Preview

Advanced Engineering Research (Rostov-on-Don)

Advanced search

The problem of infinite plate loaded with normal force following a complex trajectory*

https://doi.org/10.23947/1992-5980-2019-19-3-208-213

Abstract

Introduction. A method for solving the problem of an infinite plate on an elastic foundation is proposed. The plate is affected by a periodic load in the form of a force following an arbitrary closed path. The work objective is to develop a numerical method for solving problems of the elasticity theory for bodies under a moving load. Materials and

Methods. Given the periodicity of the load under consideration, it is decomposed in a Fourier series in a time interval whose length is equal to the load period. The solution to the original problem is constructed by superposition of the solutions to the problems corresponding to the load specified by the terms of the Fourier series described above. The final solution to the problem is presented as a segment of a series. In this case, each term corresponds to the solution of the problem of the impact on an infinite plate of a load distributed along a closed curve (the trajectory of the force motion). To find these solutions, the fundamental solution to the equation of vibration of an infinite plate lying on an elastic base is used.

Research Results. A new method is proposed for solving problems on the elasticity theory for bodies with a load following a closed path of arbitrary shape. The problem of an infinite plane along which a concentrated force moves at a constant speed is solved. It is determined that the trajectory of motion is a smooth closed curve consisting of circular arcs. The behavior of displacements and stresses near a moving force is considered. The energy propagation of the elastic waves is studied. For this purpose, the coordinates of the Umov – Poynting vector are calculated. The effect of the force motion speed on the length of the Umov – Poynting vector is investigated.

Discussion and Conclusions. The method is applicable when considering more complex objects (plates of complex shape, layered plates, viscoelastic plates). Its advantage is profitability since the known problem solutions are used to build the solution. The final decision is expressed in a convenient form – as the sum of curvilinear integrals. The results obtained can be used in the road design process. Studying the energy propagation of elastic waves from moving vehicles will enable to evaluate the impact of these waves on buildings near the road. The wear of the pavement is estimated considering data on the behavior of displacements and stresses

About the Author

A. V. Galaburdin
Don State Technical University, Rostov-on-Don
Russian Federation


References

1. Александров, В. М. Движение с постоянной скоростью жесткого штампа по границе вязкоупругой полуплоскости / В. М. Александров, А. В. Марк // Трение и износ. — 2006. — Т. 27, № 1. — С. 5–11.

2. Ege, N. Response of a 3D elastic half-space to a distributed moving load / N. Ege, O. Sahin, B. Erbas // Hacettepe Journal of Mathematics and Statistics. — 2017. — Vol. 46 (5). — C. 817–828. DOI: 10.15672 /HJMS.2017.434.

3. On a 3D moving load problem for an elastic half space / J. Kaplunov [et al.] // Wave Motion. — 2013. — Vol. 50. — C. 1229–1238. DOI:10.1016/j.wavemoti.2012.12.008.

4. Динамика слоистого полупространства под действием движущейся и осциллирующей нагрузки / В. В. Калинчук [и др.] // Вестник Юж. науч. центра РАН. — 2005. — Т. 1, № 1. — С. 3–11.

5. Приказчиков, Д. А. Околорезонансные режимы в стационарной задаче о подвижной нагрузке в случае трансверсально изотропной упругой полуплоскости / Д. А. Приказчиков // Известия Саратов. ун-та. — 2015. — Т. 15. — С. 215–221.

6. Chen, Y. Dynamic response of an elastic plate on a cross-anisotropic poroelastic halfplane to a load moving on its surface / Y. Chen, N. D. Beskou, J. Qian // Soil Dynamics and Earthquake Engineering. — 2018. — Vol. 107. –– С. 292–302.

7. Beskou, N. D. Dynamic response of an elastic plate on a cross-anisotropic elastic half-plane to a load moving on its surface / N. D. Beskou, Y. Chen, J. Qian // Transportation Geotechnics. — 2018. — Vol. 14. — С. 98–106.

8. Облакова, Т. В. О резонансном режиме в нестационарной задаче о подвижной нагрузке для упругого полупространства / Т. В. Облакова, Д. А. Приказчиков // Инженерный журнал: наука и инновации. — 2013. — Т. 9. — С. 1–8.

9. Kaplunov, J. The edge wave on an elastically supported Kirchhoff plate / J. Kaplunov [et al.] // The Journal of the Acoustical Society of America. — 2014. — Vol. 136, № 4. — C. 1487–1490. DOI: 10.1121/1.4894795.

10. Глухов, Ю. П. Динамическая задача для двухслойной полосы на жестком основании / Ю. П. Глухов // Труды Одесского политехнического университета. — 2014. — Вып. 2. — С. 9–14.

11. Егорычев, О. О. Воздействие подвижной нагрузки на многослойную вязкоупругую пластину, лежащую на вязкоупругом основании / О. О. Егорычев // Вестник МГСУ. — 2007. — Вып. 1. — С. 39–42.

12. Досжанов, М. Ж. Динамическое поведение безграничной упругой пластинки при воздействии подвижной (бегущей) нагрузки / М. Ж. Досжанов [и др.] // Путь науки. — 2016. — Т. 1, № 11 (33). — С. 26–28.

13. Шишмарев, К. А. Постановка задачи о вязкоупругих колебаниях ледовой пластины в канале в результате движения нагрузки / К. А. Шишмарев // Известия Алтай. гос. ун-та. — 2015 — № 1/2 (85). — C. 189–194. DOI 10.14258/izvasu(2015) 1.2–35.

14. Dyniewicz, B. Vibrations of a Mindlin plate subjected to a pair of inertial loads moving in opposite directions / B. Dyniewicz, D. Pisarski, C. Bajer // Journal of Sound and Vibration. — 2017. — Vol. 386. — С. 265–282.

15. Esen, I. A new finite element for transverse vibration of rectangular thin plates under a moving mass / I. Esen // Finite Elements in Analysis and Design. — 2013. — Vol. 66. — C. 26–35.

16. Song, Q. Vibration analysis of functionally graded plate with a moving mass / Q. Song, J. Shi, Z. Liu // Applied Mathematical Modelling. — 2017. — Vol. 46. — С. 141–160.

17. Parametric study of dynamic response of sandwich plate under moving loads / Q. Song [et al.] // Thin-Walled Structures. — 2018. — Vol. 123. — С. 82–99.

18. Time-domain structural-acoustic analysis of composite plates subjected to moving dynamic loads / Y. Qu [et al.] // Composite Structures. — 2019. — Vol. 208. — С. 574–584.

19. Foyouzat, M. A. An analytical-numerical solution to assess the dynamic response of viscoelastic plates to a moving mass / M. A. Foyouzat, H. E. Estekanchi, M. Mofid // Applied Mathematical Modelling. — 2018. — Vol. 54. — С. 670–696.

20. Галабурдин, А. В. Применение метода граничных интегральных уравнений к решению связных задач термоупругости с подвижной нагрузкой / А. В. Галабурдин // Известия вузов. Северо-Кавказский регион. Естественные науки. — 2012. — № 4. — С. 29–31.

21. Галабурдин, А. В. Применение метода граничных интегральных уравнений к решению задач о движущейся нагрузке / А. В. Галабурдин // Известия вузов. Северо-Кавказский регион. Естественные науки. — 2015. — № 1. — С. 9–11.

22. Рекач, В. Г. Руководство к решению задач прикладной теории упругости / В. Г. Рекач. — Москва : Высшая школа, 1973. — 384 с.

23. Завьялов, Ю. С. Методы сплайн-функции / Ю. С. Завьялов, Б. И. Квасов, А. Л. Мирошниченко. — Москва : Наука, 1980. — 352 с.


Review

For citations:


Galaburdin A.V. The problem of infinite plate loaded with normal force following a complex trajectory*. Vestnik of Don State Technical University. 2019;19(3):208-213. https://doi.org/10.23947/1992-5980-2019-19-3-208-213

Views: 686


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2687-1653 (Online)