shredingera. [Method for Numerical Solution of the Stationary Schrödinger Equation.] Russian Physics Journal, 2017, vol. 59, no. 10, pp. 87–92 (in Russian).
23. Knyazev, S.Yu. Integral'noe uravnenie dlya chislennogo resheniya statsionarnykh kvantovo-mekhanicheskikh zadach. [Integral equation for numerical solution of stationary quantum-mechanical problems.] Vestnik of DSTU, 2016, vol. 16, no. 3 (86), pp. 79–86 (in Russian).
24. Landau, L.D., Lifshits, E.M. Kvantovaya mekhanika. Nerelyativistskaya teoriya. [Quantum Mechanics. Nonrelativistic theory.] Moscow: Nauka, 1963, 703 p. (in Russian).
Review
For citations:
Knyazev S.Yu., Shcherbakova E.E. Application of the generalized point source method for solving boundary value problems of mathematical physics. Vestnik of Don State Technical University. 2017;17(2):12-22. (In Russ.) https://doi.org/10.23947/1992-5980-2017-17-2-12-22